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Abstract— The proposed CCSDS (Consultative Committee for 
Space Data Systems) Lossless Hyperspectral Image Compression 
Algorithm was designed to facilitate a fast hardware 
implementation. This paper analyses that algorithm with regard 
to available parallelism and describes fast parallel 
implementations in software for GPGPU and Multicore CPU 
architectures. We show that careful software implementation, 
using hardware acceleration in the form of GPGPUs or even just 
multicore processors, can exceed the performance of existing 
hardware and software implementations by up to 11x and break 
the  real-time  barrier  for  the  first   time  for  a  typical  test 
application.1
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I. INTRODUCTION 

Hyperspectral image sensors may be mounted on satellites or 
high-altitude aircraft, and used for land-survey, mineral 
prospecting, and reconnaissance. They are now seeing 
increased use on unmanned aerial vehicles (UAVs) for 
military reconnaissance due to their ability to identify 
camouflage, based on spectral characteristics. In the space- 
exploration community, there is great interest in adding 
hyperspectral sensors to all missions, as they perform the work 
of many sensors / spectrometers. 

 
While space application require special radiation-hard 
hardware like the Xilinx Virtex 5QV FPGA, UAVs and high- 
altitude airframes may employ standard PC technology, which 
could include general purpose graphics processors (GPGPUs). 
Hyperspectral sensors generate a very large amount of data, 
and down-link bandwidth is a scarce resource on all platforms, 
so there is great interest in employing compression to 
maximise this bandwidth. There is also utility in employing 
compression for images at the archival stage, on the ground. 
This paper describes the implementation of a well-tested 
algorithm  (CCSDS  Lossless)  on  GPGPU  accelerated  and 

 
 
 

1 We define ‘real-time performance’ to mean: having throughput at least 
800Mb/s to match a typical sensor. 

multicore PC architectures, suitable for integration with data 
collection devices on an aerial platform and for ground use. 

 
Visible light image sensors use sensor elements tuned to 3 
colour bands (red, green & blue) but hyperspectral sensors use 
a diffraction grating to split light into its spectral components 
and scan a high sensitivity sensor over the desired range, 
giving an output vector with typically several hundred band 
measurements. Each spatial image pixel consists of this long 
spectral amplitude vector. 
Sensor data are traditionally presented in spectral band major 
order (Band Interleaved Pixel format, or BIP). All spectral 
bands for a single image pixel are emitted before the sensor 
moves to the next spatial pixel. This is the standard output 
format for so called whisk-broom type sensors. 
Newer sensors (particularly the so called push-broom type) are 
starting to output data in line-major order (Band Interleaved 
by Line format, or BIL) – where a whole image line (or part of 
an image line) is output from one spectral band, before any 
data are produced from the next spectral band. 
Push-broom sensors collect light from many spatial pixels 
simultaneously. Consequently, they have higher data output 
rate, and also tend to have higher sensitivity, as the sensor 
dwells on each pixel for longer. For a comprehensive review 
of remote sensing technologies, see [1] 
As with normal images, spatially close pixels are highly 
correlated. Hyperspectral images also exhibit high correlation 
of adjacent spectral bands. The challenge in designing a 
compression algorithm for hyperspectral data is to make use of 
both the spectral and spatial correlation properties. The 
challenge for implementing such an algorithm is to cope with 
the high data rate produced by such sensors. 

 
An initial JPL project focussed on a hardware implementation 
for space hardened Virtex 4 FPGA technology. This was 
optimised for processing streaming data coming directly from 
a sensor. Although heavily pipelined, this algorithm 
implementation is essentially serial, see [2] 
In a joint project between JPL and Edinburgh University, two 
new implementations were developed, designed to run in 
software on off-the-shelf PCs. One implementation makes use 
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of GPGPU acceleration, the other used multicore CPU. The 
joint development [3] was the first truly parallel 
implementation of the CCSDS Lossless algorithm. Although 
exhibiting a huge speedup compared to serial software 
implementations and even beating the pure hardware 
implementation – that parallel software version did not reach 
real-time performance for the test application. 

