
Real-time Adaptive Lossless Hyperspectral Image
Compression using CCSDS on Parallel GPGPU &

Multicore Processor Systems

Ben Hopson, Khaled Benkrid
School of Engineering and Electronics

The University of Edinburgh
Edinburgh, UK

B.Hopson@ed.ac.uk

Didier Keymeulen, Nazeeh Aranki, Matt Klimesh,
Aaron Kiely

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr., Pasadena, CA 91109, USA
didier.keymeulen@jpl.nasa.gov

Abstract— The proposed CCSDS (Consultative Committee for
Space Data Systems) Lossless Hyperspectral Image Compression
Algorithm was designed to facilitate a fast hardware
implementation. This paper analyses that algorithm with regard
to available parallelism and describes fast parallel
implementations in software for GPGPU and Multicore CPU
architectures. We show that careful software implementation,
using hardware acceleration in the form of GPGPUs or even just
multicore processors, can exceed the performance of existing
hardware and software implementations by up to 11x and break
the real-time barrier for the first time for a typical test
application.1

Keywords-CCSDS; Lossless; Hyperspectral; Image

Compression; Adaptive Filter; Multicore; GPGPU; Parallel;
Realtime

I. INTRODUCTION

Hyperspectral image sensors may be mounted on satellites or
high-altitude aircraft, and used for land-survey, mineral
prospecting, and reconnaissance. They are now seeing
increased use on unmanned aerial vehicles (UAVs) for
military reconnaissance due to their ability to identify
camouflage, based on spectral characteristics. In the space-
exploration community, there is great interest in adding
hyperspectral sensors to all missions, as they perform the work
of many sensors / spectrometers.

While space application require special radiation-hard
hardware like the Xilinx Virtex 5QV FPGA, UAVs and high-
altitude airframes may employ standard PC technology, which
could include general purpose graphics processors (GPGPUs).
Hyperspectral sensors generate a very large amount of data,
and down-link bandwidth is a scarce resource on all platforms,
so there is great interest in employing compression to
maximise this bandwidth. There is also utility in employing
compression for images at the archival stage, on the ground.
This paper describes the implementation of a well-tested
algorithm (CCSDS Lossless) on GPGPU accelerated and

1 We define ‘real-time performance’ to mean: having throughput at least
800Mb/s to match a typical sensor.

multicore PC architectures, suitable for integration with data
collection devices on an aerial platform and for ground use.

Visible light image sensors use sensor elements tuned to 3
colour bands (red, green & blue) but hyperspectral sensors use
a diffraction grating to split light into its spectral components
and scan a high sensitivity sensor over the desired range,
giving an output vector with typically several hundred band
measurements. Each spatial image pixel consists of this long
spectral amplitude vector.
Sensor data are traditionally presented in spectral band major
order (Band Interleaved Pixel format, or BIP). All spectral
bands for a single image pixel are emitted before the sensor
moves to the next spatial pixel. This is the standard output
format for so called whisk-broom type sensors.
Newer sensors (particularly the so called push-broom type) are
starting to output data in line-major order (Band Interleaved
by Line format, or BIL) – where a whole image line (or part of
an image line) is output from one spectral band, before any
data are produced from the next spectral band.
Push-broom sensors collect light from many spatial pixels
simultaneously. Consequently, they have higher data output
rate, and also tend to have higher sensitivity, as the sensor
dwells on each pixel for longer. For a comprehensive review
of remote sensing technologies, see [1]
As with normal images, spatially close pixels are highly
correlated. Hyperspectral images also exhibit high correlation
of adjacent spectral bands. The challenge in designing a
compression algorithm for hyperspectral data is to make use of
both the spectral and spatial correlation properties. The
challenge for implementing such an algorithm is to cope with
the high data rate produced by such sensors.

An initial JPL project focussed on a hardware implementation
for space hardened Virtex 4 FPGA technology. This was
optimised for processing streaming data coming directly from
a sensor. Although heavily pipelined, this algorithm
implementation is essentially serial, see [2]
In a joint project between JPL and Edinburgh University, two
new implementations were developed, designed to run in
software on off-the-shelf PCs. One implementation makes use

mailto:B.Hopson@ed.ac.uk
mailto:didier.keymeulen@jpl.nasa.gov
mailto:didier.keymeulen@jpl.nasa.gov

z

of GPGPU acceleration, the other used multicore CPU. The
joint development [3] was the first truly parallel
implementation of the CCSDS Lossless algorithm. Although
exhibiting a huge speedup compared to serial software
implementations and even beating the pure hardware
implementation – that parallel software version did not reach
real-time performance for the test application.

