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Abstract—In recent years, complementarity techniques have 
been developed for modeling non-smooth contact and collision 
dynamics problems for multi-link robotic systems. Normally, in 
this approach, a linear complementarity problem (LCP) is set 
up using 6n non-minimal coordinates for a system with n links 
together with all the unilateral constraints and inter-link bilateral 
constraints on the system. In this paper, we use operational space 
dynamics to develop a complementarity formulation for contact 
and collision dynamics that uses minimal coordinates. The use 
of such non-redundant coordinates results in much smaller size 
LCP problems and the automatic enforcement of the inter-link 
bilateral constraints. Furthermore, we exploit operational space 
low-order computational algorithms to overcome some of the 
bottlenecks in using minimal coordinates. 

 
I. INTRODUCTION 

 

For more than a decade, researchers [1, 9, 11] have been 
developing complementarity based approaches to formulating 
and solving the dynamics of systems with contact and collision 
dynamics. Examples of such dynamics for robotic systems 
include manipulation and grasping tasks and legged locomo- 
tion. This approach models bodies as rigid, and uses impulsive 
dynamics to handle non-smooth collision, contact interactions 
and state transitions. By essentially impulsively “stepping” 
over non-smooth events, complementarity methods avoid the 
the small step size and stiff dynamics problems encountered 
with penalty based methods which model surface deformation 
dynamics during contact [7]. 

The complementarity approach involves setting up of a 
linear complementarity problem (LCP) that depends on the 
link mass and inertia properties, contact friction parameters, 
inter-link bilateral constraints and the contact and collision 
unilateral constraints [1, 9, 11]. The LCP solution identifies 
the unilateral constraints that are active, and solves for the 
impulsive forces and velocity changes that are consistent with 
the constraints on the system. Variants of the complementarity 
approach to handle elastic collisions have also been developed 
[1]. While the standard LCP formulation uses a discretized 
approximation for the friction cones, other researchers [10] 
have explored non-linear cone complementarity approaches 
that avoid such approximations. 

For a multi-link system with n links, the normal approach 
to set up the associated LCP problem uses 6n non-minimal 
coordinates [11] together with the bilateral constraints asso- 
ciated with the inter-link hinges and the unilateral contact 
constraints. This approach has a simpler system mass matrix 

that is block diagonal and constant. On the other hand, such 
redundant coordinates lead to large LCP problem size, and 
require the use of differential-algebraic equation (DAE) like 
techniques for managing error drift in the bilateral constraints 
when integrating the equations of motion. 

An  alternative  approach  uses  minimal  hinge  coordinates 
that automatically eliminate the bilateral constraints for the 
inter-link hinges [12]. While the underlying physics remains 
unchanged, this formulation reduces the size of the LCP prob- 
lems, and avoids the need for DAE techniques for controlling 
bilateral constraint violation errors for the inter-link hinges. 
However, the use of minimal coordinate leads to a dense and 
configuration dependent mass matrix. This makes the LCP 
problem setup more complicated, and has been a significant 
hurdle in the use of such a minimal coordinate approach. 

In  this  paper,  we  focus  on  the  analytical  and  computa- 
tional aspects of the minimal coordinate formulation of the 
complementarity approach to contact and collision dynamics 
for multi-link systems. We adopt the complementarity based 
physics models from [1, 11], but reformulate the system 
dynamics and the associated LCP problem using minimal 
coordinates. While [12] used a similar minimal coordinate 
formulation, it was limited to just contact  dynamics,  and 
used the divide-and-conquor  (DCA)  technique  [2]  as  part 
of its solution technique. This paper goes beyond contact 
dynamics to also develop the LCP variants for handling elastic 
and inelastic collision dynamics. Moreover, for closed-chain 
topology systems, we describe a uniform way to incorporate 
the bilateral constraint associated with the closure constraint 
naturally into the LCP problem. Our minimal coordinates 
approach adopts an operational space [5] perspective, which 
in turn allows us to take advantage of low-order spatial 
operator algorithms [3, 4, 6] for computing the operational 
space complementarity matrix (OSCM) sub-matrices needed 
for setting up the LCP problem. Taken together the methods 
described here provide a comprehensive, and computationally 
tractable, solution to using minimal coordinates for contact 
and collision dynamics problems. We conclude with results 
from an illustrative multi-link pendulum numerical problem. 

