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ABSTRACT  

Command of support robots by the warfighter requires intuitive interfaces to quickly communicate high degree-of-
freedom (DOF) information while leaving the hands unencumbered. Stealth operations rule out voice commands and 
vision-based gesture interpretation techniques, as they often entail silent operations at night or in other low visibility 
conditions. Targeted at using bio-signal inputs to set navigation and manipulation goals for the robot (say, simply by 
pointing), we developed a system based on an electromyography (EMG) "BioSleeve”, a high density sensor array for 
robust, practical signal collection from forearm muscles.  The EMG sensor array data is fused with inertial measurement 
unit (IMU) data. This paper describes the BioSleeve system and presents initial results of decoding robot commands 
from the EMG and IMU data using a BioSleeve prototype with up to sixteen bipolar surface EMG sensors. The 
BioSleeve is demonstrated on the recognition of static hand positions (e.g. palm facing front, fingers upwards) and on 
dynamic gestures (e.g. hand wave). In preliminary experiments, over 90% correct recognition was achieved on five static 
and nine dynamic gestures. We use the BioSleeve to control a team of five LANdroid robots in individual and 
group/squad behaviors. We define a gesture composition mechanism that allows the specification of complex robot 
behaviors with only a small vocabulary of gestures/commands, and we illustrate it with a set of complex orders. 
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1. INTRODUCTION  
1.1 The need for efficient means to communicate commands and exercise control over robots 

Robots and various forms of unmanned platforms are gradually becoming a common tool in support of soldiers in the 
field. The current means of controlling them, however, are not soldier-centric or responsive to the needs of the field 
personnel.   Soldier command of supporting robots and unmanned platforms requires intuitive interfaces to communicate 
fast, high DOF information, yet leaving the hands unencumbered.  Clearly these platforms should be enhancers and not 
deterrents to the mission due to inefficient means of control. The level of effort in coordinating with robots should not be 
higher than coordinating with a fellow soldier, and ideally would use similar gestures and signals. Stealth requirements 
rule out voice commands and vision-based gesture interpretation techniques for soldier’s intent during silent operations 
at night or in other low visibility conditions. 

 
Figure 1.  BioSleeve/BioSuit system concept. BioSleeve could monitor over 20 muscles and DOFs in the arm and hand.  
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1.2 A vision for interfaces controlled by bio-signals  

The focus of our work has been interfaces and control systems that use biological signals to control robots. Our initial 
motivation was the need to provide astronauts with better ways of controlling manipulators in Extra-Vehicular Activity 
(EVA) activities, while having to deal with difficulty of using the EVA suit/gloves. Electromyogram (EMG) signals 
provide a direct, higher bandwidth and reliable modality for command interfaces. These extend to control of prosthetic 
limbs and further, to controlling not only one robot with multiple degrees of freedom, but also teams of robots. The 
interfaces have wide use, from setting navigation and manipulation goals for the robot (say, simply by pointing) to 
precise control of movement when needed.  A primary goal has been the design of a wearable sleeve interface 
(“BioSleeve”) for practical signal collection from forearm muscles, incorporating an integrated high density array of 
surface EMG sensors, several strategically placed inertial sensors, and in-sleeve sensor processing to fuse and decode all 
signals. As a first step, an initial prototype BioSleeve was developed with a sensor array of 8-16 surface EMG sensors 
and a 6-axis inertial measurement unit (IMU) mounted on the back of the hand.  

1.3 Technical challenges of EMG systems 

The main challenges of surface EMG systems come from: (1) sensor-to-skin interface issues that cause non-stationarity 
and signal degradation; (2) noise and other artifacts from motion of electrodes relative to the skin/muscle; (3) reliability 
of the array packaging, (4) separating signals that distinguish deeper muscles and individual fingers, and (5) the time-
varying stochastic nature of the surface EMG signal itself, particularly for dynamic gestures. Issues 1 and 3 are primarily 
hardware related, issue 2 requires a combination of hardware and software improvements, and issues 4 and 5 require 
improved decoding algorithms. EMG data analysis is challenging in general, because the signals are stochastic and 
noisy, active muscles overlap for various movements, and forearm movements such as twists tend to shift the electrodes 
with the skin over the underlying muscles. Initial studies at JPL indicate that individual finger motions and twisting 
motions of the forearm are distinguishable with enough channels on the forearm. 