The original goal for these new implementations was to see
how much of the performance could be transferred to a mobile
(laptop) platform, which could be moved easily between an
airframe and ground stations. The architectural improvements
made proved to be so significant, however, that the
performance of this new implementation exceeds that of all
existing versions by a factor 11 when running on comparable
hardware, and comprehensively breaks the real-time barrier –
even without GPGPU acceleration.
Despite being designed for mobile computing, there are no
specific features which require these implementations to be
run on a mobile device. Equivalent or better performance can
be obtained from this implementation when run on a standard
high performance workstation. The laptop used for
development and testing was a high performance gaming
grade device, equipped with a pair of Nvidia 500 series mobile
chipset graphics cards. See TABLE III. This represents the
current highest performing available mobile hardware,
however significantly more computing power is available on
workstation platforms since they have fewer limitations on
power consumption and thermal envelope, not to mention
weight.

A key difference between the software implementations

Section VI contains the performance results, comparing the
performance of the new Mobile Platform implementations
with their Fixed Platform counterparts.
Finally, Section VII describes directions for further work and
development of the ideas presented in this paper.

II. ALGORITHM OVERVIEW

The CCSDS Lossless Hyperspectral Image Compression
algorithm is well described in the original FPGA
implementation paper [2], as well as the more recent software
implementation paper [3], and the specification itself [4].

The key design goals for the algorithm itself were that it
should maximise compression performance, but minimise the
amount of logic required when implemented in hardware. For
this reason, the reduced predictor needs only 3 integer
multiplies 2 to process each input sample, with all other
operations implemented as shifts and add operations. The
existing hardware implementations are heavily pipelined for
speed, which is a form of data parallelism. Software cannot
directly use the same form of parallelism– so we instead look
to various sorts of block-scale data parallelism.

1 Input Sample

2 Formatted Input

3 Local Average Band Diff.

Estimate

described here and the hardware implementation in [2] is that
the hardware version was optimised for processing incoming
data presented as a single serial stream, while the software
versions described here are designed to operate on complete
images or sections of images, presented as complete files

4
Delta

Weights

Entropy Est.

stored on disk. We shall describe how this extra stage of
buffering is extremely useful in providing an extra axis for
parallelisation.
This paper will focus on the architectural and performance
differences between the various software implementations,
with and without GPGPU acceleration.

The remainder of this paper is organised as follow:
Section II contains a summary of the algorithm itself, with
particular reference to the sources of parallelism, and
impediments to parallel implementation.
Section III provides an overview to the various
implementations, and contrasts these with the existing Fixed
Platform versions.
Section IV describes the implementation of a software
decompressor, which is a new feature added in the Mobile
Platform implementations.
Section V lists the features of the specific hardware and
testing methodologies used to derive the results presented in
this paper.

5 Encoded Data Codeword size

6 Output Offset

7 Packed Data

8 Output Stream

Figure 1 - Data Dependency Graph for the Lossless CCSDS Compression

Algorithm

The algorithm was not designed to have a high degree of
block-parallelism, and various data-dependencies imply a
serial implementation. See Figure 1. We shall see that, with
care and suitable buffering, most of these serial dependencies
can be removed. It is useful to summarise here these data-

2 The standard allows for any number P of bands to be used in reduced mode.
The full predictor then uses Pz+3 bands, and hence requires this many
multipliers as well.

dependencies within the algorithm since these have major
implications for the implementations described below.

A. Input Reformatting
For good performance, it is vital that data are presented to the
algorithm in the order they are to be used. If the data are
ordered BIL, we must first reorder to BIP format. If the data
are big-endian and we are running on a little-endian
architecture, we must also byte reverse each input sample.
The BIP/BIL conversion can be a difficult to perform
efficiently on GPGPU; the operation is essentially matrix
transposition. The approach that our implementation takes is
to transpose small sub-matrices held in buffers, and the sizes
of these buffers are chosen at run-time based on the available
hardware and problem size.
At this stage, there are no dependencies between samples and
all operations could potentially occur in parallel.