 

II. EQUATIONS OF MOTION 

A. Minimal coordinate dynamics 
The minimal coordinate equations of motion for a tree- 

topology multi-link robotic system with n links and N degrees 



2 △ 

3 = 

of freedom take the form Denoting  the  node  accelerations  for  the  free  system  (i.e. 
without the fc  nodal forces) by αf, the following analog of 

T = Mθ̈ + C − J∗fc (1) Eq. 4 defines αf in terms of the θ̈f generalized accelerations: 
where θ ∈ RN denotes the generalized coordinates, T ∈ RN α △ ¨  (5) 

 
the generalized forces, M ∈ RN×N  the system mass matrix, f = Jθf + aos 

C ∈ RN the vector of Coriolis, gyroscopic and gravitational Pre-multiplying Eq. 2 by J and using Eq. 4 yields: 
forces, fc ∈ R6nc   the stacked vector of nodal forces for nc α 4,5,2               △ −1   ∗ 6nc ×6nc 

nodes  on  the  system,  and  J ∈ R6nc ×N   the  Jacobian  matrix c =  Λfc + αf where Λ = JM J  ∈ R  
(6) 

for these nodes. 
While the values of the fc nodal force components that arise 

from control actuators may be known, the ones associated with 
system constraints are not explicitly available. In this paper, 
we will assume that fc only contains such implicit constraint 
forces, since the effect of the explicit ones is easily handled 
by absorbing them into the C term. In view of this, all nodes 
in this paper will refer to constraint nodes. 

In a minimal coordinates formulation, bilateral constraints 
associated with inter-link hinges are eliminated by using hinge 
coordinates that directly parameterize the hinge motion. Thus 
tree-topology systems have no bilateral constraints for such 

Λ is referred to as the operational space compliance matrix 
(OSCM). The invertibility of Λ does not depend on J being 
invertible – only that J have full row-rank. When it exists, the 
inverse of Λ is referred to as the operational space inertia. 

 

C. Impulsive dynamics 
The differential form of equations of motion in Eq. 2 can be 

discretized using an Euler setp to obtain a form that maps a p 
impulse stacked vector at the nodes into the resulting change in 
generalized or nodal spatial velocities over a ∆t time interval1 

 θ̇+ − θ̇− 

models. Bilateral constraints on the other hand are unavoidable 
for closed-chain topology systems. Such systems are decom- 

=  M−1J∗p + θ̈f∆t with p 
 

Multiplying both sides with J leads to 

= fc∆t (7) 

posed  into  a  tree-topology  system  (from  a  spanning  tree) V+ − V− 3,7 Λp + α ∆ (8) 
 

together with a minimal set of bilateral closure constraints. 
Thus Eq. 1 will always refer to the equations of motion for the 
tree-topology part of the system, the closure constraints will 
define the bilateral constraints, while the contact constraints 
will form the set of unilateral constraints on the system. 

The θ̈ generalized solution of Eq. 1 can be expressed as 
 

△ 

c c = f  t 
 

Collision events are impulsive and lead to instantaneous 
changes in the system velocities, and in this case ∆t = 0 
in the above equations. 

 
III. UNILATERAL CONTACT CONSTRAINTS 

Unilateral constraints are defined by inequality relationships 
such as: 

θ̈ = M−1J∗fc + θ̈f where θ̈f =  M−1(T − C) (2) d(θ, t) � 0 (9) 
θ̈f represents the free generalized accelerations, i.e. the gen- 
eralized accelerations in the absence  of  the  nodal  forces. 
Eq. 2 expresses the overall θ̈ generalized acceleration for the 
system as the sum of the θ̈f free generalized accelerations 
and the M−1J∗fc correction acceleration contribution from the 
implicit non-zero nodal forces. The following section describes 
the operational space form of the equations of motion that 
describe the mapping between the nodal forces to the nodal 
spatial accelerations. 

 
B. Operational space dynamics 

 

The operational  space for our multi-link system is defined 
instantaneously by the configuration of the set of  constraint 
nodes  on  the  system.  Vc  ∈ R6nc   denotes  the  stacked  vector 
of spatial velocities [? ] of all the nc nodes. The relationship 
between Vc and the θ̇ joint velocities is given by 

 

As an example, the non-penetration condition for rigid bodies 
can be stated as an inequality relationship requiring that the 
distance between the surfaces of rigid bodies be non-negative. 
d(θ, t) is generally referred to as the distance or gap function 
for unilateral constraints. 

Contact occurs at the constraint boundary, i.e.,  when 
d(θ, t) = 0. For bodies in contact, the surface normals at the 
contact point are parallel. The existence of contact is often 
determined using geometric or collision detection techniques. 
For a pair of bodies A and B in contact, we use a convention 
where the ith contact normal n̂ (i) is defined as pointing from 
body B towards body A, so that motion of A in the direction 
of the normal will lead to separation of the bodies 2. 

