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ABSTRACT 
 

The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been 
imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding 
coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have 
predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like 
planets . In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally 
Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of 
faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer 
and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and 
evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. 
We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in 
ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between 
the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in 
March of 2012. 
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1. INTRODUCTION 
 

Several of the co-authors of this paper took part in the conference Seeing the Future with Imaging Science, 
organized by the US National Academies Keck Futures Initiative (NAKFI). The format of that workshop was 
to bring together scientists and engineers from diverse backgrounds, including radiologist, astronomers, and 
physicists, to see if they could learn from each other’s experience and envisage new approaches to problems of 
detection and characterization in imaging. One of the study groups at the workshop discussed possible new 
approaches to exoplanet imaging, and in particular adapting methods used in medical imaging to the post- 
processing of extreme adaptive-optics corrected coronagraphic images. Of particular interest was the concept 
of the ideal observer and the Hotelling observer1–5 and how these approaches might be applied to exoplanet 
detection. Although these methods have been examined previously, to the authors’ knowledge they have not yet 
been applied to real astronomical data. 

Through a seed grant from NAKFI, a follow-on workshop was organized to bring together experienced as- 
tronomers as well as experts in imaging theory. Of particular interest was to formally assess and compare the 
performance of techniques based on the Hotelling observer with the state of the art, represented by angular or 
spectral differential imaging using the Locally Optimized Combination of Images (LOCI) and its variations.6–9 

It was hoped that in so doing that we might enable the detection of exoplanets at least an order of magnitude 
fainter than what is currently possible. 

Direct imaging of a planet around another star is exceedingly challenging. For even the closest stars observed 
with the largest ground-based telescopes, the angular separation between star and planet will be near the classical 
diffraction limit. Moreover, a typical star will be about a billion times brighter than the planet to be imaged. 
The planetary image is also buried in “speckle noise,” which is the result of uncorrected wavefront errors that 
propagate through the atmosphere and optical system. This speckle noise has a complex spatio-temporal-spectral 
structure, which is different from a planetary signal. While algorithms now exist that exploit some properties 
of the signal and noise, there has been little effort to address the full problem in a rigorous and comprehensive 
way. The aim of our proposal was to begin to address this need. 

For this effort, a balance was sought between theorists and astronomers, and invitations were extended to 
and accepted by participants representing all the major near-term ground-based coronagraph projects, namely 
P1640,10 the Gemini Planet Imager11 (GPI), the SPHERE instrument of the Very Large Telescope, and the 
Subaru SCExAO project. 

Our exoplanet imaging workshop took place at Squaw Valley, CA, during the week of 25-30 March 2012. 
Each day of the workshop two different broad topics related to imaging were discussed as the subject of possible 
future research. These included the topics of detection, astrometry, spectroscopy, future instrumentation, lessons 
learned, and an optimal observing campaign design. The sessions were run on the same model as the NAKFI 
sessions. The participants were split into two groups and each group decided what question they would tackle, 
and each reported separately at the end of each session. This way, the most compelling research topics were 
brought to the fore and several collaborations were formed for future work and study. An informal count of the 
proposed work suggests that approximately a half-dozen possible refereed publications will be written as a direct 
result of the workshop. 

The participants readilly agreed to undertake an exoplanet imaging challenge, for which simulated blind 
data sets would be prepared and distributed for the testing of new algorithms. This was seen as a longer-term 
project, extending beyond the workshop, that would form the basis for a refereed publication. It was also agreed 
to provide a preliminary report on the imaging study at this SPIE Conference, as described in the following 
sections. 