B. Fixed Filter
The multiple sensors used in push-broom devices will exhibit
differences in sensitivity. Vertical stripes of pixels will be
scanned by the same sensor, and pixels will exhibit stronger
correlation in the vertical than the horizontal axes. Whisk-
broom devices do not have this issue, since the same sensor is
used to detect all pixels. To exploit this anisotropy, there are
two versions of the compression algorithm. One is optimised
for whisk-broom and uses a 2D fixed spatial filter first-stage
(‘Neighbour Average’), and the other is optimised for push-
broom and uses a 1D vertical filter first-stage (‘Column
Average’). This paper focusses on the push-broom optimised
version, also called the reduced predictor algorithm.

The fixed filter aims to remove as much structural spatial
correlation from the data as possible before reaching the
adaptive filter. In the reduced predictor mode, this is simply a
1D high-pass filter, aligned with the vertical axis – that is,
samples are differenced against their vertical neighbour, in
each spectral band independently.
The outputs of this convolution are independent of each other
spectrally and spatially, and so the convolution could
potentially be performed on the entire data-cube in parallel, if
we had enough computing resources available.
In the streaming hardware implementation, this requires a
large buffer to store a complete image line (in all spectra). In
software, we are operating on complete images, so this
requirement is met automatically.
The band difference vector for each spectral band shares all
but one value with the band difference vector from the
previous band. In hardware this is easily implemented as a
shift-register. In software we can share pointers between
bands, but this introduces a dependency. We need to make
sure that all of the individual band-differences for the spectral
bands of one spatial pixel are calculated before we try and
reference the vector itself; otherwise we could end up
referencing old data. This is the same as saying that we require
a spectral axis barrier synchronisation following the
calculation of the band-difference vector for a spatial pixel.

C. Adaptive Filter
After removing structural spatial correlation with a fixed filter,
the standard has an adaptive filter as a predictor. Encoder and
decoder devices will derive identical predict values, and so all
that needs to be sent is the departure of the data from the
prediction (the predictor error). The feedback in the adaptive
filter works to minimise the predictor error.
There are many approaches to adaptive filter design, but the
one used in the standard is to just take the sign of the error in
the feedback loop. A scheduler controls the feedback gain, so
we can have both fast lock-on at the start and good steady-
state performance.
The adaptive filter is presented with spatial pixels in raster-
scan order, and updates its weights after each pixel. This puts
a hard serial dependency between pixels in the spatial axis.
Due to the clipping operation that occurs in the weight update
and estimate calculations, operations in the spatial axis do not
commute. If we were talking about stochastic processes, we
would say that the weight update process is path-dependent.
Although this forces the predictor to run serially in the spatial
dimension, the only interdependence between spectral bands
comes through the band-differences vector, which we have
already effectively decoupled. Therefore, we can still run the
predictor band-parallel, that is, in parallel across the spectral
bands of a pixel.
Ultimately, this property imposes the tightest restriction to
parallelism for the whole algorithm, as the predictor forms
both the critical path (it contains the only expensive
operations, the multipliers) and the parallelism bottleneck. It is
not possible to avoid this without fundamentally changing the
algorithm, but we shall see that it is possible to mitigate it by
developing parallelism from other sources.

D. Adaptive Encoder
The error signal from the adaptive filter has very much lower
amplitude that the original signal, and ideally looks like the
noise component of our image compared with an idealised
hyperspectral image model.
As filtered noise, the signal should exhibit a 2-sided
exponential distribution. The standard therefore folds the
negative half into the positive half to get a 1-sided
exponentially distributed random variable, and encodes this
optimally with a Golomb-Rice code. For the original paper on
such codes, see [5] or [6] for an example of a more modern
application.
To simplify implementation, the standard limits itself to
power-of-two code sizes (2k). As an extra level of adaptation,
the code-word parameter k is allowed to vary, tracking the
average entropy of our signal, using the notation of [7].
Separate spectral bands are treated as different contexts for the
purposes of our code.
In other words, the average amplitude of the output error
signal is tracked within each spectral band, and finds k(z) for
each band such that 2k(z) bounds the average magnitude of the
error, as described in detail in [7].

Ti
m

e

Since the average magnitude of the error within each band is
needed at each spatial pixel – this imposes a spatial serial
restriction to the encoder, just like that in the predictor.
We can do slightly better than this at implementation,
however, by separating the entropy estimation operation
(which needs to be pixel-serial) from the actual encoding
operation (which is band and pixel independent once the
average entropy is known). The encoding operation consists of
masking off the bottom k bits of the error (suitably sign
encoded), and unary-encoding the remaining high bits. All this
can be done with bit-operations and shifts. Provided k is
known for each error sample, this encoding can be performed
in parallel across all bands and across all pixels.