 
The original goal for these new implementations was to see 
how much of the performance could be transferred to a mobile 
(laptop) platform, which could be moved easily between an 
airframe and ground stations. The architectural improvements 
made proved to be so significant, however, that the 
performance of this new implementation exceeds that of all 
existing versions by a factor 11 when running on comparable 
hardware, and comprehensively breaks the real-time barrier – 
even without GPGPU acceleration. 
Despite being designed for mobile computing, there are no 
specific features which require these implementations to be 
run on a mobile device. Equivalent or better performance can 
be obtained from this implementation when run on a standard 
high performance workstation. The laptop used for 
development and testing was a high performance gaming 
grade device, equipped with a pair of Nvidia 500 series mobile 
chipset graphics cards. See TABLE III. This represents the 
current highest performing available mobile hardware, 
however significantly more computing power is available on 
workstation platforms since they have fewer limitations on 
power consumption and thermal envelope, not to mention 
weight. 

 
A  key  difference  between  the  software  implementations 

Section VI contains the performance results, comparing the 
performance of the new Mobile Platform  implementations 
with their Fixed Platform counterparts. 
Finally, Section VII describes directions for further work and 
development of the ideas presented in this paper. 

 
II. ALGORITHM  OVERVIEW 

The CCSDS Lossless Hyperspectral Image Compression 
algorithm is well described in the original FPGA 
implementation paper [2], as well as the more recent software 
implementation paper [3], and the specification itself [4]. 

 
The key design goals for the algorithm itself were that it 
should maximise compression performance, but minimise the 
amount of logic required when implemented in hardware. For 
this reason, the reduced predictor needs only 3 integer 
multiplies 2 to process each input sample, with all other 
operations implemented as shifts and add operations. The 
existing hardware implementations are heavily pipelined for 
speed, which is a form of data parallelism. Software cannot 
directly use the same form of parallelism– so we instead look 
to various sorts of block-scale data parallelism. 
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described here and the hardware implementation in [2] is that 
the hardware version was optimised for processing incoming 
data presented as a single serial stream, while the software 
versions described here are designed to operate on complete 
images  or  sections  of  images,  presented  as  complete  files 
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stored on disk. We shall describe how this extra stage of 
buffering is extremely useful in providing an extra axis for 
parallelisation. 
This paper will focus on the architectural and performance 
differences between the various software implementations, 
with and without GPGPU acceleration. 

 
The remainder of this paper is organised as follow: 
Section II contains a summary of the algorithm itself, with 
particular reference to the sources of parallelism, and 
impediments to parallel implementation. 
Section III provides an overview to the various 
implementations, and contrasts these with the existing Fixed 
Platform versions. 
Section IV describes the implementation of a software 
decompressor, which is a new feature added in the Mobile 
Platform implementations. 
Section V lists the features of the specific hardware and 
testing methodologies used to derive the results presented in 
this paper. 

5 Encoded Data Codeword size 

 
6 Output Offset 

 
7 Packed Data 

 
8 Output Stream 

 
Figure 1 - Data Dependency Graph for the Lossless CCSDS Compression 

Algorithm 
 

The algorithm was not designed to have a high degree of 
block-parallelism, and various data-dependencies imply a 
serial implementation. See Figure 1. We shall see that, with 
care and suitable buffering, most of these serial dependencies 
can be removed. It is useful to summarise here these data- 

 
 
 

2 The standard allows for any number P of bands to be used in reduced mode. 
The full predictor then uses Pz+3 bands, and hence requires this many 
multipliers as well. 



dependencies within the algorithm since these have major 
implications for the implementations described below. 