 
2. CURRENT PRACTICE 

 

Figure 1 summarizes the current state of the art in coronagraphic imaging and data post-processing. Shown 
in the figure are the 5-σ contrast limits versus apparent angular separation for observations of 1 hour after 
post-processing of data and using various coronagraphs. The current generation of instruments is represented 
by 1) the NIRC2 instrument on the Keck II telescope and 2) the NACO instrument at the European Southern 
Observatory’s Very Large Telescope (VLT), which have been used for example to detect the planets around HR 





3. EXPLANET IMAGING CHALLENGE DATA 
3.1 Description of Simulated Images 
Much of the early discussion amongst the participants centered around the organization of an exoplanet imaging 
challenge that would allow a fair comparison of the performance of different algorithms, specifically including 
LOCI and methods using the Hotelling observer. The data sets were prepared by Lisa Poyneer with the help of 
Marshall Perrin and Jérôme Maire. This section is Lisa’s overview of the data sets. The data themselves can be 
downloaded  at  http://olbin.jpl.nasa.gov/nakfi/. 

The challenge data were produced using a suite of simulation tools developed for the Gemini Planet Imager 
(GPI) project. However, the data do not represent a prediction of actual GPI performance, and should not be 
used to draw conclusions about GPI observational quality. 

The goal for this data challenge is to provide a large data set containing many (but not all) important error 
sources in a way that will allow testing and comparison of alternate planet finding algorithms. For this initial 
challenge set the group decided to consider bright stars (so as to not be photon-limited), to observe with field 
rotation (so that ADI could be used) and to have typical atmosphere and quasi-static speckles, though the quasi- 
static speckles are due only to phase errors, not amplitude errors. These quasi-static errors were generated to 
be correlated with pointing, so that a phenomenon that may occur in a real system (correlation of quasi-static 
errors across different observations) could be explored. 

Finally, GPI simulation tools were used to directly produce a noisy IFS datacube, as opposed to dispersing 
the image onto a detector and then resembling a datacube via a wavelength solution.17 This provides a simpler 
first case where the noise in the data is white; in a later data challenge we could address colored noise due to the 
dispersion and reassembly.  In the following paragraphs we provide more description and explanation of various 
aspects. 

The data challenge scenario contains 100 unique observations, drawn from a simulated GPI observing cam- 
paign. The GPI campaign scheduler [ref Savransky] was used with a fake star catalog to produce observation 
parameters (ra, dec, ha) for each target as observed from Cerro Pachon. For this data set we wanted to limit 
photon noise so all targets are post-fact assigned a stellar magnitude of 5 (bright), even though most were fainter. 
Each star retains a specific stellar spectral type. 

Along with a star and observation parameters, the campaign scheduler software also produces a random 
assortment of planets around that star, drawn from our models for planet mass, orbit, etc. Some stars have no 
planets, some have several. Each planet is given a specific angular separation, position angle in the field of view, 
and brightness. All planets are assumed to have the spectral type L8.  In order to probe contrasts from 10−4.5 

to 10−6.5, the true planet magnitudes are made brighter by 2 to adjust to the artificially bright stars. 
A modified version of the GPI AO simulator18 was used to produce the instrument PSFs at five wavelength 

sampled in H-band. This simulator was coupled with a vastly simplified model of the GPI calibration system19 

and instrument  optical design to  provide  quasi-static errors. The  GPI  AO simulator handles  both  common- 
path phase aberrations (usually atmospheric, which the AO system can correct) and non-common-path (NCP) 
aberrations (which the AO system does not correct, but which should be seen by the Calibration system). 

Before the simulation begins, the observation pointing is used to produce a unique time-varying set of NCP 
errors which produce quasi-static speckle. Completely and time-efficiently modeling all of the optics in GPI, 
their phase and amplitude variations20 and the gravity-induced shearing that produces NCP errors, and the 
Calibration system’s measurement and correction of them is far beyond the scope of this effort. Instead, we used 
a simple model that, while not capturing the true behavior of the system, does provide reasonable levels of NCP 
phase errors, temporal variations and spatial distributions of speckles. 