E. Output Serialiser
The final part of the algorithm is an operation which is trivial
in hardware, but expensive in software. The output from the
adaptive encoder is a series of variable length code-words.
These need to be output serially (in the streaming version), or
packed back into a file (for software versions).
The problem with parallelising this operation is that we need
to know the lengths of all preceding code-words to know
where a particular output code-word should appear in the
output.
Without parallelism, this stage is prohibitively slow. In the
worst case, this operation becomes bit-serial rather than just
band or pixel serial, and this gives unacceptable performance.
Fortunately, a solution exists. See Figure 2. Observe that we
do not strictly require that all preceding packing operations
have taken place before packing an output, only that we know
the offset into the output stream of our word-to-be-packed.
Our encoder will tell us how many bits each output code-word
contains, so if we now take a running sum of code-word
lengths, this will give us the offset into the output stream for
each output code-word.

operation, and these can be performed in parallel across all
bands and spatial pixels.

It should be noted that, due to the compression itself, it is
inevitable that multiple output code-words will reside in the
same machine word of the output. Careful synchronisation
will be needed to ensure that such writes occur atomically
between processes. While we make numerous optimisations
during implementation, we have not altered the algorithm in
any way.

III. IMPLEMENTATION OVERVIEW

Although the implementations described here do not rely on
any specific architectural features found only on laptop
computers, we shall still refer to these as the Mobile CUDA
and Mobile OpenMP Implementations, to distinguish them
from previous work. We shall refer to the implementations in
[3] as the Fixed Platform CUDA/OpenMP versions.

The parallelization approach used for the Fixed Platform
Implementations is well described in [3], but it is useful to
summarize here – since some features are common to the new
implementation.

A. Fixed Platform CUDA/OpenMP Implementations
The parallelism approach taken in this implementation was to
buffer data at any stage of the algorithm where a data
dependency occurs. The buffers are taken to be as large as
possible, and spaced to expose the maximum possible degree
of algorithmic parallelism at each stage of computation.

The enormous benefit that this buffering brings is that there is
never a point where one parallel execution thread is waiting on
data from another – since each algorithm stage only begins
when all of the data that it requires have been calculated.

Process

Calculate Offsets Pack (Parallel)

Figure 2 - Parallel packing of variable length code-words

Addition is commutative (in absence of saturation operations
like those used in the predictor), so we can perform a running
sum operation on the output word lengths using a tree
structure. A fully parallelised add-tree operation will take
log(N) stages, where N is the number of items to be summed.
With the output offsets calculated, all of the output code-
words can be shifted and moved into place with a logical-OR

This approach is essentially a ‘greedy optimization’; it takes
the biggest parallel bites first. What remains at the end is a
core surrounding the stage whose data dependencies cannot be
removed, and this core proves to be the parallelism bottleneck.

Figure 3 shows how the algorithm is divided up horizontally
into stages. Between each numbered stage is a data buffer, and
stages are executed in sequence. The first column lists the
order of execution, the second column describes the operation
performed, the third column importantly describes the amount
of available parallelism, and the final two columns show un-
parallelizable system calls.

Clearly, stages 2, 3, 5, 7 have the highest degree of parallelism
available – they are parallelizable over all 3 data dimensions.
Stage 6 contains a tree-based summation, and has logarithmic
performance; better than serial, somewhat worse than the most
parallel parts. The amount of work that the stage contains is
low, however, and so this stage is not the bottleneck.

The choke point is stage 4 – the predictor. Unfortunately, this
is also the stage which contains the most computational work,

Host Alloc.
Load Data Serial File Read

Mem Write

CUDA only Serial Memory Copy Host to Device

H/D Alloc.
Format Input X.B.Z Mem Read

Mem Write
H/D Free
H/D Alloc.

Local Average (Fixed Filter) X.B.Z Mem Read Mem Write
H/D Free
H/D Alloc.

Predictor (Adaptive Filter) Z Mem Read
Mem Write

H/D Free
H/D Alloc.

Encoder (Adaptive Code) X.B.Z Mem Read
H/D Free
H/D Alloc.

Offset Calculation log(X.B.Z) Mem Read
H/D Free
H/D Alloc.

