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Introduction 
• Balloon concepts for Saturn’s moon Titan 

date back at least to the mid-1970s. 
• The Cassini-Huygens mission greatly 

accelerated concept and technology 
development. 
– Wonderful discoveries showed Titan to be 

a world with lakes, dry river valleys, dune 
fields, methane rain, etc. 

• There is tremendous interest in a future 
mission to go back to Titan and conduct 
further scientific investigations using a 
mobile balloon platform. 
– Titan’s high atmospheric density and 

cryogenic temperatures enable both hot air 
and light gas balloons of modest size. 

• The 2013 Decadal Survey for Planetary 
Science recommends technology 
development for Titan balloons. 



Introduction (cont.) 

• JPL and CNES began a collaboration on Titan balloon technology 
development in January of 2010. 
– The collaboration includes participation by Caltech on the US side and 

RTIME on the French side. 
• Much of the collaboration has consisted of the development and use 

of computational fluid dynamics (CFD) models of the Titan 
Montgolfiere (hot air ) balloon. 
– This presentation gives a brief overview of recent results. 
– More details can be found in the paper. 

• The work is based on three key foundational elements: 
– Turbulence-based fluid dynamics models. 
– Validation with cryogenic test data on small scale (1 m) balloons. 
– Multiple fluid dynamics models of varying sophistication and cross-

checking between the Caltech/JPL and RTIME/CNES researchers. 
• The presentation concludes with a description of the Titan 

Montgolfiere balloon design space (payload vs size vs heat input) 
based on the latest CFD results. 
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Montgolfiere Balloons 

• A hot air (Montgolfiere) balloon uses heated 
ambient atmosphere to generate buoyancy. 
– At Titan, the balloon uses waste heat from a 

radioisotope power source. 
• There are two great advantages of a 

Montgolfiere balloon for Titan: 
– Insensitive to pinholes (already vented to the 

atmosphere). 
– Easy and repeatable altitude control via gas 

venting through a valve at the apex. 
• The leading Titan design features a double 

balloon wall with the annular gap providing 
an insulating function that increases gas 
temperature and hence buoyancy (at right). 

• The 2008 TSSM Flagship mission study 
was based on this kind of balloon. 

Schematic of double-walled Titan Montgolfiere (hot  
air) balloon. 



Prediction methods 
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• The JPL/Caltech and CNES/RTIME groups have 
used all four main prediction/estimation 
techniques for the Titan Montgolfiere Balloon: 
1. Engineering correlations 

• Semi-analytical correlations for convective heat transfer 
over (uniform temperature) spheres 

2. Reynolds-averaged Navier-Stokes (RANS) 
• Averages out and models all intrinsic turbulence 

space/time scales 
3. Large-eddy Simulation (LES) 

• Spatially filter out/supply model for the small scales 
4. Direct Numerical Simulation (DNS) 

• Directly resolve all scales 
 

• All require experimental validation (see next slide). 



Cryogenic Balloon Tests 

• JPL conducted cryogenic 
experiments on a two 1-meter 
diameter balloons at a Wyle 
Laboratories in April 2011. 

• The main purpose was to get data 
to validate the CFD models for 
single and double wall designs. 
– Both balloons had 4 thermocouples 

embedded in a gore. 
– The double wall balloon had a 5 cm 

gap and one transparent gore to 
enable verification of gap inflation. 

• Environment temperatures: 190, 
140 and 90 K. 

• Heat input levels: 100, 250, 400, 
550 and 700 Watts (not all levels 
used for each balloon and each 
thermal environment). 

• Load cell with 1.0 kg range used for 
measuring lift. 

Single wall 
balloon in 
chamber prior to 
test 



Flow topology 

• Because of the heat source, a thermal plume is created and entrains the 
flow forming a large recirculation zone. In the gap, the flow recirculates 
downward along the cool external gap side and upward along the warm 
internal gap side. On top in the gap a counter-rotating vortex is created due 
to the hot internal plume local over-heating. 
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Ground tests, CFD results 

• CFD results based on spheres agree well with experimental results 
for both the single and double wall cases. 
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Shape effect 

• In the CFD, the balloon shape was taken as spherical to be 
consistent with engineering models. From photos taken during the 
experiment, the balloon shape has been reconstructed. 

• Real shape simulations showed that the buoyancy varies little: the 
spherical model assumption in the engineering model is valid. 

• Other tests with varying heat source locations show that the best 
buoyancy is obtained for the lowest located heat source as it 
generates the most uniform internal flow. 
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Heat source location, from left to right: 
lowest (baseline), central, highest Buoyant mass for the real shape. 

Spherical buoyant mass  = 761 [g]. 



CFD, sphere vs real shape 

• Comparison of temperature and velocity flow fields for the real and 
idealized double wall balloons. 
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Buoyancy Scaling 
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Full scale single-
walled 

Full scale double-walled 

Titan Sky 
simulator 

2-wall Engineering 
correlation 

CFD result 

Experimental 
result 



Ideal Gap Analysis With LES 
and DNS 
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• DNS, LES and RANS results 
show good agreement with 
Scanlan for the laminar regime 
for entire range of  φ  

• Turbulence enhances heat 
transfer rate through the gap 
– Both LES and DNS results 

collapse very well to a power-
law behavior. 

– LES implementation was 
verified by comparison with a 
corresponding DNS result. 

– k-ε turbulence modeling was 
restricted to very high Ra 
numbers where  the correct 
wall-model implementation 
was verified. 

Motivation:  
• RANS results indicate that gap engineering correlation predicts 2x-

3x better thermal insulation performance than is really true. 
• There is a lack of experimental data for thin (φ>0.9) gaps , Pr = 0.71  



CFD Implications for Full 
Scale Balloon Design 

• The CFD-indicated performance of the gap insulation has been used 
to update the predictions of full scale balloon design. 

• The overall parameter space was explored with a simplified 1D 
engineering correlation model that uses gap heat transfer based on 
the CFD results. 
– Three different balloon diameters analyzed (12, 13 and 14 m). 
– Three different heating levels: 630, 1088 and 1740 W. 

• 630 W corresponds to 2 ASRGs after 15 years. 
• 1088 W corresponds to a “5 plutonium brick” source after 15 years. 
• 1740 W corresponds to an MMRTG source after 15 years. (The TSSM heat 

source.) 

• The results are graphically shown on the next slide. 



Titan Montgolfiere Design 
Curves 

• The altitude dependence 
is weak, the size 
dependence a little more 
significant. 

• Note that the TSSM 
design called for a 10.6 
m diameter balloon at 8 
km altitude and had ~220 
kg of non-balloon lift 
mass with 1740 W. 

– The new analysis 
shows that a ~12 m 
balloon is now needed 
to lift this mass. 

• This kind of lift mass is 
not achievable with a 
630 W input, but might 
be achievable with an 
hypothetical intermediate 
size (e.g. 1088 W) and a 
balloon size of ~16 m 
(extrapolating the trend). 

1088W 

1740W 

630W 

TSSM 



Conclusions 

• Selected results have been presented for a series of numerical 
calculations predicting the performance of Titan Montgolfiere (hot 
air) balloons. 

• Turbulent CFD models were validated with cryogenic experiment 
data from small, 1 m scale balloons. 

• Multiple analysis techniques confirm that prior engineering 
correlation models overestimated insulating effect of a double-wall 
balloon. 
– Balloon diameters must grow by 10-20% to compensate for this. 
– Result shows the value of performing detailed CFD analysis. 

• Design curves were presented to guide future efforts to scope a 
Titan balloon mission. 

• Many more technical details and results are contained in the written 
paper. 
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