
NASA USRP – Internship Final Report  
 
 

Modeling and Simulation for Multi-Missions Space 
Exploration Vehicle 

 
 

Max Chang1
 

DARTS (Dynamics and Real Time Simulation) Lab 
Jet Propulsion Laboratory, California Institute of Technology 

 

 
Mentor: J (Bob) Balaram 

 
 

Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The 
Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth 
Object missions and requires detailed planning and study of its Guidance, Navigation, and 
Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft 
to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface 
of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory 
develops reusable models and simulations for the design and analysis of missions. In this paper, 
the development of guidance and anchoring models are presented together with their role in 
achieving mission objectives and relationships to other parts of the simulation. One important 
aspect of guidance is in developing methods to represent the evolution of kinematic frames 
related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare 
various types of mathematical interpolation methods for position and quaternion frames. 
Subsequent work will be on analyzing the spacecraft guidance system with different movements 
of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors 
in performing precision maneuvers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 USRP Fall 2011 Intern, DARTS Lab, Jet Propulsion Laboratory, Embry-Riddle Aeronautical University 

JPL Page 1 12/15/2011  



NASA USRP – Internship Final Report  
 
 

I. Introduction 
In the Dynamics and Real-Time Simulation (DARTS) laboratory, simulation development is supported by 

several existing models. The C++ implementation of multi-body dynamics is in a module called Darts++ and 
supports the main dynamics computation. Near Earth Asteroid (NEO) #25143 (or Itokawa) models are used for the 
development of the NEO simulation. Itokawa has been visited by the Japan Aerospace Exploration Agency 
(JAXA)’s unmanned spacecraft Hayabusa and its gravity and detailed shape models are available for use in the 
simulation. A Python-based class design of spacecraft Guidance, Navigation & Control (GNC) is used to implement 
spacecraft on-board functions. 

 
II. Near Earth Object Simulation 

The NEO simulation models the interaction between the Multi-Mission Space Exploration Vehicle (MMSEV) 
and the asteroid. Guidance for station keeping with the rotating asteroid and approach to anchoring into the asteroid 
were the main simulation objectives for analysis. Trajectory design for these guidance objectives was supported by 
various interpolation algorithms implemented into the simulation. 

 

A. Interpolation Algorithm 
Several types of interpolation methods are 

available for the analysis of minimizing the 
approximation errors. Depending on the desired 
result, the appropriate interpolation method 
should be selected to approximate the desired 
guidance trajectory. 

Linear interpolation was developed as a 
reference method for the analysis. The linear 
interpolation function was constructed from a 
third party scientific computing tools package, 
NumPy4. Equal intervals were selected from the 
provided waypoints for the linear interpolation 
function. Linear interpolation was calculated 
directly from one waypoint to the following 
waypoint. Even though linear interpolation could 
be computed easier and faster, this method was 
not precise with the resulting approximation as 
shown in Fig. 1. The main concern from choosing 
linear interpolation method would be the abrupt 
change in direction at certain waypoints. 

Polynomial interpolation was more accurate 
for analysis compared to linear interpolation. The 
polynomial interpolation function utilized was 
also from the NumPy library function. The 
function only used the interpolation interval, the 
waypoints, and the polynomial degree equation to 
fit the data. Polynomial interpolation could 
smooth the abrupt changes that occurred in linear 
interpolation. However, testing with polynomial 
interpolation has discovered the Runge’s 
phenomenon which shows oscillation errors at the 
beginning and the end of the result. To reduce the 
Runge’s phenomenon errors, Chebyshev nodes 
are used instead to interpolate with equal length 
intervals. Multiple tests with different ranges of 

 
 

 
Figure 1: The top plot shows the linear interpolation 
of the given waypoints and the bottom plot shows the 
polynomial interpolation of the same waypoints to the 
fifth degree. 

waypoints have shown the polynomial interpolation method suitable for limited scenarios. Complex waypoints 
requiring higher degree could develop errors beyond the reduction capability made possible from using Chebyshev 
nodes. 