 

A. Input Reformatting 
For good performance, it is vital that data are presented to the 
algorithm in the order they are to be used. If the data are 
ordered BIL, we must first reorder to BIP format. If the data 
are big-endian and we are running on a little-endian 
architecture, we must also byte reverse each input sample. 
The BIP/BIL conversion can be a difficult to perform 
efficiently on GPGPU; the operation is essentially matrix 
transposition. The approach that our implementation takes is 
to transpose small sub-matrices held in buffers, and the sizes 
of these buffers are chosen at run-time based on the available 
hardware and problem size. 
At this stage, there are no dependencies between samples and 
all operations could potentially occur in parallel. 

 
 

B. Fixed Filter 
The multiple sensors used in push-broom devices will exhibit 
differences in sensitivity. Vertical stripes of pixels will be 
scanned by the same sensor, and pixels will exhibit stronger 
correlation in the vertical than the horizontal axes. Whisk- 
broom devices do not have this issue, since the same sensor is 
used to detect all pixels. To exploit this anisotropy, there are 
two versions of the compression algorithm. One is optimised 
for whisk-broom and uses a 2D fixed spatial filter first-stage 
(‘Neighbour Average’), and the other is optimised for push- 
broom and uses a 1D vertical filter first-stage (‘Column 
Average’). This paper focusses on the push-broom optimised 
version, also called the reduced predictor algorithm. 

 
The fixed filter aims to remove as much structural spatial 
correlation from the data as possible before reaching the 
adaptive filter. In the reduced predictor mode, this is simply a 
1D high-pass filter, aligned with the vertical axis – that is, 
samples are differenced against their vertical neighbour, in 
each spectral band independently. 
The outputs of this convolution are independent of each other 
spectrally and spatially, and so the convolution could 
potentially be performed on the entire data-cube in parallel, if 
we had enough computing resources available. 
In  the  streaming  hardware  implementation,  this  requires  a 
large buffer to store a complete image line (in all spectra). In 
software, we are operating on complete images, so this 
requirement is met automatically. 
The band difference vector for each spectral band shares all 
but one value with the band difference vector from the 
previous band. In hardware this is easily implemented as a 
shift-register. In software we can share pointers between 
bands, but this introduces a dependency. We need to make 
sure that all of the individual band-differences for the spectral 
bands of one spatial pixel are calculated before we try and 
reference the vector itself; otherwise we could end up 
referencing old data. This is the same as saying that we require 
a spectral axis barrier synchronisation following the 
calculation of the band-difference vector for a spatial pixel. 

C. Adaptive Filter 
After removing structural spatial correlation with a fixed filter, 
the standard has an adaptive filter as a predictor. Encoder and 
decoder devices will derive identical predict values, and so all 
that needs to be sent is the departure of the data from the 
prediction (the predictor error). The feedback in the adaptive 
filter works to minimise the predictor error. 
There are many approaches to adaptive filter design, but the 
one used in the standard is to just take the sign of the error in 
the feedback loop. A scheduler controls the feedback gain, so 
we can have both fast lock-on at the start and good steady- 
state performance. 
The adaptive filter is presented with spatial pixels in raster- 
scan order, and updates its weights after each pixel. This puts 
a hard serial dependency between pixels in the spatial axis.  
Due to the clipping operation that occurs in the weight update 
and estimate calculations, operations in the spatial axis do not 
commute. If we were talking about stochastic processes, we 
would say that the weight update process is path-dependent. 
Although this forces the predictor to run serially in the spatial 
dimension, the only interdependence between spectral bands 
comes through the band-differences vector, which we have 
already effectively decoupled. Therefore, we can still run the 
predictor band-parallel, that is, in parallel across the spectral 
bands of a pixel. 
Ultimately, this property imposes the tightest restriction to 
parallelism for the whole algorithm, as the predictor forms 
both the critical path (it contains the only expensive 
operations, the multipliers) and the parallelism bottleneck. It is 
not possible to avoid this without fundamentally changing the 
algorithm, but we shall see that it is possible to mitigate it by 
developing parallelism from other sources. 