A unilateral constraint is said to be in an active state when 

d(θ, t) = ḋ(θ, t) = d̈(θ, t) = 0 (10) 

Thus, a unilateral constraint is active when there is contact, and 
Vc = Jθ̇ (3) the contact persists. Only active constraints generate constraint 

forces on the system. 
The task space spatial acceleration αc  ∈ R6nc   is defined as 
the time derivative of Vc and, from Eq. 3, its expression is 

 
1The − and + superscripts will denote the respective value of a quantity 

just before and after the application of an impulse. 
△ 

αc  = 
dVc 

dt 
=   Jθ̈ + aos where  aos 

△  J̇θ̇ (4) 
2This is the same convention for contact normals as used by the Bullet 

physics engine. 
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△ 

A constraint that is not active is said to be inactive. Contact 
separation  occurs  when  the  relative  linear  velocity  of  the 

opposing the relative linear velocity. In other words, with σ(i) 
denoting the magnitude of the contact relative velocity, 

contact points along the normals becomes positive and the 
contact points drift apart. A separating constraint is in the 

 
βk(i) = 

( 
µ(i)Fn 

 

(i) 
 
1[k=j] 

 

if   σ(i) > 0 
 

(16) 
process of losing contact and transitioning to an inactive state. 
At the start of a separation event, we have 

 

 
In the above, 

0 if   σ(i) = 0 
[<cond>] denotes the indicator function whose 

d(θ, t) = ḋ(θ, t) = 0   and d̈(θ, t) > 0 (11) value is 1 if t
1
he condition is true, and 0 otherwise. 

A. Contact impulse for an active contact constraint 
We now describe contact force models based upon the 

approach in references [1, 11]. Denote the number of unilateral 
contact nodes by nu. The 6-dimensional spatial impulse at 
the ith  active contact constraint node has a zero angular 
moment component. Its non-zero linear impulse component 
Fu(i) ∈ R3  can be decomposed into normal and tangential 
(friction impulse) components 

B. Complementarity relationship for a unilateral contact 
The sliding/rolling contact relationships can be stated equiv- 

alently as the following complementarity3  conditions: 

n̂ ∗(i)v+(i)  ⊥  Fn(i) (separation) 
σ(i)E(i) + D∗(i)v+(i)  ⊥  β(i) (friction force direction) 
µ(i)Fn(i) − E∗(i)β(i)  ⊥  σ(i) (friction force magnitude) 

(17) 
 

Fu(i) = Fn(i)n̂ (i) + Ft(i)t̂(i) (12) where   E(i) = col {1}nf
 ∈ Rnf 

 (18) 
 

Assuming that the friction coefficient is µ(i), the magnitude 
of the tangential Coulombic frictional impulse is bounded by 
the magnitude of the normal component as follows: 

IFt(i)I :s µ(i)Fn(i) (13) 

When the relative linear velocity between the contact nodes 
is non-zero, the tangential frictional impulse is in a direction 
opposite to the linear velocity vector (which necessarily lies in 
the contact tangent plane) and Eq. 13 holds with an equality. 
When the bodies have non-zero relative velocities at the 
contact  point,  the  contact  is  said  to  be  a  sliding  contact. 

j=1 
 

and v+(i) ∈ R3 denotes the linear relative velocity of the first 
body A with respect to the second body B. The component of 
this relative velocity along the contact normal is, n̂ ∗(i)v+(i), 
and a positive value indicates increasing separation between 
the bodies, while a negative value indicates that the bodies 
are approaching each other. The complementarity conditions 
in Eq. 17 enforce the no inter-penetration constraint at the 
velocity level, instead of at the gap-level, hence they are really 
valid only when the gap is zero, i.e., when contact exists [1]. 
Using Eq. 15, Eq. 17 can be alternatively expressed as 

Ê (i)σ(i) + D∗(i)v+    

Otherwise, when the relative linear velocity is zero, the contact 
is said to be a rolling contact. Thus, the tangential friction 

u (i) ⊥ β(i) 
Ē  (i)β(i) ⊥ σ(i) 

(19) 

impulse is on the boundary of the cone defined by Eq. 13 
when sliding, and in the interior of the cone when rolling. 

For the purpose of numerical computation, the friction cone 
is approximated by a friction polyhedron consisting of a finite 

 
where 

 

 and 

 

Ê (i)  △ 

 Ē (i)  △
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E(i) 

 
∈ Rnf +1 

 
∗ 

 
 
 
 

1×nf +1 

 
 

(20) 
 

number,  nf,  of  unit  direction  vectors d̂ j(i) in the tangent = [µ(i), −E (i)] ∈ R 

plane. It is assumed that for each direction vector, its opposite 
direction vector is also in the set. For notational simplicity, 

C. Aggregated complementarity relationships 
The stacked vector of relative linear velocities at the con- 

we  assume  that  nf  is  the  same  across  all  contact  points. tacts is denoted v+ ∈  R3nu .  It  can  be  obtained  from  the 
The tangential frictional impulse is expressed as the linear stacked  vector  of  node  spatial  velocities  V+  ∈ R6nc   via  the 
combination of these direction vectors as follows: 

nf 

Ft(i)t̂(i) = 
" 