JPL Page 2 12/15/2011  



NASA USRP – Internship Final Report  

i i i i i 

i 

h h 

i 

i 

 
 

The Chebyshev nodes can be found using Eq. (1). 3
 

 
 2(n − i) +1  

xi  = cos  
 

 

2n + 2 
n  , 

 
i = 0,1,..., n (1) 

 

The more accurate interpolation method for 
complex waypoints would be the cubic spline 
interpolation method. “For the piecewise cubic 
curves, if the geometrical constraints are 
modified for one of the cubic functions 
composing the curve, then only that piece of the 
curve and its immediate neighbors can be 
affected.”1 Additionally, a cubic spline 
interpolation would not have the Runge’s 
phenomenon errors associated with the 
polynomial interpolation. The cubic spline curve 
would be calculated by solving the 4 unknowns 
of the cubic polynomial in Eq. (2) with represent 
an equation for the trajectory from one point to 
the next point. 

 

 
 

Figure 2: The green plot shows the linear interpolation of 
the provided waypoints. The blue plot shows the spline 
interpolation passed through all given waypoints. 

 
 

S (x) = a x3 + b x2 + c x + d  
(2) 

 

To solve for the cubic spline parameters, the initial parameter was set to l0  = 1, u0  = z0  = 0 and the parameters 
from Eq (3) to Eq.(7) . 

 

hi  = xi +1 − x 
 

(3) 
 

li  = 2(xi+1 − xi−1 ) − hi−1ui−1 

 
(4) 

 
 
 
 
 
 

a = 
3 ( y 

 

u  = 
hi 

li 

 
 

− y ) − 

 
 
 
 
 3  ( y − y   ) 

 
(5) 

 

 
 
 

(6) 
i i+1 

i 
i i i−1 

i−1 
 

z  = 
ai − hi−1zi−1 

li 

 
(7) 

 
With the parameters calculated, the unknowns for the cubic polynomial equation were solved using interval from 
j = n −1, n − 2,..., 0 for Eq. (8),(9),(10). 

 
c j  = z j  − u j c j +1 

 

(8) 

JPL Page 3 12/15/2011  



NASA USRP – Internship Final Report  

j 

 
 

y − y h (c + 2c ) 
b  = j +1 j  −   j j +1 j 

 
(9) 

hj 3 

c  − c 
d  = j +1  j 

j 3h 
(10) 

j 

The spline interpolation would result with an overall smooth curve through all the waypoints for the complex 
waypoints interpolation shown in Fig. 2. 

The interpolation methods have been used to calculate trajectories in the simulation. Waypoints relative to the 
Itokawa asteroid were given, and the trajectory plots compared the different interpolation methods. The linear 
interpolation gives the expected result but is not feasible for actual spacecraft maneuvers as seen in Fig. 3. The sharp 
change in direction would require the spacecraft to fire thrusters longer and consume more fuel. For polynomial 
interpolation, the complex waypoints have caused unacceptable errors due to the Runge’s phenomenon. Thus, the 
interpolation result was unable to maintain a stable trajectory. The spline interpolation showed in Fig. 4 displayed 
the most promising trajectory with smooth curves through the waypoints. 

 

 
 

Figure 3: This simulation snapshot shows the 
interpolated trajectory from the provided waypoints. 

 

 
Figure 4: This simulation snapshot shows the 
spline interpolation trajectory from the provided 
points. The frame axes show on the trajectory path 
was displaying the rotation from SLERP. 

 

For three dimensional (3D) rotation, spherical linear interpolation (SLERP) is applied to calculate the quaternion 
to achieve the desired rotation. Unlike the spline or polynomial interpolation, SLERP would require the frame’s 
position in 3D or X, Y, Z and also the Euler’s angle φ, θ, and ψ. The Spatial Operator Algebra (SOA) library has a 
quaternion function that can easily convert from Euler’s angle to quaternion. However, the function has a minor 
estimation error that could cause the norm of quaternion to be not equal to one. Normalizing the quaternion has 
solved the problem with the diminutive difference. Given at least two quaternion(q1,q2), SLERP was calculated 
using Eq. (11),(12) and the interpolation interval .2 

 

q1• q2 = cos(8 ) 
 

(11) 
 
 

slerp(q1, q2, u) = 
sin([1− u]8 ) q1+ 

sin(u8 ) q2 
sin(8 ) sin(8 ) 

 
(12) 

JPL Page 4 12/15/2011  



NASA USRP – Internship Final Report  
 
 
 