In short, the pointing information (ra, dec, ha) for the observation is converted to a gravity vector. This 
gravity vector acts on a very simple cantilever model for the GPI instrument and produces a time-varying 
and gravity-dependent shearing between optical surfaces during the observation. Two out-of-plane optics were 
chosen, since these produce chromatic phase and amplitude errors, like those that GPI will actually see. (As 
noted above, amplitude errors for quasi-static speckles were ignored.) The instrument is assumed to start with a 
very low level of quasi-static error (due to speckle nulling or the like). As the observation progresses, the optics 

http://olbin.jpl.nasa.gov/nakfi/


shear. The phase errors on each optic are Talbot propagated to the pupil plane (resulting amplitude errors are 
ignored). At the pupil, a simple model for Calibration performance is assumed, and the corrections are applied in 
a slow closed loop every 1 minute. This produces a sequence of 3600 files sampled at 1 second, each representing 
the continually changing NCP error as compensated by a noisy Calibration system at 1-minute intervals. 

The main computational stumbling block for the data challenge is the time it takes to fully simulate the AO 
system. GPI runs at 1 kHz and the full GPI AO simulator tracks AO performance and PSFs generation at each 
time step. The atmospheric model frozen flow is assumed; the phase screen(s) are translated following wind 
velocity vectors. Generating PSFs every 1 millisecond is computationally unfeasible for a data challenge of this 
size. Instead, we chose to use a single short exposure (1 ms) image to approximate a 1-second exposure. 

Since the typical wind speed is 10 m/s (more on that below), doing a single short exposure per second 
approximates the clearing time of phase across the 8-meter aperture. Though not fully accurate (the speckles 
will be sharper and more variable), this is reasonable. Previous work by ourselves with the AO simulator17 and 
by others for non-AO applications21 show that significant speckle averaging occurs only after a characteristic 
period dependent on the clearing time (pupil diameter divided by wind velocity). 

So to generate a 60-minute observations, we use 3600 individual runs of the AO simulator, each producing a 
1-ms short exposure PSF that approximates a 1-second PSF. Each short exposure uses a phase screen generated 
with a unique random seed. 

The wind is the major variability for the AO run. For each observation, a unique time-varying atmospheric 
profile is generated, comprising the turbulence strength r0 and wind velocity vector. The mean r0 is 14 cm; 
the mean wind speed is 10 m/s. Simple models (e.g. smoother random noise, slow random walks) were used to 
produce plausible evolution of atmospheric statistics over the one hour observation time. Furthermore, since the 
instrument observed with field rotation to enable ADI processing, the direction of the wind in the sky changes due 
to the parallactic angle. This is calculated and tracked and fed into the AO simulator such that the atmospheric 
errors due to wind velocity (e.g. a butterfly pattern in the dark hole) will move correctly through the observation 
as the parallactic angle changes. 

Note that this approach of using 1-ms AO short exposure has huge computationally savings, but will produce 
images where the atmospheric speckle noise (non-smoothness) is higher than a full 1 kHz simulation. 

Also note that this approach has both the AO residuals and the quasi-static NCP errors in the complex field, 
so that the generated PSFs fully capture the non-linear interactions between the two types of errors. (A much 
faster, but less accurate, method would be to use power spectral density (PSD) descriptions of the errors to 
produce random PSFs reflecting atmospheric and quasi-static PSFs, and then add the terms) 

After the 3600 short AO (with NCP) error simulations are run and produce 3600 5-wavelength PSFs, the 
images are composited via addition into 30-second exposures. These 120 images form the basis of each observation 
for the data challenge. 

For the final step of converting to an idealized IFS data cube of the full astronomical scene, we used the GPi 
Data Simulation Tool.17   First, each AO output file is converted to the proper input format for the DST. Next, 
a script file is produced using the observation information (star brightness and spectrum, observations ra, dec, 
and ha, planet parameters such as magnitude, separation and position angle in the field.) The data simulator 
uses the occulted star and un-occulted planet PSFs (produced by the AO simulator) to construct the scene for 
each 30-second IFS exposure. The details of how this is done, and its verification, are described elsewhere. 