βj(i)d̂ j(i) = D(i)β(i) 

following relationship  
 
vu = 

 
 
QuV+ 

 
 

(21) 
j=0 

△  3×nf 

 
(14) where the Qu ∈ R3nu ×6nc  matrix contains one block-row per 

contact node-pair, with each row mapping the spatial velocities 
where D(i) = 

r
d̂ 1(i), · · · , d̂ nf (i)

l 
∈ R 

△ of the node pair into the relative linear velocity across the 
and β(i) = col {βj(i)}nf

 ∈ Rnf contact. The motivation for defining and using the Qu matrix 

Combining together Eq. 12 and Eq. 14 we have 
△   

r
Fn(i)

l
 

is that it allows us to handle both unilateral constraints in 
a  manner  very  similar  to  that  for  bilateral  constraints  in 
the operational space formulation. Qu  has exactly the same 

Fu(i) = D(i)β(i) where β(i) = β(i) ∈ Rnf +1  
(15) structure as the Qb constraint mapping matrix for bilateral 

 

and   D(i) =  
r
n̂ (i),  D(i)

l 
∈ R3×(nf +1) 

constraints in Eq. 32 for three degree of freedom spherical 
hinges. 

During  sliding,  βj(i) is  non-zero  and  equal  to  µ(i)Fn(i) 
for just the single j that corresponds to the closest direction 

 
3A pair of vectors a and b are said to be complementary, i.e., a ⊥ b if 

for each index i, either a(i) or b(i) is zero. 



u 

i=0 

i=1 

= diag {D(i)}nu
 

u p  22,24         

u u 

i=1 

 

u 

u 

u 

△ 

△ 

u 

u 

 

The Qu matrix  is  also  involved  in  the  dual  relationship 
between the Fu equal and opposite impulse forces at contact 
node-pairs and the corresponding spatial impulses, p at the 
individual nodes via 

Observe that the p contact impulse is averaged over the ∆t 

time interval to get the spatial forces at the contact nodes. A 
simple Euler step integration based discretization of Eq. 30 is: 

 
p = Q∗ D β 

 
 

Define 

p = Q∗ Fu ∈ R6nc (22) u 

θ̇+ = θ̇− + M−1J∗p + ∆tθ̈f 

(31) 

β △  col 
{
β(i) nu  

∈ R = 
i=0 

△ 

nu (nf +1) 
 

 
(23) 

An LCP solution with Fu(i) positive indicates that the ith 

contact is active. Furthermore, a zero σ(i) implies that the 
and    σ = col {σ(i)}nu

 ∈ Rnu ith contact is a rolling contact while a non-zero value implies 
From Eq. 15, we have 

△ 

that it is a sliding contact. 

Fu  =  col {Fu(i)}nu
 = Dβ ∈ R3nu 

 
(24) 

 
D. Including bilateral constraints 

 
 

Thus, 
where    D 

△ 

i=1 ∈ R3nu ×nu (nf +1)  
As discussed earlier, in the minimal coordinate formulation, 

bilateral constraints arise from closure constraints associated 
=   Q∗ Dβ (25) 

Now we examine the effect of the contact node impulses on 
the node spatial velocities. 

with closed-chain topology systems. Tree topology systems 
have no bilateral closure constraints. We now describe exten- 
sions to the previous section’s complementarity formulation 
when the system has non-zero bilateral constraints. From now 

V+ − 8    24  ∗    

c − Vc =  Λp + ∆tαf =  Λ QuD β + ∆tαf 
 
(26) 

on, nu will denot the total number of constraint nodes for the 
unilateral and bilateral constraints. 

Pre-multiplying Eq. 26 by D∗Q we obtain Assuming that nb denotes the size of the bilateral con- 
D∗v+ 21 ∗    ∗                  

∗ 
     ∗   − straints  on  the  system,  a  bilateral  constraint  matrix  Qb   ∈ 

u =  (D Qu Λ QuD)β + ∆tD Quαf + D vu  
(27) Rnb ×6nc 

 

can  be  used  to  characterize  the  effect  of  these 
Combining equations 19 and 27, and in the absence of bilateral 
constraints, the overall complementarity conditions can be 
rephrased as: 

constraints as follows:  
 

QbVc = 0 (32) 
   

D∗Q 
 

Λ Q∗ D 
Ē Ê     

r
β

l 
0 σ 

r
D∗(Q 

+ u 

 

∆tαf 

0 
+ v−)

l
 

 
Eq. 22 and Eq. 25 for the node impulse generalize to 

∗ ∗ 24 ∗ ∗ 

r
β

l 
⊥ σ 

p = QuFu + Qbλ =   QuDβ + Qbλ (33) 

 
 
 

where 

 

 
 

Ê  = 
Ē 

 
 

diag 
{
Ê (i) nu

 
nu 

 
 
∈ Rnu (nf +1)×nu 

(28) 
 
 

(29) 

where λ denote the Lagrange multipliers associated with the 
bilateral constraints. p now contains force contributions from 
the unilateral as well as the bilateral constraints. 

