
Fault Mitigation Schemes for Future Spaceflight Multicore
Processors

Alexander, James W.1; Clement, Bradley J.2; Gostelow, Kim P.3; Lai, John Y.4

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109

Future planetary exploration missions demand significant advances in on-board
computing capabilities over current avionics architectures based on a single-core processing
element. The state-of-the-art multi-core processor provides much promise in meeting such
challenges while introducing new fault tolerance problems when applied to space missions.
Software-based schemes are being presented in this paper that can achieve system-level fault
mitigation beyond that provided by radiation-hard-by-design (RHBD). For mission and time
critical applications such as the Terrain Relative Navigation (TRN) for planetary or small
body navigation, and landing, a range of fault tolerance methods can be adapted by the
application. The software methods being investigated include Error Correction Code (ECC)
for data packet routing between cores, virtual network routing, Triple Modular Redundancy
(TMR), and Algorithm-Based Fault Tolerance (ABFT). A robust fault tolerance framework
that provides fail-operational behavior under hard real-time constraints and graceful
degradation will be demonstrated using TRN executing on a commercial Tilera® processor
with simulated fault injections.

I. Introduction
Planetary exploration missions conducted in the past four decades were implemented using single-core

processing elements within the avionics architecture to meet the in-flight computational needs. The functionality
implemented for such missions includes on-board vehicle guidance, navigation, control, uplink commanding,
downlink telemetry processing, and many other infrastructure services for flight applications. This traditional
approach, generally based on a multi-threaded software architecture on a single-core processor, is well proven by the
many successful missions using this design. However, this design is rapidly approaching a key technical branch
point with advances in several technologies that can offer significant benefits over the current approach. One such
technology for flight applications is the multi-core processor such as the commercially available Tilera® (8x8)
processor and the radiation-hardened version called the Maestro (7x7) processor. Other competing technologies
consisting of in-flight reprogrammable FPGAs and ASICs integrated in a heterogeneous avionics architecture using
standard compute elements are also strong contenders (though we will not address them in this paper). We will focus
the discussions on the results of our research in applying multi-core processors for flight.

II. Multi-core Processor Architecture

The commercially available Tilera® processor is described in detail in the vendor published documentation [1]. It is
a full-featured processor consisting of an array of 8x8 processing tiles which allow users to run existing C and C++
software on any individual tile using a variety of operating system such as Linux and VxWorks. Each tile in the
array consists of a 32-bit Processing Element (PE) and a data router, or switch, engine with five channels for routing
data packets between tiles and the I/O subsystems. A graphical representation of the Tile64 processor is provided in
Fig. 1. The five channels are labeled Static Tile Network (STN), User Dynamic Network (UDN), Memory Dynamic
Network (MDN), I/O Dynamic Network (IDN), and a Tile Dynamic Network (TDN). The UDN is the only user
accessible network for routing information between tiles. Each data packet contains a header consisting of the

 1 Member of Technical Staff, GN&C Hardware & Testbed Development Group, MS 198-235, James.W.Alexander@jpl.nasa.gov

2 Member of Technical Staff, Cyber Defense and Information Architecture Group, MS 301-285, Bradley.J.Clement@jpl.nasa.gov
3 Member of Technical Staff, Advanced Computer Systems & Technologies Group, MS 321-151, Kim.P.Gostelow@jpl.nasa.gov
4 Member of Technical Staff, Advanced Computer Systems & Technologies Group, MS 301-270, John.Y.Lai@jpl.nasa.gov

1
American Institute of Aeronautics and Astronautics

mailto:James.W.Alexander@jpl.nasa.gov
mailto:Bradley.J.Clement@jpl.nasa.gov
mailto:Kim.P.Gostelow@jpl.nasa.gov
mailto:John.Y.Lai@jpl.nasa.gov

destination tile address, the packet size, and a tag word as in Fig. 2. The tag word specifies routing of packets to
different message queues at the receiver PE.