Finally, we have added a custom mode to the IFS to simulate an idealized IFS. In this case we use only two 
of the many noise sources (photon noise and detector read noise). Since units are properly carried in the code, 
we apply photon noise directly in the ideal IFS cube (x-y-λ). To approximate the read noise on the detector, 
while making it (artificially) spatially white the data cube. This was done to match the expected level of read 
noise in a dispersed and re-assembled data cube. This works out to be 1.75 DN rms per ideal IFS pixel in a 
30-second exposure. 

During this process the keywords in the FITS files describing appropriate knowledge for data challenge 
participants (parallactic angle, star brightness, etc) are preserved. The final outputs are saved in a compressed 
format and collected in an archive. 

All 100 observations, each with 120 30-second frames, were provided to all data challenge participants. 



k=1 

3.2 Results to Date 
Our implementation of the Locally Optimized Combination of Images (LOCI) algorithm is based on the original 
description presented by Lafrenière6 wherein we seek to minimize the residuals between a target image and a 
linear combination of a set of reference images. Using the mathematical formalism of Pueyo,9 we wish to find 
the set of coefficients {ck } given by 
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where T is the target image, {Rk }N is the set of reference images, and O is the optimization zone—a (possibly 
proper) subset of the target and reference image pixels. The solution to this problem is equivalent to the solution 
of 
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and c is the column vector containing the values of {ck }. The reference PSF constructed from this linear 
combination is subtracted from a subtraction zone S of the target image that is smaller than the optimization 
zone, to minimize the risk of subtracting the planet signal along with the background. 

While schemes exist for simultaneously using both angular and spectral diversity images in the reference 
set,10 the small number of wavelength bands in our data make the inclusion of spectral diversity in a given set 
of references marginally useful. Instead, we apply the LOCI algorithm to each wavelength independently, using 
only rotated images in the same wavelength for references, and then sum the final output images to increase 
signal-to-noise. For the optimization zones, we use radial annuli with height of 5 pixels and angular extent of 30◦, 
with subtraction zones of one third the height and extent, centered in each subtraction zone. The subtraction 
zones are defined such that they cover the entire space between the inner and outer working angles of each target 
image, and overlap by 2% of their annular extents so that no uncorrected areas remain in the final subtracted 
images (areas where subtraction zones overlap are mean combined). The solution to the linear least-squares 
(LLS) problem is calculated using standard LLS LAPACK routines.   It is important to note that the solution 
is exact only when matrix MO  is invertible, which only occurs in the case where the set of references forms 
a complete basis set of the optimization zone, which is not necessarily guaranteed, depending on the specific 
realization of the speckle field in the reference images. For our implementation and data set, we find that MO is 
well conditioned for the majority of optimization zones, with singularities occurring only near the inner working 
angle. 

This implimenation of LOCI was used in the following manner. Ninety-five of the datasets were analyzed, 
producing a single processed ‘image’ for each. The thresholding the image was changed to different levels and 
standard image processing techniques were used to identify as candidate detections features that were of the 
right size and shape (e.g. do not select as a detection a single pixel, do not select as a detection a region which 
is a long streak.) This was all done in an automated and fully blind mode. Then the results were compared to 
the known planet locations to determine if the detections were true positives or false positives. 

Our initial results are presented in Figure 2. The planet separation from star is plotted along the x-axis. The 
planet contrast is plotted on the y axis, expressed as powers of 10. A magnitude 20 planet in the challenge data 
has a contrast of 10−6. Each black dot is a planet that is hidden in the data. Each colored circle represents a true 
detection. Bare black dots are either misses, or lie in areas that were not searched (grey regions). The size of 
the circle indicates the maximum threshold in the LOCI image at which the planet was detected: bright planets 
at the bottom have higher thresholds. The color of the circle indicates the number of false positive detections in 
the entire observation for that threshold. Dark red in this case is no false positives. Orange is  5 false positives 





4. Quantifying “Prob Detection” and “Prob False Alarm” as a function of planet location and brightness and 
chosen threshold. 