Bit Packer X.B.Z Mem Read
Mem Write

H/D Free

 CUDA only Serial Memory Copy Device to Host

Store Data Serial Mem Read
File Write Host Free

Image Segment (N – 1)

Stage Operation Parallelism System Calls

1

2

3

4

5

6

7

8

Image Segment (N)
Image Segment (N + 1)

Device Bandwidth Latenc
y

 Disk – R/W 200 MB/s -

Main Memory 3-17 GB/s 167

CPU L3 cache (6MB) 111 GB/s 30

CPU L2 cache (4x256kB) 245 GB/s 11

CPU L1 cache (4x32kB) 396 GB/s 5.5

PCIe (x8) 2.3 GB/s -

GPU RAM (1.5 GB) 45 GB/s > 1000

GPU L2 Cache (768 kB) - 365

GPU Shared / L1 Cache (64 kB) < 1.6 TB/s 88

GPU Register < 8 TB/s -

and so forms the performance bottleneck for the entire
algorithm.

The buffers used end up being so large that care needs to be
taken that they fit in GPGPU main memory, which is 1.5 GB
on the test system. For this reason, the image is split into
segments prior to processing. These segments are processed

match that of the least parallel stage allows the stages to be
merged. With all stages the same ‘width’, we no longer need
giant buffers in memory to hold the output of each stage, and
so data flow from one stage to the next carried in registers.

Stage Operation Parallelism System Calls
Host Alloc.

serially by the algorithm. 1 Load Data

Memory Copy Device to Host

Format Input

Serial

Serial

Z

File Read
Mem Write

Device Alloc.

Mem Read

Local Average (Fixed Filter) Z

2-7
Predictor (Adaptive Filter) Z

Encoder (Adaptive Code) Z

Offset Calculation log(Z)

Mem Write

Mem Write

Bit Packer

Memory Copy Device to Host - Size

Memory Copy Device to Host - Data

8 Store Data

Image Segment (N)

Image Segment (N+1)
Image Segment (N+2)

Z

Serial

Serial

Serial

Mem Write

Host Alloc.

Device Free
Mem Read
File Write
Host Free

Figure 3- Fixed Platform OpenMP / CUDA Implementation:
Execution Timeline. Columns show order of algorithm stage execution,
operation name, amount of available parallelism, and serial system calls

Although the Fixed Platform implementation is described here
in terms of GPGPU, the OpenMP (multicore CPU)
implementation is identical in architecture, operating
sequentially on image ‘blocks’, and as a series of independent
algorithm stages separated by large memory-resident buffers.

The key observations that allow the realization of the speedup
in the Mobile implementation are:

1. Making the fastest stages of the algorithm faster

comes at the expense of making the slowest parts
even slower.

2. The model of streaming data through processing units
from one memory resident buffer to another makes
poor use of cache, and gives little opportunity for
data-reuse.

3. The size of the buffers used mean that we cannot
exploit additional sources of parallelism, like the
image segmentation described above.

B. Mobile CUDA Implementation
The key idea behind the new CUDA implementation is that
restricting the parallelism of the highly parallels stages to

Figure 4 - CUDA Version 4 Architecture

The original purpose of the buffer was to break data-
dependencies, and these then require careful synchronisation
to avoid. We need to be able to share data between separate
execution threads, and halt the execution of some threads
while others ‘catch up’. The cost of requiring synchronisation
turns out to be low, and we gain a side-benefit in the form of
greater data-reuse. Suddenly the high-speed caches and shared
memories on the GPGPU become usable. See TABLE I. for
relative performance figures for caches / memories.

TABLE I. RELATIVE PERFORMANCE OF RAM TYPES AND BUSES

Instead of the algorithm being bound by the rate we can
stream data into and out of memory, we can now push the
limits of the computing capability of the GPGPU.
The other significant source of increased performance is the
ability to leverage the parallelism created by image
segmentation to boost the overall parallelism to a level more
comfortable for the GPGPU.

Performance Primitives (IPP). IPP is a library of accelerated
functions for DSP, compression, and encryption which
encapsulate the SSE instructions (emulating any which lack
hardware support).

Stage Operation Parallelism System Calls

Host Alloc.