Conventional EMG electrodes in use today are predominately passive “wet” electrode types with Ag/AgCl adhesive gel 
interfaces; these electrodes can be bothersome to mount and lose signal quality as they dry over time. Dry contact 
electrodes have also been used, particularly in clinical studies, but they also have interface issues and artifacts from 
relative motion and require constant mechanical pressure to maintain good skin contact. Practical non-contact sensors 
are now available, potentially resolving many of the above issues.[1,2]. However, further study is required for practical 
usage issues, including sensitivity to skin-electrode separation distance and saturation from motion artifacts and/or 
friction-induced electrostatic charge. The current version of the BioSleeve uses conventional electrodes, though the 
methods we present can be adapted for dry or non-contact electrodes. 

A variety of papers have addressed recognition of EMG signals, but most of the work focused on a small number of 
sensors, typically wet contact sensors. Hand and individual finger tracking has been previously demonstrated from small 
forearm EMG arrays [3-6], with the focus on classification of discrete static gestures and not dynamic, temporally 
varying gestures. The BioSleeve classifies both static and dynamic gestures. 

1.4 Paper outline 

Section 2 describes the BioSleeve system, focusing on sensors, data acquisition and the software platform. The 
corresponding learning and classification algorithms and their results in the recognition of static and dynamic gestures 
are presented in section 3. Section 4 focuses on the use of the gestures to commands and control a group of five Landroid 
robots. Section 5 focuses on future work, presenting a path towards technology maturation and deployment. 

2. BIOSLEEVE SYSTEM 
The BioSleeve system and application concepts are shown in Figure 1. The system integrates several technologies to 
enable detailed and accurate arm and hand tracking: (1) EMG sensors, which can be embedded into clothing and be 
unobtrusive to the operator, (2) IMU sensors, which can be used to estimate limb orientation with respect to the body, 
and (3) advanced decoding algorithms for EMG gesture recognition. The BioSleeve system can be expanded to two arms 
with all degrees of freedom, to estimate position and orientation of carried equipment, and to add wearable sensors to 
monitor leg, head, and body posture (we refer to this complete system as BioSuit). 

The first prototype BioSleeve (shown in Figure 2) consists of an array of bipolar surface EMG sensors on the forearm, 
with an IMU worn on the hand. A small, low power, differential EMG amplifier circuit was designed, built, and 



 
 

 
 

integrated in the sleeve. The circuit is based around a surface mount instrumentation amplifier (INA321 from Texas 
Instruments), analog bandpass filtering and output buffer, and snap buttons for electrode attachment. An array of these 
circuits fit in an elastic sleeve material for mounting on the user’s forearm. The EMG signals are amplified, bandpass 
filtered, and buffered, and then transmitted through a wire tether to an off-board computer for digitization. Circuit 
characteristics: Power input = 228 µW (76 µA at 3V) during operation, <5 µA in sleep mode. Gain = 100 V/V. 
Frequency pass band = 16 to 600 Hz.  Typical raw EMG signals are shown in Figure 3. 

We experimented with both wet clinical electrodes and dry (no contact gel) electrodes in elastic skin-tight sleeves, and 
identified necessary design improvements. Using the wet adhesive electrodes make the sleeve/sensor array difficult to 
mount. Dry electrodes have a potential advantage in ease of use for mounting the BioSleeve on the user’s arm, but can 
have lower signal to noise ratio if not in good skin contact. They require constant mechanical pressure to maintain good 
skin contact. A system with sixteen channels of bipolar sensor circuits for the in-sleeve array was constructed.  
Packaging the array in elastic sleeve materials proved to be the major challenge for reliability, because breaks in the 
array wiring from motion caused most experiments to be run with twelve or fewer working channels. The current 
prototype uses eight bipolar sensors with two wet adhesive electrodes per sensor. 

          
Figure 2. BioSleeve system architecture (left), and initial implementation (wired) with wet electrodes integrated into 
sleeve array in the current prototype (right). 
 

 
Figure 3. Left: example data from individual finger motion. Right: Sample raw EMG data from 3 channels during two 
similar letters of the American Sign Language alphabet. 