 
 

D. Adaptive Encoder 
The error signal from the adaptive filter has very much lower 
amplitude that the original signal, and ideally looks like the 
noise component of our image compared with an idealised 
hyperspectral image model. 
As filtered noise, the signal should exhibit a 2-sided 
exponential distribution. The standard therefore folds the 
negative half into the positive half to get a 1-sided 
exponentially distributed random variable, and encodes this 
optimally with a Golomb-Rice code. For the original paper on 
such codes, see [5] or [6] for an example of a more modern 
application. 
To simplify implementation, the standard limits itself to 
power-of-two code sizes (2k). As an extra level of adaptation, 
the code-word parameter k is allowed to vary, tracking the 
average entropy of our signal, using the notation of [7]. 
Separate spectral bands are treated as different contexts for the 
purposes of our code. 
In other words, the average amplitude of the output  error 
signal is tracked within each spectral band, and finds k(z) for 
each band such that 2k(z) bounds the average magnitude of the 
error, as described in detail in [7]. 
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Since the average magnitude of the error within each band is 
needed at each spatial pixel – this imposes a spatial serial 
restriction to the encoder, just like that in the predictor. 
We can do slightly better than this at implementation, 
however, by separating the entropy estimation operation 
(which needs to be pixel-serial) from the actual encoding 
operation (which is band and pixel independent once the 
average entropy is known). The encoding operation consists of 
masking off the bottom k bits of the error (suitably sign 
encoded), and unary-encoding the remaining high bits. All this 
can be done with bit-operations and shifts. Provided k is 
known for each error sample, this encoding can be performed 
in parallel across all bands and across all pixels. 

 
 

E. Output Serialiser 
The final part of the algorithm is an operation which is trivial 
in hardware, but expensive in software. The output from the 
adaptive encoder is a series of variable length code-words. 
These need to be output serially (in the streaming version), or 
packed back into a file (for software versions). 
The problem with parallelising this operation is that we need 
to know the lengths of all preceding code-words to know 
where a particular output code-word should appear in the 
output. 
Without parallelism, this stage is prohibitively slow. In the 
worst case, this operation becomes bit-serial rather than just 
band or pixel serial, and this gives unacceptable performance. 
Fortunately, a solution exists. See Figure 2. Observe that we 
do not strictly require that all preceding packing operations 
have taken place before packing an output, only that we know 
the offset into the output stream of our word-to-be-packed.  
Our encoder will tell us how many bits each output code-word 
contains,  so if  we  now take  a  running  sum  of code-word 
lengths, this will give us the offset into the output stream for 
each output code-word. 

operation, and these can be performed in parallel across all 
bands and spatial pixels. 

 
It should be noted that, due to the compression itself, it is 
inevitable that multiple output code-words will reside in the 
same machine word of the output. Careful synchronisation 
will be needed to ensure that such writes occur atomically 
between processes. While we make numerous optimisations 
during implementation, we have not altered the algorithm in 
any way. 

 
III. IMPLEMENTATION OVERVIEW 

Although the implementations described here do not rely on 
any specific architectural features found only on laptop 
computers, we shall still refer to these as the Mobile CUDA 
and Mobile OpenMP Implementations, to distinguish them 
from previous work. We shall refer to the implementations in 
[3] as the Fixed Platform CUDA/OpenMP versions. 

 
The parallelization approach used for the Fixed Platform 
Implementations is well described in [3], but it is useful to 
summarize here – since some features are common to the new 
implementation. 

 

A. Fixed Platform CUDA/OpenMP Implementations 
The parallelism approach taken in this implementation was to 
buffer data at any stage of the algorithm where a data 
dependency occurs. The buffers are taken to be as large as 
possible, and spaced to expose the maximum possible degree 
of algorithmic parallelism at each stage of computation. 

 
The enormous benefit that this buffering brings is that there is 
never a point where one parallel execution thread is waiting on 
data from another – since each algorithm stage only begins 
when all of the data that it requires have been calculated. 

