
Capturing Flight Software Architecture
With a

Domain-Specific Language

Jet Propulsion Laboratory, California Institute of Technology

July 30 – August 3, 2012

Kim P. Gostelow

© 2012 California Institute of Technology. Government sponsorship acknowledged

Multicore

Tilera TILE64
Multicore Chip

Independently
powered tile

A general-purpose CPU

2

The Vision

• Look to when there are thousands of cores on
a spacecraft
– Expectation: Power = Speed x Reliability

• Faulty core=> computations move to another core
• Reduce power => performance slows, but does not quit

– Computations reorganize in real-time
– Introspective
– Little or no consideration needed by the

programmer

3/9/11 3

The Problem

• The above can be achieved now, but only on a small
scale by costly, special-case programming

• Programmers should not spend their time orchestrating
intricate (and brittle) data arrangements and code
– It breaks when processors fail
– It should not be part of the job

• We want the machine, without intervention, without
programmer’s special attention, to re-organize its work
automatically in the face of cores and links failing/re-
appearing at random, in real-time.

3/9/11 4

Towards A Solution

Von Neumann
 (~ Clocked sequential circuit)

Functional
 (~ Asynchronous circuit)

An instruction executes when
the program counter reaches it.

The function executes when
the required data arrives.

Instructions manipulate the
contents of memory cells.

Variables are mathematical
variables, not memory cells
- Contents cannot change once
computed
- No side-effects, no shared
memory.

3/9/11 5

What is a Functional Language?

• For the programmer, the consequences of the
above are:
– Immutable values

• Can define a value only once
• A variable has only one meaning
• Single-assignment

– No shared memory

6

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

Synonyms

Functions

7

extern int sum;

int A(int a) {
 sum = get_time_of_day();
 for (int i=0; i<a; i++)
 sum += f(i);
 return sum;
}

int B(int a, int time) {
 for i=0 .. a
 v[i] = f(i);
 return accum(v) + time;
}

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

Not a
function

A Function

Can run in
parallel if f is a

function

Example: generate-map-reduce

function gmr(a, b, f, g) =
 spread = (b-a)/2
 if split_is_efficient(f, spread) then
 g(gmr(a,a+spread,f,g),
 gmr(a+spread,b,f,g))
 else g(map(f,gen(a,b)))

0 100

. . .

0 k-1

F F

+

99-(k-1) 99

F F

+

+ +

+

. . .

… …

. . . gen gen

split split

split

 0 100 F +

gen-map-
reduce

3/9/11 8

9

Beginning the DSL

• Multi-chips of multi-cores
– 1000s of cores on a spacecraft
– Power on/off
– Power = Speed x Reliability

• Auto-redundancy / auto-restart
– Threads must be able to:
 start/stop/re-start, move, be copied, replicated, … at any
 time, in real-time

• Auto-concurrency =>

But, a system really does have state.

M

M D

D

. . .

DSL is a Functional language => no state

• A variable in the application domain
• Retained over more than one cycle
• Influences subsequent cycles

• Examples:

• Spacecraft attitude
• Number of bytes in the downlink buffer

We do not mean the “state of the computer’s memory” (which may
be a state in some lower-level domain).

10

What Is State?

state f

What’s to be done?

A DSL Recognizing State

• Define a module as the context for state
– Message-passing
– Actors

• C-like syntax (today)
• Keywords: state and

 module
– static is not allowed
– Pointers to state not allowed
– No other way to define state

 11

module gnc {
 state GncVector x;
 state ControlState y;
 param GncParms z;

 function gnc_64_hz(int z);
 function init(void);
};

A Module Interface Function

Example:

12

function gnc_64_hz (int z) {
 using state GncVector x;
 . . .
 next x.a = x.a + r(z);
 . . .
} Current x and next x are distinct.

module gnc {
 state GncVector x;
 state GncState y;
 param GncParams z;

 function gnc_64_hz(int z);
 function init(void);
}; Declaration

Definition

Module interface
function:

Atomic Updates to State

• Current practice: Change state incrementally
throughout a message-processing cycle
– Is the current value of x the old state value, or the

new one?
– Easy to lose track

• Proper practice: State update automatic and
atomic at the end of a message processing cycle
– Computed next state distinct from current state
– Current state does not change during message

processing

13

14

Benefits

• Mathematically appropriate and safe
– PDEs, estimation, finite-state machines… are of the

form
 xt+1 = f(xt , u) + v
 yt = g(xt , u) + w

 where x is a vector.