To handle the bilateral constraints, Λ in Eq. 27 expands 
= diag 

{
Ē  (i)

 
 
 
i=1 ∈ Rnu ×nu (nf +1) to be the OSCM for all the unilateral and bilateral constraint 

The structure of the LCP problem in Eq. 28 is different from 
that normally found in literature [1, 11, 12]. This difference 
arises from the way we have defined  β(i) in  Eq.  15  and 
used it to arrange the coordinates in the LCP problem. This 

nodes. Using Eq. 33 in place of Eq. 25, the generalization of 
the complementarity condition in Eq. 28 that includes bilateral 
constraints is as follows: 

combined way of organizing the coordinates on a per contact  r
D∗Q  l 

Λ [Q∗ D,  Q∗ ] 
Ê  

β
 

constraint  will  allow  us  to  handle  unilateral  and  bilateral  Qb
 

u b 0  λ + 
constraints in a uniform manner. The key take away is that Ē  
the structural difference is not a reflection of any difference 0 0 

 


σ
 

 
(34) 

in the underlying physics of the problem. The solution to this  r
D∗Q  l 

∆tαf + rD∗v−
l   

β
 

nu(nf + 2) dimensional LCP yields β and σ and it can be 
used to propagate the system state as follows: 

p = Q∗ D β 

 Qb
 

 
0

 
0   

⊥  0 


σ
 

u 

θ̈ = θ̈f + M−1J∗(p/∆t) 
(30) This is a mixed complementarity problem, since the middle 

row of Eq. 34 corresponding to the bilateral constraints must 
The second equation can be numerically integrated until there 
is a new collision event during the ∆t  propagation interval. 

be satisfied exactly, in contrast with the inequality complemen- 
tarity conditions on the first and third rows. We will hereon 



i=1 

 

u 

 

c 
u 

c 
∗ 

u 

c 

u 

 

u 
△ 

u 

u ∗ 

u 

refer to Eq. 34 as the standard LCP 

w = Mz + q ⊥ z 
remains non-negative.   Define the ϑ decompression impulse 
as 

 r
D∗Q  

l 
△ 

 
Λ [Q∗ D,  Q∗ ] Ê  ϑ =  col {(ǫ(i)n̂ ∗(i)pc(i)) n̂ (i)}nu

 ∈ R3nu (39) 
with M =  Qb u b 0  

Ē  0 0 
 

(35) 
The decompression phase LCP has the form: 


β 

 r
D∗Q  

l r
D∗v−

l    r
D∗Q 

l 
∗

 E
ˆ 

 
β
 

△ △ z = λ , q =   ∆tαf + Qb 0   Qb
 Λ [QuD, Qb] 0  λ + 


σ
  

0 
 Ē  0 0  


σ
 

 
(40) 

Analogous to Eq. 31, the solution to this nu(nf + 2) + nb 

dimensional LCP can be used to propagate the system state 
as follows: p = Q∗ D β + Q∗ λ 

  r
D∗v+

l 
 0  

r
D∗Q 

l 
+ u 

Qb 

0 

ΛQ∗ ϑ 


 
  
⊥

  


β
 

0 


σ
 

u b (36) 
θ̇+ = θ̇− + M−1J∗p + ∆tθ̈f 

The decompression LCP problem is the the standard LCP in 
Eq. 35 with ∆t = 0, the contact linear velocity v− replaced 

IV. COLLISION DYNAMICS u r 
∗ 

l 
 

During elastic collisions, some, and not all, of the impact with v+, and an additional 
D Qu 

Qb 
Λ Qu ϑ term for the LCP 

energy  is  lost.  The  coefficient  of  restitution,  ǫ(i)  defines 
the fraction of the energy that is not lost after a collision. 
The complementarity approach to modeling elastic collisions 
breaks up the collision event into instantaneous compression 

q vector term. The LCP solution is used to instantaneously 
propagate the state for the decompression phase as follows: 

 
p = Q∗ D β + Q∗ λ + Q∗ ϑ 

u b u 

and decompression phases [1]. During the compression phase, 
collision energy is stored, and during decompression, a frac- 
tion of the collision impulse is restored. 

 
A. Compression 

 
The collision phase is instantaneous and impulsively 

changes the the relative linear contact velocity from v−(i) to a 
new v+(i) value with a non-negative normal component. The 
resulting compression impulse is denoted pc(i). The mixed 
LCP problem for the compression phase is obtained by setting 
∆t = 0 in Eq. 34 to obtain 

θ̇+ = θ̇c + M−1J∗p 
(41)

 
 

For inelastic collisions, ǫ(i) = 0, and for this case there is no 
decompression phase. For collision dynamics, the numerical 
state propagation process consists of the following steps: 

1) Use Eq. 36 to obtain new [θ(t + ∆t), θ̇(t + ∆t)] from 
the [θ(t), θ̇(t)] state. 