Figure 1. Tilera64 General Architecture and Single Tile Overview

Figure 2. Dynamic Network Packet Format

III. Technical Challenges of Future Planetary Missions
The challenges of future planetary missions involving entry-descent-landing as well as small body (e.g.,

asteroids) proximity operations are multi-faceted. These challenges include the need for on-board image data
processing for precision guidance and navigation, fail operational requirements during critical mission phases, fail
operational with graceful degradation for the less critical functions, energy optimization, fault tolerance design to
achieve overall robustness of the system, and enhanced autonomy with minimal ground operations support. Each of
these attributes can be satisfied by the application of the multi-core processor as the primary compute element within
the avionics architecture.

The multi-core processor theoretically offers as many times as the number of computing nodes of processing

power. Thus the overall performance can be very much enhanced. An application that can be deployed and
processed in a parallel fashion will be able to take advantage of such architecture for performance enhancement. The
Terrain Relative Navigation (TRN) application (section IV) currently being developed at JPL for vehicle guidance
and navigation during the planetary entry, descent, and landing (EDL) phase is designed with this feature in mind.
An equally important requirement of the EDL function is fail operational. Due to the fast changing vehicle dynamics
during descent, the EDL function must be fail operational to continuously track and control the vehicle states,
implying that the software must be robust enough to operate without failing throughout this critical mission phase.
Catastrophic failure can result if this criterion is not met. The multi-core processor provides redundancy by using
several cores to execute identical EDL algorithms concurrently to achieve the Triple Modular Redundancy (TMR)
design. The fail operational criterion can thus be satisfied without the mass and power penalty suffered with a single
core processor design. The notion of fail operational with graceful degradation is also being supported by the
parallel processing of the imaging data. An error encountered when processing a sub-frame of the imaging data by a
single core can be discarded with the notion that the remaining cores will continue to provide valid and sufficient
data for landmark identification of the current image frame. Thus, varying degrees of redundancy depending on the

2
American Institute of Aeronautics and Astronautics

criticality of the software functions at different mission phases can be achieved through appropriate software design.
Another benefit multi-core is the feasibility of shutting down unused cores and the corresponding algorithms for
energy conservation during the less computational demanding phases of the mission. An energy management
function can be envisioned to achieve this capability.

As a caveat, the above discussion in fault tolerance design is applicable only for errors occurring at the core

level. Systematic errors occurring at the chip or board level will not be mitigated by the approaches as presented. For
such faults, redundancy at the chip or board level will be required. This scenario will not be addressed in this paper.

IV. Terrain Relative Navigation Application Descriptions

Terrain Relative Navigation (TRN) is an application that

estimates spacecraft position relative to a target that can be
modeled in an a priori reference map, as shown below (Fig. 3
is extracted from Ref. 4). Determining the spacecraft position
relative to the landing site is an enabling function for
planetary landing and autonomous primitive body
exploration, since the information can be used to both support
landing maneuvers and to avoid known hazards. TRN is
implemented as a standalone sensor that integrates a wide
field of view (FOV) camera, an Inertial Measurement Unit
(IMU), a high performance multi-core processor and data
processing algorithms. The TRN Sensor combines the gyro
and accelerometer measurements from the IMU and the
images from the camera (correlated to the a priori reference
map) to determine relative to the reference map the six
degree of freedom (6-DOF) position, and attitude as well as

Figure 3. Image to map correlation illustration

derive velocity at high update rates (100 Hz updates, > 1 Hz image rates).

For the needed accuracy, the TRN image correlation function selects and matches numerous landmarks (40 to
over 200) from the map and images, and as a result, drives the processor requirements. Fortunately, the image
correlation function has a “natural” parallelization with different map regions and selected image features processed
independently on different cores (our application requires roughly 40 Tilera® cores for image processing). The IMU
data and the results from the image correlations are processed by a navigation filter to estimate the 6-DOF solution
and map relative velocity, as well has propagate the 6-DOF solution using IMU only data between image updates or
over very short image data outages. The navigation filter has computationally modest requirements, and on the
multi-core processor requires only a single core. Since the navigation filter requires only a single core, but is critical
for maintaining state information, it was a natural candidate for TMR, as illustrated in Fig 4.