 

3. LEARNING/CLASSIFICATION ALGORITHMS FOR GESTURE RECOGNITION 
The signals acquired and filtered by the BioSleeve are sent off-board for gesture recognition processing. In the current 
implementation, static gestures are classified using the EMG signals in a Support Vector Machine (SVM) algorithm and 
dynamic gestures use IMU data in a custom technique founded on a spatial pattern recognition / dynamic programming 
technique. Future work will integrate EMG and IMU signals for both types of gestures. After donning the BioSleeve, the 
user completes a 2–5 minute calibration exercise, which collects data in each gesture to train the classifiers. 
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Figure 5. Image sequences illustrating nine dynamic gestures (D1 to D9) 



 
 

 
 

 
Figure 6: Heat map of IMU signals over time. The y-axis of each subplot is each IMU signal (3 rotational and 3 translational 
accelerations), and the x-axis is time. Five different repeated temporal gestures (a–e) so that the pattern of each can be recognized. 

3.3 Discussion  

The results reported here are promising but are preliminary – all results are from the same subject (N=1), and without 
removal/replacement of the sensor sleeve between calibration and testing. However, we expect that the system will 
generalize well to others because of the similarities in anatomy of the human arm and muscles. EMG data analysis for 
detailed gestures and hand/finger poses is more challenging, because the signals are stochastic and noisy, active muscles 
overlap for various movements (many to many mapping between muscles and fingers), and forearm movements such as 
twist tend to shift the electrodes with the skin over the underlying muscles. Our experiments in collecting simultaneous 
EMG data from the forearm indicate that, with a sufficient density of sensors in the array and active channel selection, 
one can distinguish patterns of muscle activities underlying different hand and finger motions, including individual 
finger motions and twisting motions of the forearm. This discrimination capability will be particularly important for 
correct classification between two similar hand/finger configurations, such as those shown in Figure 3. 

4. GESTURE BASED COMMANDS FOR ROBOT CONTROL 
The commands coming from static and dynamic gestures can be used to control a rich set of behaviors for a robot or a 
squad.   
 
4.1 Gesture composition 

To enrich the space of possible behaviors one can define categories of gestures that can be concatenated to produce a 
more complex behavior. One assignment is illustrated in Table 1. 
 
Table 1: Combination of gestures leads to complex behaviors by combining selectors and sequencing gestures 
Selector  D1 D2 D3 D4 D5 D6 D7 D8 D9 

S1 Mode 
/Behavior 

DOG 
mode 

UAV-
control 

UGV-
control 

DOC 
pack 

Column Front V-
form 

Semi-
circle 

Follow-
lead 

S2 Member  ALL R1 R2 R3 R4 R5 LEAD  Non-L  SouthS 

S3 Direction/
Speed 

Advan
ce 

Retreat Stop Right Left U-
turn 

Faster Same Slower 

S4 Attention Freeze Safe 
mode 

Self-
destroy 

Avoid Go Come There Far Close 

S5 Validation          

S2- D1 Dog mode Sit Come Retrieve Search Good No! Bite Track Crawl 

S2-D2 UAV-con Tk-off Land Hover Follow Back Ahead Photo Video Goal 



 
 

 
 

 According to Table 1, using function selectors provides a richer class of control.. The software recognizes the first 
gesture and depending on the meaning associated to it interprets the second gesture differently.Thus, S1-D1 means that 
there has been a mode select to the “DOG mode”. By contrast, S3-D1 means ‘Advance’ 
 
4.2 Describing complete orders as sequences  

Gestures allows real-time tele-operation as well as mission specification after which the robots start execution of a 
sequence and autonomously interrupt or being corrected when needed, freeing the operator for his own part in the 
mission.  
 
In order to simplify, the sequence will be expressed in a natural language, followed by the corresponding sequence of 
gestures. 
“Platform 1, Dog mode,  Search,  (Validation).  Platform 2, UAV control (Validation) Take-off ,  Ahead, Send Video”  
which in terms of gestures will be reflected in the sequences: 
S2—D2,  S1-D1,  S3-D4,  S5.                              S2-D3,       S1-D2,          S5,                D1,             D6,           D8.  S5. 
 