• Easier to write functional programs
– Computed next state distinct from current state
– Current state does not change during message

processing

Graceful Degradation Fault Tolerance

The nature of the processing in this application
allows easy implementation

Failed core

Replacement
 core

Lost cores means loss of
performance only.

Many cores dedicated to parallel
processing of image data

Tilera

Devoted to Image
Processing

Graceful Degradation

Supervisor recovers full
processing capability

15

Fail-operational Fault Tolerance

Voting
Recovering

full TMR

Fail Operational

Replacement
core

Failed core Failed core

Fault:
Voter masks error

Detection
and voting

Recover TMR

16

…

…

Policy-based Computing

…

…

supervisor

supervisor supervisor

thread

…

Policy change:
Increase resilience

supervisor

supervisor supervisor

thread

thread

thread
fork

voter

…

Thread must be “repeatable”, e.g., no shared
memory – a function.

Supervisor
1. Initially creates the application
2. Monitors health and performs fault recovery
3. Carries out policies: power/cores/reliability

Rewire for TMR in real-time

17

Automatic Telemetry

• New keywords
– Channelized state telemetry

• Keyword: eha (enginering, housekeeping, and
accountability at JPL)

• Downlink significant state variables

– Event report
• Keyword: evr (event reporting at JPL)
• State change => an event
• Should it be: event => state change ?

18

Translator handles all of the details.

State Checking

• Goal: Never reboot
• Collect all state in a state dictionary
• Automatically produce

– Inventory
– Spreadsheets for system engineers to specify

desired/required states prior to each critical event
– On-board checking, reporting programs
– Ground display and analysis tools

19

State Details

• Static analysis: Verify that each variable
declared to be state is indeed state

20

Let x be declared a state variable in module M.
Define

 is_state(x, M) =
 There is a module interface function F in M:
 There is a path P starting with F (possibly through calls
 to other functions):
 The first access to x in P is a read (not a write).

Execution Models: The Bottom-line

• Functional semantics: Two functions are
concurrent unless the output of one is an
input to the other

• Sequential semantics: Two functions are
sequential unless proven they can be made
concurrent

21

Summary

• Hardware drives what we can do
– A sea of cores
– Power = Speed x Reliability

• Computations that migrate, replicate, start/stop/repeat without
concern

• Policy-based computing
• Above suggests a functional language
• State in a functional setting => Language recognizes

state
– Separate current state from next state

• Atomic state updates
– Know entire state: no reboots
– Automated telemetry

22

23

1. John Backus “Can Programming Be Liberated From the von Neumann
Style? A Functional Style and Its Algebra of Programs” Turing Award
Lecture, Communications of the ACM, 21(8) August 1978, pgs. 614-641.

2. Joe Armstrong “Making reliable distributed systems in the presence of
software errors” PhD Thesis, Swedish Institute of Computer Science, 2003.

3. M. Bennett, D. Dvorak, J. Hutcherson, M. Ingham, R. Rasmussen, D.
Wagner “An Architectural Pattern for Goal-Based Control” IEEE Aerospace
Conference. Big Sky, MT. March 2008 .

4. Kim P. Gostelow Policy-based Computing and Extra-Functional Properties
of Programs. Presentation at the Software Working Group of the Fourth
Workshop on Fault-Tolerant Spaceborne Computing Employing New
Technologies 2011. Albuquerque, NM. May 22, 2011

5. Fortress Programming Language http://projectfortress.java.net/

References

http://projectfortress.java.net/

References

6. Gostelow, Kim P. “The Design of a Fault-Tolerant, Real-Time, Multi-Core
Computer System” IEEE Aerospace Conference, Big Sky, MT 2011

7. Dennis and Misunas “A Preliminary Architecture for a Basic Data-Flow
Processor”. 1975 Sagamore Computer Conference on Parallel Processing

8. Arvind, Gostelow, and Plouffe “Indeterminacy, Monitors, and Dataflow”
Proc 6th ACM Symposium on Operating Systems Principles

9. Arvind, KP Gostelow “The U-Interpreter” IEEE Computer 15(2): 42-49
(1982)

10. Ubiquitous High Performance Computing (UHPC) Solicitation Number:
DARPA-BAA-10-37 (2010)

24

	Slide Number 1
	Slide Number 2
	The Vision
	The Problem
	Towards A Solution
	What is a Functional Language?
	Functions
	Example: generate-map-reduce
	Beginning the DSL
	Slide Number 10
	A DSL Recognizing State
	A Module Interface Function
	Atomic Updates to State
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Automatic Telemetry
	State Checking
	State Details
	Execution Models: The Bottom-line
	Summary
	Slide Number 23
	References