Process 
 
 
 
 
 
 

Calculate Offsets Pack (Parallel) 
 
 
 
 
 
 

Figure 2 - Parallel packing of variable length code-words 
 

Addition is commutative (in absence of saturation operations 
like those used in the predictor), so we can perform a running 
sum  operation  on  the  output  word  lengths  using  a  tree 
structure.  A  fully  parallelised  add-tree  operation  will  take 
log(N) stages, where N is the number of items to be summed. 
With  the  output  offsets  calculated, all  of  the output  code- 
words can be shifted and moved into place with a logical-OR 

This approach is essentially a ‘greedy optimization’; it takes 
the biggest parallel bites first. What remains at the end is a 
core surrounding the stage whose data dependencies cannot be 
removed, and this core proves to be the parallelism bottleneck. 

 
Figure 3 shows how the algorithm is divided up horizontally 
into stages. Between each numbered stage is a data buffer, and 
stages are executed in sequence. The first column lists the 
order of execution, the second column describes the operation 
performed, the third column importantly describes the amount 
of available parallelism, and the final two columns show un- 
parallelizable system calls. 

 
Clearly, stages 2, 3, 5, 7 have the highest degree of parallelism 
available – they are parallelizable over all 3 data dimensions. 
Stage 6 contains a tree-based summation, and has logarithmic 
performance; better than serial, somewhat worse than the most 
parallel parts. The amount of work that the stage contains is 
low, however, and so this stage is not the bottleneck. 

 
The choke point is stage 4 – the predictor. Unfortunately, this 
is also the stage which contains the most computational work, 
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 Disk – R/W  200 MB/s - 

Main Memory 3-17 GB/s 167 

CPU L3 cache (6MB)  111 GB/s 30 

CPU L2 cache (4x256kB)  245 GB/s 11 

CPU L1 cache (4x32kB)  396 GB/s 5.5 

PCIe (x8)  2.3 GB/s - 

GPU RAM (1.5 GB)  45 GB/s > 1000 

GPU L2 Cache (768 kB) -  365 

GPU Shared / L1 Cache (64 kB) < 1.6 TB/s 88 

GPU Register < 8 TB/s - 

 

and so forms the performance bottleneck for the entire 
algorithm. 

 
The buffers used end up being so large that care needs to be 
taken that they fit in GPGPU main memory, which is 1.5 GB 
on the test system. For this reason, the image is split into 
segments prior to processing. These segments are processed 

match that of the least parallel stage allows the stages to be 
merged. With all stages the same ‘width’, we no longer need 
giant buffers in memory to hold the output of each stage, and 
so data flow from one stage to the next carried in registers. 
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Figure 3- Fixed Platform OpenMP / CUDA Implementation: 
Execution Timeline. Columns show order of algorithm stage execution, 
operation name, amount of available parallelism, and serial system calls 

 
Although the Fixed Platform implementation is described here 
in terms of GPGPU, the OpenMP (multicore CPU) 
implementation is identical in architecture, operating 
sequentially on image ‘blocks’, and as a series of independent 
algorithm stages separated by large memory-resident buffers. 

 
The key observations that allow the realization of the speedup 
in the Mobile implementation are: 

 
1. Making the fastest stages of the algorithm faster 

comes at the expense of making the slowest parts 
even slower. 

2. The model of streaming data through processing units 
from one memory resident buffer to another makes 
poor use of cache, and gives little opportunity for 
data-reuse. 

3. The size of the buffers used mean that we cannot 
exploit additional sources of parallelism, like the 
image segmentation described above. 