The platforms would perform autonomously, would interrupt when needed, while the operator in turn can be providing 
guidance/corrections at any time (i.e., “Platform 2, Move faster” (S2-D3, S3-D7)). 
 
4.3 Examples 

Different gestures were programmed to trigger stored sequences on the LANdroid robot (for example, U-turn). Some 
gestures were used to indicate responses in a dialogue with the computer interface (e.g., pointing forward means 
“confirm command” - Validation). Figure 7 shows three example single robot actions, triggered by the corresponding 
gesture, and Figure 8 shows individual robot behavior control within a group. 

 
 

Figure 7.  Left: Example dynamic gestures and corresponding robot action. Three dynamic gesture sequences are displayed with a 
sequence of frames each. To the right, the robot executes the stored procedure indicated by the gesture. From top to bottom, the 
actions are: U-turn, K-turn, and roll over. 
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Figure 8 illustrates group behaviors – entire squad following same order – to advance (top) and to group to center 
(middle), or a specific individual in the squad is ordered to execute a different action  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  BioSleeve prototype in use to control a squad of LANdroid robots, as a group or with individual behaviors. UP: All robots 
advance as a front in the same direction. MIDDLE: Robots have surrounded a target and advanced in concentric circles towards 
center.  BOTTOM: a member of the team has been singled and is executing an individual behavior. Each individual team member can 
be given a different behavior when needed. 
 

5. FUTURE WORK 
5.1 Advancing the BioSleeve/BioSuit 

In order to enhance capabilities of the BioSleeve/BioSuit, the hardware system is being improved for increased 
usability—most notably by using non-contact electrodes for “slip on” use without special preparation of the forearm, 
with accompanying adaptive calibration algorithms to both minimize initial calibration time and limit the errors due to 
slippage over time. A large array of surface EMG sensors will be positioned over most of the forearm and upper-arm 
muscles, with up to twenty separate muscles monitored for high DOF motions. The EMG signals will be particularly 
useful to monitor force and position information from the hand and fingers. To complement the EMG array, several IMU 
sensors will monitor gross limb DOFs, with respect to the body. On-board processing will fuse data from EMG and IMU 
sensors, and gesture recognition software will minimize the bandwidth to communicate warfighter’s actions. Data can be 
efficiently stored onboard for offline analysis, or wirelessly transmitted for real-time observation. All sensors will be 
non-contact and embedded into wearable sensor arrays, and thus can be conveniently donned and worn as part of 
clothing. Sleeve layer materials will be chosen with criteria based on elastic characteristics to hold the sensors close to 
the skin, durability, and user comfort. This packaging will allow for free mobility, having low mass, low power, and no 
external wires to constrain movement, and should improve system reliability. Importantly, the user’s hands remain 
unencumbered, an important advantage when carrying equipment, manipulation tasks, or wearing complementary 
gloves/glove-based devices.  

5.2 Applications in control of robots and unmanned platforms 

We will continue to mature the robot control system, by expanding the vocabulary of gesture based control, integrating 
with other modalities such as voice commands, further merging the human commands with robot autonomy, and 
developing an appropriate human–robot dialogue for user feedback and exception control. We also explore modalities 



 
 

 
 

that are appropriate for control of large groups of platforms, in swarm or other formation, in particular with an interest to 
the control of swarms of expendable platforms. 
  
5.3 Applications in tracking warfighter body pose and team communications 

A wearable “BioSleeve” sensor system and accompanying software algorithms could continuously measure the 
configuration of a warfighter’s arm, hand, and fingers, including recognition of communication gestures, and perhaps 
also determine the position and orientation of hand-carried equipment relative to the body. By fusing biological, inertial, 
and magnetic sensors, we believe the BioSleeve system could capture body and arm joint angles to within 1˚ and classify 
detailed hand positions with >90% accuracy, without placing any test equipment on the warfighter’s hands.   

6. CONCLUSIONS 
We developed an EMG sensor array based BioSleeve able to recognize five static and nine dynamic gestures with over 
90% accuracy. We used the BioSleeve to control a team of five LANdroid robots in individual and group/squad 
behaviors. We defined a gesture composition mechanism that allows the specification of complex robot behaviors with 
only a small vocabulary of gestures/commands, and we illustrated the giving of such complex orders with a set of 
examples.  
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