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Overview

* Objective: Investigate sealing methods for
encapsulating samples in 1 cm diameter thin-
walled sample tubes applicable to future
proposed Mars Sample Return

 Techniques implemented include a spring
energized Teflon sleeve plug, a crimped tube
seal, a heat-activated shape memory alloy plug, a
shape memory alloy activated cap, a solder-
based plug, and a solder-based cap
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Proposed Mars Sample Return Campaign
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SHEC (Sample Handling, Encapsulation and Containerization) Concept
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Containerization
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NWQ\A Commercial Sealing echniques

(Includes Vacuum Environments and Petroleum)
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Sealing Techniques in Research
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Nextel rope seal- seals
heatshield to backshell
\ X

Canister

Figure 1. Close up view of Apollo Sample Return Containers in Vanous Configurations. Upper left. a closed
AISRC (NASA Photograph S72- 37196). Upper nght. an ALSRC loaded with clean sample containers and other Science Canister Base
hardware (NASA Photograph $70-52550). Lower left. ALSRC after being opened on retum to the Lunar Receiving
Laboratory after being loaded on the lunar surface by the Apollo 16 crew: (NASA Photograph S72-36984).

Stardust

Nextel rope seal- seals
heatshield to backshell

Teflon U-ring seal - seals aluminum
canister to avionics deck

and aluminum canister housing

Figure 3. Close up view of Stardust's flight hardware Sample
Return Capsule with integrated sample tray assembly (STA)

Figure 2a. Close up view Genesis® flight hardware Sample Return Capsule with integrated Science

Figure 2b. Close up view Genesis’ flight hardware Science Camister
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|
Figure 4. Close up view of Hayabusa sample container
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Design Considerations

Power
— The sealing device must operate within the power budget of the rover.
Environment

— The Martian temperatures assumed for this research activity are -130°C during a Martian winter night up to
40°C during a Martian summer day. The pressure on Mars is assumed to be between 0.2666 to 1.599 kPa.

Dust Tolerance

— The seals must be dust resistant since the sample tube surfaces would be susceptible to dust upon sample
acquisition.

Shock and Vibration
—  The seals must be robust enough to remain intact during vibration seen from rover driving and rover operation.
Sample Integrity

—  Sample integrity must be considered, which would include limiting the potential of damaging the sample due to
significant application of heat, pressure, acceleration, impact, magnetic fields, radiation, chemical interactions,
and contamination.

Hermeticity

— To maximize science return on sample return missions, in-situ technologies must be developed to maintain the
physical integrity of the sample from acquisition, encapsulation and containment such that volatiles in solid
samples, and evolved gases resulting from the sublimation would be retained.

Packaging
— Considerations must be made to limit the amount of mass and volume required for the seals and sealing
device.
Risk
— Low failure rate for a seal and sealing device is desirable for maximum science return.
Autonomy

— The sealing process must be executable in-situ autonomously with limited ground-in-the-loop control.
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Candidate Sealing Methods

Spring Energized Teflon Plug
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Solder Plug

316 Stainless Steel with Nickel
plate and Indium coating tube

Shape Memory Alloy Plug

316 Stainless Steel fube
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Spring Energized Teflon Plug
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Overview/Application
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S Solder Cap
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Solder Plug
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Overview_ Application
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Overview Application
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Seal Testing

* For each sealing method, three of the test pieces will
be sealed in a clean tube, and three will be sealed in
a tube covered with a layer of Martian simulant dust.
(1) Helium leak test

(2) 1 cycle down to -130 C for 15 min, up to 40 C for 15 min

(3) Repeat He leak test

(4)

4) 4 more cycles down to -130 C for 15 min, up to 40 C for 15
min

(5) Repeat He leak test

(6) Destructive testing with Instron to measure plug retention
force
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* Multiphysics modeling of SMA plug, sample, and
sample tube to study heating during sealing process

16.6 mm

— 5
10.2 mm (fins deployed)
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Contact heating 200°C till 3rd fin over 100°C
including Martian CO2 in the gaps

AN
ST FEB 15 2012
/EXPANDED 09:49:26
MAT NUM :
/< 4 Tee
Tipe2
Mars CO2 in Tipe3
gaps ipe
Rock_Ed
™. ge
Rock Cent
er
Therrmal Analysis of SMA Plug

Gap between the fin and the tube 0.1 mm

Gap between the rock and the tube 0.25 mm
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Contact heating 200°C till 3rd fin over 100°C

including Martian COZ2 in the gaps
(Conductivity of 0.016 W/m K)

120

100 -
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Temperature (°C)

40

Contact heating 200°C till 3rd fin extended at 25 s

—Tip1

—Tip2
——Tip3

60 -

Rock Center

D 1, E
Rock_Edge

20 Hf

50 100 150 200

Time (s)

250

Rock_centr: Temperature at center of the rock up surface. The maximum is 32.9 °C .
Rock Edge: Temperature at edge of the rock up surface. The maximum is 31.5 °C .

Total heating energy: 270 J
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Initial Testing of SMA Plug with Mars Simulant Dust
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After initial sealing:

CLEAN
TUBE

DIRTY
TUBE

CLEAN
TUBE

DIRTY
TUBE

MOTE: Dirty tube expressed severe leakags

Leak Rate:
0.2 x10% cc/sec

Leak Rate:
2.2 x10° cc/sec

Leak Rate:
0.6 x 107 cc/sec

Leak Rate:

=2 x 10% cc/sec (_l

after cocldown, and actual reading fluctuated
between 0.2: 10% and 8 104, reading was

unstable,
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< Summary

Sealing methods for encapsulating samples in 1 =l Bl

cm diameter thin-walled sample tubes applicable “~

to future proposed Mars Sample Return

missions were investigated
™~

Techniques implemented include a spring
energized Teflon sleeve plug, a crimped tube
seal, a heat-activated shape memory alloy plug,
a shape memory alloy activated cap, a solder-
based plug, and a solder-based cap

Thermal models were developed to study
heating of the sample inside the sample tube
during the sealing process

Initial helium leak testing and thermal analysis
for heating of shape memory alloy plugs showed
potential for being a viable hermetic sealing
option for Mars Sample Return

Further testing and analysis will be performed on
the other sealing techniques for comparison
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