 
 

B. Mobile CUDA Implementation 
The key idea behind the new CUDA implementation is that 
restricting  the  parallelism  of  the highly parallels  stages to 

 
Figure 4 - CUDA Version 4 Architecture 

 
The original purpose of the buffer was to break data- 
dependencies, and these then require careful synchronisation 
to avoid. We need to be able to share data between separate 
execution threads, and halt the execution of some  threads 
while others ‘catch up’. The cost of requiring synchronisation 
turns out to be low, and we gain a side-benefit in the form of 
greater data-reuse. Suddenly the high-speed caches and shared 
memories on the GPGPU become usable. See TABLE I. for 
relative performance figures for caches / memories. 

 
TABLE I. RELATIVE PERFORMANCE OF RAM TYPES AND BUSES 



Instead of the algorithm being bound by the rate we  can 
stream data into and out of memory, we can now push the 
limits of the computing capability of the GPGPU. 
The other significant source of increased performance is the 
ability to leverage the parallelism created by image 
segmentation to boost the overall parallelism to a level more 
comfortable for the GPGPU. 

Performance Primitives (IPP). IPP is a library of accelerated 
functions for DSP, compression, and encryption which 
encapsulate the SSE instructions (emulating any which lack 
hardware support). 
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Host Alloc. 
 

In summary; the Mobile CUDA implementation exploits both 
spectral parallelism and spatial parallelism (in the form of 
image segmentation) 

 
 

C. Mobile OpenMP Implementation 
While the Fixed Platform OpenMP (multicore CPU) 
implementation used exactly the same architecture as its 
CUDA counterpart, the Mobile OpenMP and CUDA versions 
look very different. The Mobile CUDA implementation makes 
use of both the band-parallelism inherent in the algorithm, and 
the imposed parallelism of image segmentation. 
Surprisingly, the best performance is obtained from the 
OpenMP   implementation   when   the   band-parallelism   is 
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ignored entirely. The only source of parallelism the Mobile 
OpenMP implementation needs comes from the image 
segmentation. We effectively run multiple serial copies of the 
compression algorithm, each on its own processor core, and 
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Serial File Write 
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each independently compressing a different part of the image. 
 

It should be noted that using the multiple CPU cores in 
parallel along the band axis is still significantly faster than a 
single core compressing data serially. However, the problem 
scales poorly with increasing numbers of cores – when using 
this type of band-parallelism. 

 
There are a number of factors which together explain this 
result: 

1. Multicore systems are not able to use the same high 
degree of parallelism as GPGPUs. 

2. The   cost   of   synchronisation   between   execution 
threads is much higher for multicore. 

3. Sharing data between processors is more expensive, 
time-wise, than for GPGPU. 

4. The highest level of caching available to data which 
is shared between cores is Level 3. 

 
In the final stages of development it was realized that some of 
spectral-band parallelism could be reintroduced without 
causing inter-processor bottlenecks. Processors manufacturers 
keep adding new instruction sets to their products – and many 
of the additions are SIMD instructions to accelerate things like 
software video decoding. We can use a combination of the 
Intel SSE3 instructions, and a few operations from the newer 
SSE4 set. These instructions operate on 4x32-bit words, 
packed into special 128-bit SIMD registers. There are 
hardware instructions which can be used to explicitly control 
caching, and to stream data from memory through the SIMD 
registers in a DSP-like fashion. Intel produces a development 
package as part of its Parallel C++ Compiler suite called Intel 

Figure 5 - OpenMP Version 4 Architecture 
 

The computationally intensive kernel of the OpenMP 
multicore implementation was rewritten using a combination 
of IPP calls, and raw SSE instructions to add back a layer of 
spectral-band parallelism within a single core. 