2) If the new [θ(t + ∆t), θ̇(t + ∆t)] state involves a new 
collision, then estimate the ∆t  time for collision, and 
redo Step (1) with this new time interval. This should 
bring the system into contact for the new collision. Now 

 r
D∗Q  

l 
 
Λ [Q∗ D,  Q∗ ] Ê  

β
   r

D∗v−
l   use the compression and decompression LCPs in Eq. 38 

and Eq. 41 to propagate the system through the collision.  Qb
 

u b 0  λ +  0  

Ē  0 0  
σ
  

0 
 

 
V. SPATIAL OPERATOR COMPUTATIONAL ALGORITHM 


β
 

⊥  
0 


σ
 

 
 
 
 

(37) 

 
The key implementation and computational challenge with 

using minimal coordinates is the need for computing the Λ 
needed for setting up and solving the LCP problems in Eq. 28, 
Eq. 34, Eq. 37 and Eq. 40. As seen in Eq. 6, Λ involves 

The LCP solution is used to instantaneously (i.e. impulsively) 
propagate the state for the compression phase as follows: 

pc = Q∗ D β + Q∗ λ 

the configuration dependent matrix products of the Jacobian 
matrix and the mass matrix inverse. A direct evaluation of this 
expression would be of O(N3) computational cost. However u b references [3, 4, 6] have used spatial operators to develop 

θ̇c = θ̇− + M−1J∗pc 
c = Jθ̇ (38) 

simpler and recursive computational algorithms for Λ that are 
of only O(N) complexity. We briefly sketch out below the 

v+ c 

B. Decompression 
 

The decompression phase applies a impulse of magnitude 
ǫ(i)n̂ ∗(i)pc(i) for the ith contact along the normal from the 
impulse stored during the compression phase. An additional 
contact impulse ensures that the normal component of the 

relative linear velocity at the end of the decompression step 



underlying analysis and structure of this algorithm, and refer 
the reader to [3, 4, 6] for more notation and derivation details. 

 
A. Spatial operator factorization of M−1 

 
We begin with  the following  key spatial  operator based 

analytical results that provide explicit, closed-form expressions 



ψ 

j 

k 

k 

ψ 

43 3 
ψ 

Λ 6 

ψ 

42 

= 
 

 

 

for the factorization and inversion of a tree mass matrix [4, 8]: 

M = HφMφ∗H∗
 

M = [I + HφK] D [I + HφK]∗ 

which shows that the OSCM, Λ can be obtained by a reducing 
transformation of the full, all body Ω matrix by the B pick-off 
operator involving just the matrix sub-blocks associated with 
the parent links of the nodes. From its definition, it is clear 

[I + HφK]−1 = [I − HψK] 
M−1 = [I − HψK]∗ D−1 [I − HψK] 

(42) 
that Ω is a symmetric and positive semi-definite matrix, since 
D−1  is a symmetric positive-definite matrix. 

While the explicit computation of M−1  or J is not needed 
The first expression defines the Newton-Euler operator fac- 
torization of the mass matrix M in terms of the H hinge 
articulation, the φ rigid body propagation and the M link 
spatial  inertia  operators.  While  this  factorization  has  non- 
square factors, the second expression describes an alternative 
factorization involving only square factors with block diagonal 
D and block lower-triangular [I+HφK] matrices. This factor- 
ization involves new spatial operators that are associated with 
the articulated body (AB) forward dynamics algorithm [2, 3] 
for the system. The next expression describes an analytical 
expression for the inverse of the [I + HφK] operator. Using 
this leads to the final analytical expression for the inverse of 
the mass matrix. These operator expressions hold generally for 
tree-topology systems irrespective of the number of bodies, the 
types of hinges, the specific topological structure and even for 
the case of non-rigid links [4]. 

 

B. The Ω extended operational space compliance matrix 
With V ∈ R6n denoting the stacked vector of link spatial 

velocities, its spatial operator expression is [4] 

to obtain Λ,  the  direct  evaluation  of  Eq.  48  still  remains 
of O(N3) complexity due to the need for carrying out the 
multiple matrix/matrix products. The next section shows that 
these matrix/matrix products can be avoided by exploiting a 
decomposition of the Ω matrix. 

 
C. Decomposition of Ω 

A following lemma describes a decomposition of Ω into 
simpler component terms and an expression for its block 
elements. The E∗ and ψ() terms used below are defined in 
references [3, 4]. Furthermore, ℘(k) denotes the parent link 
for the kth link, and i ≺ j notation implies that the jth link 
is an ancestor of the ith link in the tree. 