In summary; the Mobile CUDA implementation exploits both
spectral parallelism and spatial parallelism (in the form of
image segmentation)

C. Mobile OpenMP Implementation
While the Fixed Platform OpenMP (multicore CPU)
implementation used exactly the same architecture as its
CUDA counterpart, the Mobile OpenMP and CUDA versions
look very different. The Mobile CUDA implementation makes
use of both the band-parallelism inherent in the algorithm, and
the imposed parallelism of image segmentation.
Surprisingly, the best performance is obtained from the
OpenMP implementation when the band-parallelism is

1

2-7

Load Data

Format Input

Local Average (Fixed Filter)

Predictor (Adaptive Filter)

Encoder (Adaptive Code)

Offset Calculation

Bit Packer

Serial

SIMD

IPP

SIMD

Serial

Serial

IPP

File Read
Mem Write

Mem Read

Mem Write

Mem Read
ignored entirely. The only source of parallelism the Mobile
OpenMP implementation needs comes from the image
segmentation. We effectively run multiple serial copies of the
compression algorithm, each on its own processor core, and

8 Store Data

Image Segment (N)
Image Segment (N+1)

Image Segment (N+2)

Serial File Write
Host Free

each independently compressing a different part of the image.

It should be noted that using the multiple CPU cores in
parallel along the band axis is still significantly faster than a
single core compressing data serially. However, the problem
scales poorly with increasing numbers of cores – when using
this type of band-parallelism.

There are a number of factors which together explain this
result:

1. Multicore systems are not able to use the same high
degree of parallelism as GPGPUs.

2. The cost of synchronisation between execution
threads is much higher for multicore.

3. Sharing data between processors is more expensive,
time-wise, than for GPGPU.

4. The highest level of caching available to data which
is shared between cores is Level 3.

In the final stages of development it was realized that some of
spectral-band parallelism could be reintroduced without
causing inter-processor bottlenecks. Processors manufacturers
keep adding new instruction sets to their products – and many
of the additions are SIMD instructions to accelerate things like
software video decoding. We can use a combination of the
Intel SSE3 instructions, and a few operations from the newer
SSE4 set. These instructions operate on 4x32-bit words,
packed into special 128-bit SIMD registers. There are
hardware instructions which can be used to explicitly control
caching, and to stream data from memory through the SIMD
registers in a DSP-like fashion. Intel produces a development
package as part of its Parallel C++ Compiler suite called Intel

Figure 5 - OpenMP Version 4 Architecture

The computationally intensive kernel of the OpenMP
multicore implementation was rewritten using a combination
of IPP calls, and raw SSE instructions to add back a layer of
spectral-band parallelism within a single core.

IV. DECOMPRESSOR

An extra features added in the Mobile Platform
Implementation is a multicore accelerated decompressor.
Decompression consists of two parts

1. Unpacking and decoding the variable length
codewords.

2. Decompression of decoded data back to samples,
using a matched predictor.

Stage 1 is the direct inverse of the bit-packer operation, and
stage 2 is largely identical to the predictor in the compressor.
We would like to be able to use the same image segmentation
technique to operate on multiple regions of image
simultaneously. However, the variable length of compressed
code-words causes a problem – we cannot know how where
each compressed image segment begins in the compressed
data. One solution is to add extra data at the compression
stage, indicating the run-length of each compressed image
segment. This enables the decompressor to ‘skip-ahead’, and
identify the start position offsets of all image segments.
Decompression can now proceed with the same level of
parallelism as compression.
This technique is functionally equivalent to simply treating the
original image as several smaller images and compressing

Height 512

Width 614

Bands 224

Bit Depth 12-bit unsigned

Bye Ordering Big-Endian

Data Ordering BIP
Uncompressed

Size (kB) 137,536

Compressed
Size (kB) 25,935

Compressed Size
(%) 18.86%

Compressed
Bit Depth (bpp) 3.02

Compression Ratio 5.3 : 1

Version

Time
(ms)

Throughput
Speedup

(Mb/s) (MSamp/s)
1) Fixed Platform
OpenMP - 1 Core 11542 75.64 5.82 -

2) Fixed Platform
OpenMP - 4 Cores 4488 194.53 14.96 1.00

3) Mobile Platform
OpenMP - 4 Cores 569 1534.68 118.05 7.89

Manufacturer Dell

Model Alienware M18x

Processor Intel Core i7-2760QM

Processor Clock 2.4GHz (4 Cores)

CPU Power (TDP) 45W

Chipset Intel Sandy Bridge

System RAM 16GB DDR3 @ 666 MHz
(PC3-10700)

each individually. The compression of each sub-image is still
entirely standards compliant.
It should be noted that the unpacking operation within an
image segment cannot be parallelised. Therefore, were we to
exploit band-parallelism in the predictor stage of the
decompressor; we would still be left with a large serial portion
of execution time. An OpenMP predictor for the decompressor
would exhibit the same problems in exploiting band-
parallelism as in the compressor. It is therefore not worth
implementing a decompressor with any greater parallelism
than image-segment spatial parallelism.
As highlighted above, the unpacker half of the decompressor
cannot be parallelised at the band level, therefore would
perform extremely poorly on GPGPU. Therefore a GPGPU
accelerated decompressor is technically unfeasible.