B. Models and Assemblies 
The NEO missions will require the MMSEV 

to deploy its arms and anchors into the surface of 
the asteroid. At the end-effector of each arm, an 
ExternalDisturbance model is attached to a node 
on the arm. The ExternalDisturbance actuator 
model applies forces and torques to the actuator 
node on which the model is attached. The torque 
and force data flow-ins are used to specify the 
applied force vector and the applied torque vector. 
The original ExternalDisturbance model had 
parameters of flow-in force, flow-in torque, and 
the frame of the disturbance. This would only 
allow a constant ExternalDisturbance force and 
torque with respect to time. To make the model 
more flexible in applying changing forces and 
torques with respect to time, additional forces and 
torques to be added to the ExternalDisturbance 
model are calculated using a user-provided 
Python function. The C++ modules are extended 
with a Python interpreter with new modules to run 
the Python function within the C++ module. The 
modified ExternalDisturbance model is added to 
the model library with new parameters for Python 
function module name, Python function name, 
user input integer numbers, and user input real 
numbers. The user input integer numbers and user 

 

 
Figure 5: This is a schematic diagram of the External 
Disturbance class model. It shows the input/output of the 
model and the interface with a Python class. 

input real numbers are passed through to the Python function to enable control of the function. The Python function 
calculates the additional forces and torques from contact with the ground (spring-damper in the vertical axis, and 
damper in horizontal axes), and returns the forces and torques calculated back to the ExternalDisturbance model. 
The ExternalDisturbance model sums the forces and torques from the original flow-in and the Python function 
return values and applies it to the arm node. A schematic diagram is shown in Fig. 5 to illustrate all the parts of the 
ExternalDisturbance model. 

 
One problem faced during the development of extending C++ with Python was in passing the entire user input 

array for both integers and real numbers to the Python function. It would only function correctly with passing one 
number and was incapable of working with an entire number array. After investigation, the problem was determined 
to be caused from initialization of the user input parameter with an incorrect size. After directly assigning the correct 
number of user input values, the Python function was able to pass through all the user input integer and real numbers. 
Another problem encountered was on getting the Python function to return correct forces and torques to the 

 

 
Figure 6: An example of a configuration section declared parameters to be passed down to the assembly and 
ExternalDisturbance modules. 

JPL Page 5 12/15/2011  



NASA USRP – Internship Final Report  
 
 

ExternalDisturbance model. The problem was caused by an error in assigning and calling the return value name. A 
specific process to call a return value from Python to C++ was originally implemented incorrectly and caused the 
wrong return value to the ExternalDisturbance model. After getting help from other colleagues and studying other 
similar examples of embedding Python in a C++ model, the ExternalDisturbance model is now able to receive the 
calculated forces and torques from the Python function. 

Next, the ExternalDisturbance model C++ class is built into the assembly for the MMSEV anchoring arms. 
When each arms was assembled, the additional parameters for disturbance forces and torques calculation are added 
with flags to address each arm to the corresponding end-effectors’ node. The adjustable input parameters are passed 
down from the configuration to the arms assembly, and from the arm assemblies down to the external disturbance 
model. Figure 6 shows the configuration for one of the arm assembly with the parameters to call the Python function 
within the file. 

 
C. Anchoring State 

Asteroids have their own rotation which makes it difficult to station keep and land. To save fuel during station 
keeping in orbits around the asteroid and to conduct sample collection, anchoring into the asteroid was one of the 
main objectives. MMSEV would be anchoring into the asteroid with three arms whose interaction with the surface is 
modeled as a spring and damper at the end-effector as shown in Fig. 7. When the spacecraft is in the position to 
deploy the arm for the anchoring state, geometric collision is detected of the end of the arm with the surface of the 
asteroid. The spacecraft would then enter an anchoring state when all three arms have anchored into the surface. 

For simulation visualization, anchoring locations are highlighted with respect to the ExternalDisturbance forces. 
As the forces increased, the highlighted radius would also increase by a ratio. In Figure 8, the left arm has a smaller 
disturbance force than the right two arms; therefore, the highlight radius of the left contact point is smaller. The 
highlighted graphics could display the change in the disturbance forces when other maneuvers are performed by the 
spacecraft. 

 
 
 
 

 
Figure 7: An illustration of the spacecraft 
anchored to the asteroid with the spring and 
damper on the end effector of the three arms. 

Figure 8: A simulation snapshot displayed the contact 
points with the highlight radius reference to 
disturbance forces. 

 

During testing and analysis in the anchoring state, the numerical results show several unexpected large force 
vectors. When the spacecraft simulation is set to a purely dynamic mode after anchoring, the spacecraft would go 
unstable from the unexpected large forces generated by the spring. The spring and damper constant used to calculate 
the disturbance forces and torques could be one source of error. The possible problem causing the errors are the 
frame transformation calculation used to obtain the force vectors. When the force interaction function problems have 
been fixed, further analysis could be directed at applying different spring and damper coefficients. The analysis 
could help determine the appropriate spring and damper for anchoring into the surface of an asteroid. 