 
Lemma 1 Decomposition of Ω 
Ω can  be  decomposed  into  the  following  disjoint  sum  of 
component terms: 

 

Ω = Υ + ψ̃ ∗Υ + Υψ̃ + R 
△ 

V = φ∗H∗θ̇ (43) where   R 
= 

" 
∀i,j: i⊀⊁j 

eiψ∗(k, i)Y(k)ψ(k, j)e∗
 (49) 

With Oi
 denoting the ith node on the kth  link, its spatial k=℘(i,j) 

velocity V(Oi ) can be obtained from the spatial velocity V(k) 
of its parent link via the following rigid body transformation: 

V(Oi ) = φ∗(k, Oi )V(k) (44) 

 

Υ ∈ R6nc ×6nc   is a block-diagonal operator, referred to as the 
operational  space  compliance  kernel,  satisfying  the  following 
backward Lyapunov equation: 

k k 
 

Bundling  together  these  rigid  body  transformations  for  all 
nodes we define the B ∈ R6nc ×6n  pick-off matrix such that 

 

H∗D−1 
 
H = Υ − diagOf 

f
E∗ ΥEψ 

   
(50) 

 
Vc = BV 

 

=  Bφ∗H∗θ̇ 
 

⇒ J   =   Bφ∗H∗ (45) diagOf 
f
E∗ ΥEψ     represents just the block-diagonal part of 

This is the spatial operator expression for the J Jacobian 
matrix. Using this expression and Eq. 42 for the mass matrix 
inverse within Eq. 6 leads to the following expression for Λ: 

=  JM−1J∗
 

the (generally non block-diagonal) E∗ ΥEψ matrix. The 6 × 6 
dimensional, symmetric, positive semi-definite Υ(k) diagonal 
matrices satisfy the following parent/child recursive relation- 
ship: 

 

=  B∗φ∗H∗(I − HψK)∗D−1(I − HψK)HφB 
Using the following spatial operator identity from [4, 8] 

(46) Υ(k) = ψ∗(℘(k), k)Υ(℘(k))ψ(℘(k), k) + H∗(k)D−1(k)H(k) 
(51) 

This relationship forms the basis for the following O(N) base- 
to-tips  scatter  recursion  for  computing  the  Υ(k) diagonal 

(I − HψK)Hφ = Hψ (47) 

in Eq. 46 leads to the following simpler expression for Λ: 

elements: 
 for all nodes k  (base-to-tips scatter) 

Λ = B∗ΩB, where  Ω △
 ψ∗H∗D−1Hψ ∈ R6nc ×6nc 

(48) 

 
Υ(k) = ψ∗(℘(k), k)Υ(℘(k))ψ(℘(k), k) 

+ H∗(k)D−1(k)H(k) 

 
(52) 

We have arrived at an expression for Λ, that unlike Eq. 6, 
involves neither the mass matrix inverse nor the node’s Ja- 
cobian matrix! We refer to Ω as the extended operational 
space compliance matrix. This terminology is based on Eq. 48 

  
end loop 

 
While Υ defines the block-diagonal elements of Ω, the fol- 
lowing recursive expressions describe its off-diagonal terms: 



 

 

k 

k j 

 
 
 

Ω(i, j) = 

 

 
Υ(i) for i = j 

 
Ω(i, k)ψ(k, j) for i t k ≻ j, k = ℘(j) 
Ω∗(j, i) for i ≺ j 

 Ω(i, k)ψ(k, j) for i ⊁ j, j ⊁ i, k = ℘(i, j) 
(53) 

π/2 radians with an initial angular velocity of −1 radians/s 
and a standard gravitational acceleration of 9.8m/s2. 

As seen in Figure 1, as the 15-link pendulum swings from 
left  to  right,  it  collides  with  the  ground,  drags  along  the 

Proof: See [3, 4]. 
 
 

Eq. 49 shows that Ω can be decomposed into the sum of 
simpler terms consisting of the block diagonal Υ, the upper- 
triangular ψ̃ ∗Υ, the lower triangular Υψ̃ , and the sparse R 
matrices. Furthermore, Eq. 53 reveals that all of the block- 
elements of Ω(i, j) can be obtained from the Υ(i) elements 
of the Υ block-diagonal operational space compliance kernel. 
Since only a small subset of the elements of Ω are needed 
for computing Λ, Section V-D later exploits this to avoid the 
expensive computation of the full Ω matrix. 