TRN is typically used in mission
critical phases, such as landing on
Mars, where processor induced
resets or errors are fatal to the
mission success, making fault
tolerance a requirement. Fig. 4
shows how landmarks and image
correlation are split among multiple
cores and the navigation filter can be
implemented in Triple Modular
Redundancy. Each landmark-to-map
correlation will result in a camera
unit vector (w) and camera-to-map
vector (V, in map coordinates). Each
core will process several (2 to 10)
landmarks per image.

Figure 4. TRN Software Partitioning

3
American Institute of Aeronautics and Astronautics

V. Software Based Fault Tolerance Methods
Prior study on a multi-core processor (Ref. 2) has identified several shortcomings that can impact overall system

reliability when used for applications such as TRN. To achieve the robustness required for flight missions, our
research focuses on defining software methods that can be applied to mitigate such deficiencies. A summary of the
software based fault tolerance methods for the multi-core fault modes are described as follows.

A. Network Routing Faults

A fault occurring at the switching network and buffers can result in data packets being routed to the wrong
destination or queue, as well as the data content being corrupted during transit. To mitigate this problem, a
checksum is added to the first two words of each packet for routing protection. This is intended to protect
the information regarding the destination of the packet. The receiving core will process the first two words
for error detection and send appropriate messages to the sending core for retry, if necessary. An additional
checksum word is also added to the last word of each data packet to protect the data content; the receiving
core can request for resend if an error is detected.

This software based error checking scheme is applied only to the User Dynamic Network (UDN) for data
routing. The MDN and the TDN which are controlled and managed entirely by the system hardware cannot
be protected by this proposed software method.

B. Failed Network Switching Engine

When a switching engine fails permanently, the native data routing scheme between any source and
destination core with the failed core on the routing path is not functional. A virtual network routing scheme
is proposed that will bypass the failed core to achieve routing. In addition, a utility tool is proposed that can
be executed in the background for detecting failed operations of the switching engines in order to invoke
the virtual networking scheme.

C. Failed Processing Core

To detect a failed processing core, a utility tool executing a specific algorithm in the background at each
core is proposed. The resulting output is compared against its immediate neighbors by a voting scheme for
error detection. A consistently failed core will be recorded and taken out of operation. A redundant core can
then be initialized with the data routing path re-configured for replacement.

The above are failure mechanisms, and solutions, introduced by multicore systems. We use similar methods to

provide fault tolerance for applications running on appropriately protected multicore machines. The methods we
will use are as follows.

D. Algorithm Based Fault Tolerance Methods

The image processing function of the TRN application that correlates the stored map against the imaging
data is required to perform large matrix operations. An algorithm based fault tolerance method for error
detection and correction of matrix operations is essential to enhance the robustness of such application. The
algorithm reported in Ref. 3 is very fitting for such purpose and it is being implemented in this design.

E. Triple Modular Redundant Methods (TMR) for Fail Operational

The navigation filter of the TRN application is responsible for estimating vehicle states during the critical
EDL phase of the mission. To meet the fail operational requirement, the TMR method is implemented by
executing three identical filters concurrently to process the same input data on three separate cores. The
three outputs are compared via a voting scheme for error detection. A mis-matched output from a failed
core will be detected and be taken out of operation. Vehicle control can be maintained by the remaining
two cores that produce matching output. A redundant core can then be initialized and the data path re-
configured to re-establish the TMR configuration.

F. Hierarchical Fault Management Architecture

This fault management architecture has the basic principle that processes at each layer are hierarchical in
structure, each with a set of child processes at its disposal to enable or invoke a defined scope of fault
detection and response methods. A failed child process that can no longer resolve a fault will trigger the

4
American Institute of Aeronautics and Astronautics

next upper level process to take the appropriate action within its domain to invoke an alternate and
available mitigation fault response. Conversely, requests entering an upper manager requesting increased
reliability will inform its child processes underneath to implement an appropriate strategy. This hierarchical
architecture provides a structured approach to manage fault detection, fault isolation and fault response.