Graphics Device 2 x Nvidia GeForce 560M GTX

GPU RAM
(per device) 1.5GB GDDR5 @ 1.25 GHz

GPGPU
Streaming Multiprocessors 6 @ 770 MHz

GPGPU
Concurrent Threads 192

GPGPU Power (TDP) 75W (per device)

Hard Disk Devices 2 x 500 GB Seagate Momentus XT
Hybrid SSD / Magnetic – Raid 0 (Striped)

VI. IMPLEMENTATION RESULTS

The new implementations were developed to try and reach a
throughput figure of 800Mb/s, corresponding to the real-time
rate at which data are produced by a typical sensor.

V. DEVELOPMENT AND TESTING ENVIRONMENT

In every test, the same input file and compression parameters
were used. The output files for each implementation were
checked and found to be bit-identical.

TABLE II. SPECIFICATION FOR HAWAII TEST IMAGE. SEE REF [11]

4500

4000

3500

3000

2500

2000

1500

1000

Throughput (Mb/s)

Real-time (Mb/s)

1535

3863

4280

1018

500

0

76 195 372 244

(1) (2) (3) (4) (5) (6) (7) (8)
Figure 6 - Chart of throughput (in Mb/s) for different implementations

Dark Bars indicate new Mobile Platform Implementations,
Light Grey indicate original Fixed Platform Implementations

(1-3) OpenMP, (4-6) CUDA, (7-8) Decompressor
Horizontal line indicates real-time performance target

To reduce the variance of test results, a tool called
GameBooster3 [6][12] was used to shut down background
processes (and to restart them after the test). This tool is freely
available, and made a big improvement to the consistency of
results – especially for the OpenMP implementations.

TABLE III. SPECIFICATION FOR MOBILE TEST PLATFORM

The architectural and algorithm improvements developed
allowed us to reach and comprehensively exceed this
performance figure in both GPGPU accelerated, and un-
accelerated multicore processor implementations.

TABLE IV. OPENMP IMPLEMENTATIONS PERFORMANCE

The Mobile Platform OpenMP implementation shows a
dramatic speedup over the original Fixed Platform
implementation. Compression performance on a high-

performance workstation is expected to be slightly higher. The
image segmentation added in the Mobile Platform
implementation allows a laptop to compress data at nearly
twice real-time throughput, without using any form of GPGPU
acceleration.
The 4-core Fixed Platform Implementation exhibits only a
2.6x speedup compared with a single core implementation.
This is most likely due to the Speedboost single-core
overclocking.

TABLE V. CUDA IMPLEMENTATION PERFORMANCE

Version

Time
(ms)

Throughput
Speedup

(Mb/s) (MSamp/s)
4) Fixed Platform
CUDA - 1 GPU 2346 372.14 28.63 1.00

5) Mobile Platform
CUDA - 1 GPU 226 3862.97 297.15 10.38

6) Mobile Platform
CUDA - 2 GPUs 204 4279.56 329.20 11.50

The increased parallelism gained by image segmentation,
coupled with improved data-flow gives an enormous
performance improvement on the Mobile Platform
implementation.
In addition, the Mobile Platform implementation can make use
of multiple GPGPU devices installed on the same system to
increase performance further, but the performance gained
from doing so is far less than double. The CUDA portion of
the code is so fast, in this implementation, that the serial
operations (file access / bus transfers) dominate the run-time,
meaning we are close to the theoretical parallel performance
limit for this algorithm.