 
 

IV. DECOMPRESSOR 

An extra features added in the Mobile Platform 
Implementation is a multicore accelerated decompressor. 
Decompression consists of two parts 

1. Unpacking and decoding the variable length 
codewords. 

2. Decompression  of  decoded  data  back  to  samples, 
using a matched predictor. 

Stage 1 is the direct inverse of the bit-packer operation, and 
stage 2 is largely identical to the predictor in the compressor. 
We would like to be able to use the same image segmentation 
technique   to   operate   on multiple   regions    of   image 
simultaneously. However, the variable length of compressed 
code-words causes a problem – we cannot know how where 
each  compressed  image  segment  begins in  the compressed 
data. One solution is to add extra data at the compression 
stage,  indicating the run-length  of each  compressed  image 
segment. This enables the decompressor to ‘skip-ahead’, and 
identify  the  start  position  offsets  of  all  image  segments. 
Decompression  can  now  proceed  with  the  same  level  of 
parallelism as compression. 
This technique is functionally equivalent to simply treating the 
original  image  as  several  smaller  images  and  compressing 



Height 512 

Width 614 

Bands 224 

Bit Depth 12-bit unsigned 

Bye Ordering Big-Endian 

Data Ordering BIP 
Uncompressed 

Size (kB) 137,536 

Compressed 
Size (kB) 25,935 

Compressed Size 
(%) 18.86% 
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Bit Depth (bpp) 3.02 

Compression Ratio 5.3 : 1 

 

 
Version 

 
Time 
(ms) 

Throughput  
Speedup 

(Mb/s) (MSamp/s) 
1) Fixed Platform 
OpenMP - 1 Core 11542 75.64 5.82 - 

2) Fixed Platform 
OpenMP - 4 Cores 4488 194.53 14.96 1.00 

3) Mobile Platform 
OpenMP - 4 Cores 569 1534.68 118.05 7.89 

 

Manufacturer Dell 

Model Alienware M18x 

Processor Intel Core i7-2760QM 

Processor Clock 2.4GHz (4 Cores) 

CPU Power (TDP) 45W 

Chipset Intel Sandy Bridge 

System RAM 16GB DDR3 @ 666 MHz 
(PC3-10700) 

 

each individually. The compression of each sub-image is still 
entirely standards compliant. 
It should be noted that the unpacking operation within an 
image segment cannot be parallelised. Therefore, were we to 
exploit band-parallelism in the predictor stage of the 
decompressor; we would still be left with a large serial portion 
of execution time. An OpenMP predictor for the decompressor 
would exhibit the same problems in exploiting band- 
parallelism as in the compressor. It is therefore not worth 
implementing a decompressor with any greater  parallelism 
than image-segment spatial parallelism. 
As highlighted above, the unpacker half of the decompressor 
cannot be parallelised at the band level, therefore would 
perform extremely poorly on GPGPU. Therefore a GPGPU 
accelerated decompressor is technically unfeasible. 

 

Graphics Device 2 x Nvidia GeForce 560M GTX 

GPU RAM 
(per device) 1.5GB GDDR5 @ 1.25 GHz 

GPGPU 
Streaming  Multiprocessors 6 @ 770 MHz 

GPGPU 
Concurrent Threads 192 

GPGPU Power (TDP) 75W (per device) 

Hard Disk Devices 2 x 500 GB Seagate Momentus XT 
Hybrid SSD / Magnetic – Raid 0 (Striped) 

 
 

VI. IMPLEMENTATION   RESULTS 

The new implementations were developed to try and reach a 
throughput figure of 800Mb/s, corresponding to the real-time 
rate at which data are produced by a typical sensor. 

 
 

V. DEVELOPMENT AND TESTING ENVIRONMENT 

In every test, the same input file and compression parameters 
were used. The output files for each implementation were 
checked and found to be bit-identical. 

 
TABLE II. SPECIFICATION FOR HAWAII TEST IMAGE. SEE REF [11] 
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Figure 6 - Chart of throughput (in Mb/s) for different implementations 

Dark Bars indicate new Mobile Platform Implementations, 
Light Grey indicate original Fixed Platform Implementations 

(1-3) OpenMP, (4-6) CUDA, (7-8) Decompressor 
Horizontal line indicates real-time performance target 

 
 
 

To reduce the variance of test results, a tool called 
GameBooster3 [6][12] was used to shut down background 
processes (and to restart them after the test). This tool is freely 
available, and made a big improvement to the consistency of 
results – especially for the OpenMP implementations. 