VI. Detailed Design Descriptions of Fault Tolerance Methods

A. Augmenting data packets to correct errors in data and network routing

The Tile Processor™ from Tilera® connects an 8 x 8 grid of processor cores with five networks. The User
Dynamic Network (UDN) is provided for applications to efficiently exchange data between cores. As
mentioned in the previous section, an event could corrupt the data in a packet or the destination in the
packet header, in which case the UDN would deliver the data to the wrong core. We implemented
software-based error correction using Hamming codes for handling a single event affecting the data or
destination.

UDN packet headers include x-y core destination coordinates, the length of the packet, and a tag. In order
to protect this data, we wrap the C API for UDN messaging to add a word including a Hamming error
correction code (ECC). Because the header is stripped away by the receiving core, we add duplicate
destination and data length fields (along with the ECC) in our own header as part of the UDN packet
payload data as shown in Fig. 5. Because error correction depends on the length of the data, we must
provide a separate ECC for the data length.

The first two words are the original UDN header (Fig. 2) that is stripped away upon delivery to the
destination tile. The next three words are our header used for error correction. An index is used instead of
coordinates for the destination to provide abstraction for the available subset of cores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Res erved Des t_X Des t_Y Length Word 0: Route Hea der

Ta g Word 1: Ta g

Da ta ECC Length ECC Word 2: ECCs
Des t_i ndex Length Word 3: Route Da ta

Ta g Word 4: Cha nnel
Pa cket da ta Pa cket Da ta (1-124 words)

Figure 5. Fault tolerant network packet format

With this format a packet will be delivered to its intended destination assuming only a single bit error in the
packet. If the destination coordinates in the original header are corrupt, and the packet is delivered to a
different core, a listener corrects the packet using the ECCs, sees that the destination index does not match
the index of the core, and resends the packet to the intended core.

As discussed next, we use software to determine if a core is 0
malfunctioning. Thus, software is used to route messages around
failed cores. The default routing of UDN messages is to pass
packets horizontally and then vertically. To avoid failed tiles,
intermediate destinations are computed to avoid failed tiles. An 4
example is shown in Fig. 6. When tiles 4 and 5 have failed,
default hardware routing would send a message from tile 0 to 9
through 5. To route around the failed tiles, the message can be

1 2 3

5 6 7

sent to tile 10 as an intermediate destination.

B. Detection of Failed Processing Core and Re-initialization

8 9 10 11

Figure 6. Routing around failed tiles

There are several methods available for detecting failed cores. On a tiled multicore, where each core C
generally has two or more neighbors, those neighbors can ask C to compute a task and check the result.
Voting the result should give a reliable indication of who has failed, assuming independent failures. Such

5
American Institute of Aeronautics and Astronautics

E. Hierarchical Fault Management Architecture
The above sections cover facets we have built and are working. The current section is our plan and the
direction we are pursuing. The research work is still in progress.

Resilience is the ability to continue in spite of
setbacks. To illustrate, a failure implies a fault
somewhere in the system. When the attitude control
system supervisor discovers a failure, it selects an
alternative method of estimating attitude. This may
involve changing sensors or combinations of sensors to
avoid the problem. This is an example of finding an
alternative way to carry out the original work. A
supervisor may have many alternative methods and it
is the supervisor’s job to work through the alternatives
to find one that brings success.

Recall that TMRing a thread function requires
repeatability, and that “no shared memory” ensures

super

…

vision
thread

super

super

command or constraint

filter
thread

vision
thread

that. This same property aids in fault protection as well, since it means that when an error occurs, and the
supervisor responds, the error propagates no further. This is fault containment.