TABLE VI. DECOMPRESSOR PERFORMANCE

Version

Time
(ms)

Throughput
Speedup

(Mb/s) (MSamp/s)
7) Decompressor
OpenMP - Serial 3585 243.53 18.73 1.00

8) Decompressor
OpenMP - Parallel 857 1018.16 78.32 4.18

A decompressor was also developed, targeted to multicore
implementation which is able to exploit parallelism in the
decoding stage, allowing data to be decompressed almost as
fast as it is compressed, again beating the real-time
performance target.
Decompression is slower than compression, due to an
asymmetry in the bit-packing / unpacking operations. We
show here how, by adding a small amount of extra data at the
compression stage to the compressed file (or by transmitting
several smaller output files), we can enable decompression to
take place in parallel as well, greatly improving
decompression performance. With this change, we see a 4-fold
speedup by enabling image-segment parallelism in the
decompressor, which is consistent with the speedup expected
from a 4-core system.

VII. CONCLUSIONS & FURTHER WORK

We have shown here that this hardware-optimised and
apparently serial compression algorithm can be parallelised
and optimised for software - exceeding the real-time
performance barrier for the first time.
Further, we have demonstrated the suitability of this algorithm
for implementation in software on commodity computing
resources, in particular portable devices such as laptops.
As mentioned in the introduction, the FPGA implementation
[2] does not make direct use of either the band or image-
segmentation parallel described here. Both types of
parallelism would be suitable, in some form, for hardware
implementation. With the recent release of a radiation hard
Virtex 5 FPGA device by Xilinx, it would be useful to update
the hardware implementation to this technology, and build in
parallel acceleration at the same time, allowing the same real-
time performance to be achieved by space applications.

ACKNOWLEDGMENT

Part of the research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. The other part of the research described in this
publication was carried out at the University of Edinburgh.
Ben Hopson from University of Edinburgh would like to thank
Wolfson Microelectronics Plc for funding his research.

REFERENCES

[1] W. Campbell, N. M. Short, “Remote Sensing Tutorial”, 2004
http://www.fas.org/irp/imint/docs/rst/Sect13/Sect13_9.html

[2] N. Aranki, D. Keymeulen, A. Bakhshi and, M. Klimesh, “Hardware
Implementation of Lossless Adaptive and Scalable Hyperspectral Data
Compression for Space”, In NASA/ESA Conference on Adaptive
Hardware and Systems, IEEE, July 2009.

[3] D. Keymeulen, N. Aranki, B. Hopson, A. Kiely, M. Klimesh, and K.
Benkrid “GPU Lossless Hyperspectral Data Compression System for
Space Applications”, In IEEE Aerospace Conference 2012, IEEE,
March 2012 (in press)

[4] CCSDS, Lossless Multispectral & Hyperspectral Image Compression
(Draft Recommended Standard) vol. 123.0-R-1: CCSDS, 1997-2007.
(http://public.ccsds.org/sites/cwe/rids/Lists/CCSDS%201230R1/Attach
ments/123x0r1.pdf)

[5] S. W. Golomb, “Run-length encodings,” IEEE Trans. Information
Theory, vol. IT-12, pp. 399–401, July 1966

[6] Memon, N. “Adaptive coding of DCT coefficients by Golomb-Rice
codes” in Image Processing, 1998. ICIP 98. Proceedings. 1998
International Conference on

[7] Aaron Kiely, “Selecting the Golomb Parameter in Rice Coding”, JPL
IPN Progress Report 42-159. November, 2004
http://ipnpr.jpl.na sa.gov/progress_report/42-159/159E.pdf

[8] R. Farber. CUDA Application Design and Development. Morgan
Kaufmann, 2011

[9] J. Sanders. CUDA by Example: An Introduction to General-Purpose
GPU Programming . Addison Wesley, 2010

[10] D.B. Kirk. Programming Massively Parallel Processors : A Hands-on
Approach (Applications of GPU Computing Series). Morgan
Kaufmann, 2010.

[11] Aaron Kiely, AVIRIS Hawaii Scene 1, 2001, Flight f011020t01p03r05
http://compression.jpl.nasa.gov/hyperspectral/

[12] IOBit Game Booster 3: http://www.iobit.com/gamebooster.html

http://www.fas.org/irp/imint/docs/rst/Sect13/Sect13_9.html
http://public.ccsds.org/sites/cwe/rids/Lists/CCSDS%201230R1/Attachments/123x0r1.pdf
http://public.ccsds.org/sites/cwe/rids/Lists/CCSDS%201230R1/Attachments/123x0r1.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-159/159E.pdf
http://compression.jpl.nasa.gov/hyperspectral/
http://www.iobit.com/gamebooster.html