 
TABLE III. SPECIFICATION FOR MOBILE TEST PLATFORM 

The architectural and algorithm improvements developed 
allowed us to reach and comprehensively exceed this 
performance figure in both GPGPU accelerated, and un- 
accelerated multicore processor implementations. 

 
TABLE IV. OPENMP IMPLEMENTATIONS PERFORMANCE 

 
 
 
 
 
 
 

The Mobile Platform OpenMP implementation shows a 
dramatic speedup over the original Fixed Platform 
implementation.   Compression   performance   on   a   high- 



performance workstation is expected to be slightly higher. The 
image segmentation added in the Mobile Platform 
implementation allows a laptop to compress data at nearly 
twice real-time throughput, without using any form of GPGPU 
acceleration. 
The 4-core Fixed Platform Implementation exhibits  only a 
2.6x speedup compared with a single core implementation. 
This is most likely due to the Speedboost single-core 
overclocking. 

 
TABLE V. CUDA IMPLEMENTATION PERFORMANCE 

 

 
Version 

 
Time 
(ms) 

Throughput  
Speedup 

(Mb/s) (MSamp/s) 
4) Fixed Platform 
CUDA - 1 GPU 2346 372.14 28.63 1.00 

5) Mobile Platform 
CUDA - 1 GPU 226 3862.97 297.15 10.38 

6) Mobile Platform 
CUDA - 2 GPUs 204 4279.56 329.20 11.50 

 
The increased parallelism gained by image segmentation, 
coupled with improved data-flow gives an enormous 
performance improvement on the Mobile Platform 
implementation. 
In addition, the Mobile Platform implementation can make use 
of multiple GPGPU devices installed on the same system to 
increase performance further, but the performance gained 
from doing so is far less than double. The CUDA portion of 
the code is so fast, in this implementation, that the serial 
operations (file access / bus transfers) dominate the run-time, 
meaning we are close to the theoretical parallel performance 
limit for this algorithm. 

 
TABLE VI. DECOMPRESSOR PERFORMANCE 

 

 
Version 

 
Time 
(ms) 

Throughput  
Speedup 

(Mb/s) (MSamp/s) 
7) Decompressor 
OpenMP - Serial 3585 243.53 18.73 1.00 

8) Decompressor 
OpenMP - Parallel 857 1018.16 78.32 4.18 

 
A decompressor was also developed, targeted to multicore 
implementation which is able to exploit parallelism in the 
decoding stage, allowing data to be decompressed almost as 
fast as it is compressed, again beating the real-time 
performance target. 
Decompression is slower than compression, due to an 
asymmetry in the bit-packing / unpacking operations.  We 
show here how, by adding a small amount of extra data at the 
compression stage to the compressed file (or by transmitting 
several smaller output files), we can enable decompression to 
take place in parallel as well, greatly improving 
decompression performance. With this change, we see a 4-fold 
speedup by enabling image-segment parallelism in the 
decompressor, which is consistent with the speedup expected 
from a 4-core system. 

VII.   CONCLUSIONS & FURTHER WORK 

We have shown here that this hardware-optimised and 
apparently serial compression algorithm can be parallelised 
and optimised for software - exceeding the real-time 
performance barrier for the first time. 
Further, we have demonstrated the suitability of this algorithm 
for implementation in software on commodity computing 
resources, in particular portable devices such as laptops. 
As mentioned in the introduction, the FPGA implementation 
[2] does not make direct use of either the band or image- 
segmentation parallel described here. Both  types  of 
parallelism would be suitable, in some form, for hardware 
implementation. With the recent release of a radiation hard 
Virtex 5 FPGA device by Xilinx, it would be useful to update 
the hardware implementation to this technology, and build in 
parallel acceleration at the same time, allowing the same real- 
time performance to be achieved by space applications. 
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