We adopt from Ref. 5 a hierarchy of threads, but apply it to implement policy-based commanding (Fig. 5).
For example, power control and reliability control are elements of the system that supervisors are assigned
to enforce. The top-level supervisor for the TRN application is in charge of two lower-level supervisors,
which in turn are in charge of the vision threads and the filter threads. When a reliability constraint arrives
at the top-level supervisor, that supervisor in turn asks the filter supervisors to, say, increase their
reliability. There may be several means of doing so, but for our purposes here we suppose the supervisor’s
response is to change the filter from a single thread to a TMR of filter threads. That supervisor will create
the new threads and hook them up (connect their inputs and outputs appropriately) and assign the new
threads to processors. The supervisor’s final step is to stop the single filter and install the TMR’d filter in
its place. The replacement occurs in real-time. This is the scenario we are headed towards.

VII. Remaining and Future Work

The material reported in this paper represents interim results of the research which is still on-going at JPL. The
methods described in section F will be fully designed and implemented for adaptation in the TRN application. A key
objective of this research is to conduct a performance measurement and quantitative analysis of the design when
implementation is completed. Various performance metrics will be measured and analyzed using the profiling tool
provided by the Tilera® development environment and by code instrumented in the software. Such performance
analysis will benefit future missions in system design when using the multi-core processor for this class of missions.
Software simulated faults will be injected in the system during demonstration for triggering the intended response by
the methods.

Acknowledgments

The work described in this publication was performed in the Advanced Computer Systems & Technologies

Group at the Jet Propulsion Laboratory, California Institute of Technology, under contract from the National
Aeronautics and Space Administration. This work is being funded by the internal Research and Technology
Development program at JPL.

References

1TILERA CORPORATION, “Tilera Tile Processor Architecture Overview”, REL. 1.2, DOC. NO. UG100,
NOVEMBER 2009.

7
American Institute of Aeronautics and Astronautics

2 Carlos Y. Villalpando, David Rennels, Raphael Some, and Manuel Cabanas-Holmen, "Reliable Multicore
Processors for NASA Space Missions", Proceedings, 2011 IEEE Aerospace Conference, Big Sky, MT.

3Kuang Hua Huang, Jacob A. Abraham, “Algorithm-Based Fault Tolerance for Matrix Operations”, IEEE
Transaction on Computers, Vol. c-33, No. 6, June 1984.

4James Alexander, Yang Cheng, William Zheng, Nikolas Trawny, and Andrew Johnson, “A Terrain Relative
Navigation Sensor Enabled by Multi-Core Processing”, Proceedings, 2012 IEEE Aerospace Conference, Big Sky,
MT.

5Joe Armstrong, “Making Reliable Distribute Systems in the Presence of Software Errors” Dissertation, Royal
Institute of Technology, Stockholm, Sweden, Nov. 2003.

8
American Institute of Aeronautics and Astronautics

	Future planetary exploration missions demand significant advances in on-board computing capabilities over current avionics architectures based on a single-core processing element. The state-of-the-art multi-core processor provides much promise in meet...
	II. Multi-core Processor Architecture
	Figure 1. Tilera64 General Architecture and Single Tile Overview

	IV. Terrain Relative Navigation Application Descriptions
	Figure 3. Image to map correlation illustration
	Figure 4. TRN Software Partitioning
	A. Network Routing Faults
	B. Failed Network Switching Engine
	C. Failed Processing Core
	D. Algorithm Based Fault Tolerance Methods
	E. Triple Modular Redundant Methods (TMR) for Fail Operational
	F. Hierarchical Fault Management Architecture

	VI. Detailed Design Descriptions of Fault Tolerance Methods
	A. Augmenting data packets to correct errors in data and network routing
	Figure 5. Fault tolerant network packet format

	1 2 3
	B. Detection of Failed Processing Core and Re-initialization
	C. Algorithm Based Fault Tolerance Methods
	D. Triple Modular Redundant Methods (TMR) for Fail Operational
	E. Hierarchical Fault Management Architecture
	Acknowledgments
	References