 

D. Computing Λ 
From the Λ = B∗ΩB expression, and the sparse structure 

of B, it is clear that only a subset of the elements of Ω are 
needed to compute Λ. The B pick-off operator has one column 
for each of the Oi

 task space nodes, with each such column 
having only a single non-zero 6 × 6 matrix entry at the kth

 

parent link slot. From this structure of B and Eq. 48, the 
6 × 6 block matrix elements of the Λ OSCM are given by the 
following expression: 

Λ(Oi , Ol) = φ∗(k, Oi )Ω(k, j)φ(j, Ol) (54) 
k j k j 

Here, Oi
 and Ol denote a pair of nodes on the kth and jth 

links, respectively. It is therefore evident that only as many 
elements of Ω as there are elements in Λ are needed. Thus, 
just nc × nc number of 6 × 6 sub-block matrices of Ω are 
required. In view of the symmetry of the matrices, we need 
just nc(nc +1)/2 such sub-block matrices. The overall cost of 
this algorithm is linearly proportional to the number of degrees 
of freedom, and a quadratic function of the number of nodes, 
which is much lower than the O(N3) cost implied by Eq. 6. 

 

E. Illustrative simulation example 
To illustrate our results, we use a simulation of a multi- 

link pendulum colliding with itself and the environment. The 
environment consists of a floor centered at z = 0m and a wall 
centered at x = 4m. Both the floor and wall have a width of 
0.2m. The multi-link pendulum itself consists of n identical 
bodies connected with pin hinges. The bodies are modeled as 
spheres with a mass of 1.0kg each. The radius of the sphere 
depends on the number of links present in order to maintain 
the general dimensions of the pendulum itself and is chosen as 
3.0/nm and the distance between each hinge is set to 6.0/nm. 
The pendulum base is situated at a height of 10.0m. 

. 
The simulation lasts for 5 seconds with  a  time  step  of 

1ms. The coefficient of restitution was set to 0 to simulate 
an inelastic system. The pendulum starts raised to an angle of 

 

 
 
 
 
 
 
 
 

Fig. 1. Time series capture of swinging pendulum simulation with 15 links 
 

ground, and eventually collides with the wall on the right. 
In the course of the sequence, multiple links are at times in 
collision with the ground, the wall and with each other. 

We simulate the contact and collision dynamics using two 
different techniques. In the first tree-augmented (TA) tech- 
nique, the serial-chain pendulum is modeled with minimal 
coordinates and only unilateral contact constraints. The second 
fully-augmented (FA) technique uses redundant coordinates 
where each link is  treated  as  an  independent  body,  and 
the hinges are handled as bilateral constraints between the 
neighboring links. We have verified good agreement between 
the solutions from these two methods, Figure 2 shows the 
similar time history of the height of the last link of a 3-body 
pendulum from the two methods. 

Table I compares the computational cost of the TA and 
FA  methods  for  pendulums  containing  3  to  30  links.  We 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Comparison of the height of the last link using Tree Augmented and 
Fully Augmented methods for a 3-body pendulum 

 
 Computation Time (s) 

Number of Bodies Tree Augmented Fully Augmented 
3 1.326214 5.035574 
6 1.572062 7.585271 

12 3.231113 21.002845 
15 2.930593 40.110204 
24 5.989333 117.906592 
30 4.766953 212.037019 

 
TABLE I 

A COMPARISON OF THE COMPUTATIONAL TIME FOR THE MINIMAL 
COORDINATE TA AND THE NON-MINIMAL FA COORDINATE TECHNIQUES 

FOR THE MULTI-LINK PENDULUM EXAMPLE WITH DIFFERENT NUMBER OF 
LINKS. 

 
 
 

observe that the redundant coordinates FA method is 3 to 
40 times computationally more expensive than the minimal 
coordinates TA method. Moreover the performance gap widens 
substantially as the number of links in the system is increased. 

 

VI. CONCLUSIONS 

In this article we have described the formulation of the 
contact and collision dynamics for multi-link systems using 
minimal coordinates. With minimal coordinates, the size of 
the standard LCP problem in Eq. 35 is nu(nf + 2) + nb 

which is independent of the number of links or the number 
of degrees of freedom in the system. In contrast, the size of 
the corresponding LCP problem using redundant coordinates 
would have dimension larger by 6n − N or more depending 
on the specific formulation. For a 6-link manipulator with 
6 degrees of freedom, this would amount to dimensional 
increase of 30. The use of minimal coordinates also results 
in the automatic enforcement of the bilateral constraints such 
as from inter-link hinges and avoids the need for DAE type 
error control schemes for inter-link hinge bilateral constraints. 
We have described the variants of the LCP problem needed 
to handle effects such as bilateral constraints associated with 
closed-chain topologies as well as elastic and inelastic colli- 
sion dynamics. Finally, we have shown that existing low order 
computational algorithms for computing the OSCM can be 

used to make the computation of the LCP matrices tractable. 
We have used a multi-link pendulum contact and collision 
dynamics simulation example to illustrate the computational 
speedup achieved by the minimal coordinate approach. 
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