JPL Page 6 12/15/2011  



NASA USRP – Internship Final Report  
 
 
 
D. Camera View and Guidance Chase frame 

To make a movie to present the simulation work, a camera view 
frame has to be an easily maneuvered during the real-time simulation. 
Using the trajectory interpolation algorithm developed, the camera 
view frame is interpolated between the desired camera view locations. 
The camera attached to a scene frame relative to the spacecraft and its 
frames are updated in real-time. Furthermore, the desired camera 
positions and rotation angle are relative to the spacecraft body. The 
movie maker can easily maneuver the camera view with key camera 
locations. The function would interpolate the maneuver to transition 
smoothly from one camera frame to the next one. Different camera 
view frames are shown in Fig. 9 to present possible scenes of the 
movie. 

Guidance frames are developed with similar tools as the camera 
view frames. A guidance frame is used as a spacecraft chase frame 
and the planned course was compared with the actual spacecraft 
course. The guidance frame function is developed to update in real- 
time with the simulation and to display a chase frame for ease of 
comparison. The guidance frame is created with reference as the 
Itokawa body frame. The nominal frame and quaternion information 
were also with respect to the body frame of Itokawa. The guidance 
frame function could also be applied to maneuver the spacecraft's 
arms with the implementation of an inverse kinematics algorithm. 

 

 
 

Figure 9: Top figure shows the left 
camera view. Middle figure shows the 
back camera view. Bottom figure shows 
the right camera view. 

 
 
 

III. Conclusion 
Guidance interpolation was developed using linear, polynomial and spline interpolation. Spline interpolation is 

more accurate than the other two methods. A force interaction model was implemented into the arm assemblies. 
Visualization of anchoring location was added with a visual indication of the force vector. Subsequent work would 
focus on fixing the existing known errors, conducting more analysis with different interaction models, and 
developing robotic arm’s movement with existing tools. 

 
Acknowledgments 

This project was carried out at the Jet Propulsion Laboratory, California Institute of Technology and was sponsored by 
the NASA University Student Research Program. The author would like to thanks mentor Bob Balaram for his guidance 
and support. Also, gratitude to Abhinandan Jain, Calvin Kuo, Steven Myint, and all the other DARTS Lab members for 
their assistance with this project and Petra Kneissl-Milanian for organizing the USRP program. 

 
References 

 
1Lengyel, Eric, Mathematics for 3D Game Programming & Computer Graphics, 2nd ed., Charles River Media, Boston, 2003, 

Chaps. 15, pp. 468-472. 
2Parent, Rick, Computer Animation: Algorithms and Techniques, 2nd ed., Morgan Kaufmann, Burlington, 2008, Chaps 3, pp. 

110 – 112. 
3Steward, Gilbert W., Afternotes on Numerical Analysis: a Series of Lectures on Elementary Numerical Analysis Presented at 

the University of Maryland at College Park and Recorded after the Fact., Society for Industrial and Applied Mathematics, 
Philadelphia, 1996, pp. 152. 

4Numpy, Software Package, Ver. 1.5.1, Numpy Developers, 2010. 

JPL Page 7 12/15/2011  


	I. Introduction
	II. Near Earth Object Simulation
	A. Interpolation Algorithm
	Figure 1: The top plot shows the linear interpolation of the given waypoints and the bottom plot shows the polynomial interpolation of the same waypoints to the fifth degree.

	
	
	Figure 2: The green plot shows the linear interpolation of the provided waypoints. The blue plot shows the spline interpolation passed through all given waypoints.
	Figure 3: This simulation snapshot shows the interpolated trajectory from the provided waypoints.
	B. Models and Assemblies
	Figure 5: This is a schematic diagram of the External Disturbance class model. It shows the input/output of the model and the interface with a Python class.
	Figure 6: An example of a configuration section declared parameters to be passed down to the assembly and
	C. Anchoring State
	Figure 7: An illustration of the spacecraft anchored to the asteroid with the spring and damper on the end effector of the three arms.
	D. Camera View and Guidance Chase frame
	Figure 9: Top figure shows the left camera view. Middle figure shows the back camera view. Bottom figure shows the right camera view.
	References


