High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

Thomas I. Valdez1, Keith J. Billings1, Adam Kisor1, William R. Bennett2, Ian J. Jakupca3, Kenneth Burke2, and Mark A. Hoberecht2

1Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA

2Glenn Research Center, Cleveland, OH

3Analex Corporation
Cleveland, OH

2012 Space Power Workshop
Manhattan Beach, CA
Presentation Outline

• Energy Storage: Regenerative Fuel Cell Systems
 – The Regenerative Fuel Cell Concept
 – Lunar Outpost Surfaces Systems
 – Key Performance Parameters
• NASA Fuel Cell Stack Development
• NASA Fuel Cell Membrane Electrode Assembly (MEA) Development
 – MEAs Fabricated for NFT Fuel Cell Systems
 – Vendor Tested MEAs
 – Advanced Electrode Structures
• NASA Electrolysis MEA Development
 – Catalysts Development
 – Electrolysis MEA Testing
• Fuel Cell Powered Mobility Systems
• Presentation Summary

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
• The byproduct water recovered from the fuel cell reaction can be stored and electrochemically converted back into the required fuel cell reactants.
Conceptual Lunar Outpost Surface System

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Key Performance Parameters, Energy Storage Project

<table>
<thead>
<tr>
<th>Customer Need</th>
<th>Performance Parameter</th>
<th>SOA (alkaline)</th>
<th>Current Value* (NFT PEM)</th>
<th>Threshold Value** (@ 3 kW)</th>
<th>Goal** (@ 3 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altair:</td>
<td>System power density</td>
<td>49 W/kg</td>
<td>44 W/kg</td>
<td>88 W/kg</td>
<td>136 W/kg</td>
</tr>
<tr>
<td></td>
<td>RFC (without tanks)</td>
<td>n/a</td>
<td>n/a</td>
<td>25 W/kg</td>
<td>36 W/kg</td>
</tr>
<tr>
<td></td>
<td>Fuel Cell Stack power density</td>
<td>n/a</td>
<td>51 W/kg</td>
<td>107 W/kg</td>
<td>231 W/kg</td>
</tr>
<tr>
<td></td>
<td>Fuel Cell Balance-of-plant mass</td>
<td>n/a</td>
<td>2 kg</td>
<td>21 kg</td>
<td>9 kg</td>
</tr>
</tbody>
</table>

- Based on non-flow-through test hardware with 4-cells and heavy end plates, scaled to 3 kW.
- Threshold and Goal values based on full-scale (3 kW, 300 cm³) fuel cell and RFC technology.
- Includes high pressure penalty on electrolysis efficiency 2000 psi.

<table>
<thead>
<tr>
<th>System efficiency @ 200 mA/cm²</th>
<th>Fuel Cell</th>
<th>Parastatic penalty</th>
<th>Regenerative Fuel Cell***</th>
<th>Parastatic penalty</th>
<th>High Pressure penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>71%</td>
<td>8%</td>
<td>n/a</td>
<td>43%</td>
<td>20%</td>
</tr>
<tr>
<td>For Fuel Cell</td>
<td>64%</td>
<td>2%</td>
<td>n/a</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Individual cell voltage</td>
<td>0.90 V</td>
<td>2%</td>
<td>n/a</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>For Electrolysis</td>
<td>0.89 V</td>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual cell voltage</td>
<td>1.48</td>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For RFC (Round Trip)</td>
<td>60%</td>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintenance-free lifetime	Maintenance-free operating life		
Altair:	Fuel Cell MEA	2500 hr	220 hr
Surface:	Electrolysis MEA	n/a	n/a
	Fuel Cell System (for Altair)	2500 hr	220 hr
	Regenerative Fuel Cell System	n/a	n/a

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
NASA Fuel Cell Stack Development

Fuel Cell Technology Progression to Simpler Balance-of-Plant

M. A. Hoberecht, NASA PEMFC Development Background and History, {Presented at NUWC, Newport, RI, 2010

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Advanced MEAs for Non-Flow-Through (NFT) Fuel Cell Systems

• MEAs developed for NASA NFT Stacks tested in conventional fuel cell hardware
• MEA performance is a strong function of MEA thickness this is more pronounced in NFT hardware
• MEA Performance in NFT hardware, 0.88 Volts at 200 mA/cm², 30 PSIG Balanced Pressure Reactants

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Advanced NASA Fuel Cell MEA, Vendor Tested

- Membrane thickness crucial at high current densities, N115, 5 mil, N212, 2 mil
- MEA Performance, 0.92 V at 200 mA/cm², 80 °C

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
RuO$_2$ deposition at the anode improves catalysts membrane interface can lower MEA high-frequency resistance (HFR) on the order of 1 mΩ with N212.

Deposition to be optimized, will increase cell voltages by 5 mV at 200 mA/cm2 for MEAs fabricated with N212.
Oxygen Evolution: Doped Ruthenium Oxide Catalyst

- Heat-treatment required to activate the doped ruthenium catalyst
- Expected Reaction: $M + RuO_2 \rightarrow MO_x RuO_{(2-x)}$ ($x \approx 0.05$)
- Ir-black dominates the performance of non-heat treated Ir-black mixed with RuO$_2$
- The 9% iridium-doped ruthenium catalyst performed the best of all iridium-doped ruthenium oxide compositions fabricated
Electrolysis MEA Testing

- Advanced catalysts can meet the performance requirements of future NASA electrolysis systems
- MEA Performance, 1.42 V at 200 mA/cm², 70 °C
Hydrogen docking stations can provide a pathway for robotic vehicles to traverse several kilometers while operating on fuel cell power.
Presentation Summary

• Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions
• The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm² can be met
• Fuel Cell MEAs have been incorporated into advanced NFT stacks
• Electrolyzer stack development in progress
• Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements
• Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements
• Round Trip Efficiency, based on a cell performance, is approximately 65%

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Acknowledgements

This work presented here was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with National Aeronautics and Space Administration.