 
4. FUTURE DIRECTIONS AND COLLABORATIONS 

 

4.1 Derive Practical Methods for Computation of Covariance Matrices: 
Barrett, Caucci, Furenlid 
The activity we identify as Task # 1 is to develop a practical and robust methodology for implementing the 
calculation of the data covariance matrix. This activity includes computing covariance matrices from simulation 
or experimental data, their inverses, and the square root of the inverses that comprises the prewhitening filter. 
The major  challenge  for  the  activity  just  identified  is  that  data  structures are very  large, hence  attention  is 
required to storage, usage of efficient low-dimensional representation, recursive updates, and other mathematical 
tools that we will develop as we progress in our research. 

Knowledge of the data covariance matrix directly and indirectly leads to many benefits, such as the optimal 
linear observer (Hotelling observer), the prewhitening of the data to enhance the performance of other algorithms 
(such as the matched filter), the simple calculation of ROC/LROC/FROC curves that characterize the perfor- 
mance of the algorithm and the imaging system combination. By bringing statistical rigor to data analysis and 
enabling the quick calculation of scalar metrics of performance (detection SNR, AUC, AULROC, AUFROC), a 
tool is created for algorithm, acquisition strategy, and hardware optimization. 

Our objectives are to develop a complete theory for the decomposition and manipulation of the data covariance 
matrices that can be practically realized in state-of-the-art computing hardware. We will take advantage of the 
latest developments in CPU/GPU parallel architectures, inherent symmetries in the covariances, sparsity, the 
matrix-inversion lemma, the Shur complement, tools for simultaneous diagonalization, and recursive methods. 

 
4.2 Gain Experience Analyzing Existing Data:  Gladysz 
The superiority of the Hotelling approach, in terms of the statistically derived quantities like the area under the 
receiver operating curve, has been demonstrated in several papers on simulated data. The assumptions that went 
into these simulated tests like the availability of noise-free training data might be optimistic, although there is 
a push to collect and process auxiliary data in future high-contrast instruments, that would translate, in theory, 
to the situation where the various components of the covariance matrix can be tracked separately facilitating the 
subsequent inversion process. The other approach is to try to extract the covariance matrix directly from the 
noisy data, available, for example, from the archive. Unfortunately there are serious obstacles to this approach, 
most notably strong requirements on the number of the available noisy images (or sequences in the case of the 
spatio-temporal Hotelling observer). The number of additional data for the computation of a (non-singular) 
covariance matrix must be greater than the order of the covariance matrix. This implies that, although this 
approach is conceptually simple (brute-force) and requires only noisy science-camera images, it relies on millions 
to tens of millions of image sequences to process one image sequence of moderate size (64 by 64 pixels by 10-50 
frames). 

We hope to use this second approach, namely generation of the covariance matrix directly from noisy science- 
camera images. Some strides will have to be made to reduce the problem, for example by stripping off the 
diagonal (readout + Poisson) component of the matrix and thus separating the speckle part. If this is possible 
then the matrix inversion lemma could then be employed. Perhaps the reduction of dimensionality of the matrix 
could be possible by exploiting the behaviour of temporal correlations seen in real data. 

We will apply the spatio-temporal Hotelling observer to real data from the 3m Shane Telescope at the Lick 
Observatory. The data consists of 100 objects, 10,000 short-exposure images per object, which might be enough to 
construct the covariance matrix using the brute-force approach. We would use the signal-known-exactly paradigm 
first. Four algorithms would be used: spatial Hotelling observer on long exposures, spatio-temporal Hotelling 
observer on the sequences of short exposures, statistical speckle discrimination on sequences of frames, and a 
combination of statistical speckle discrimination (as a pre-processing, object-amplifying step), and a subsequent 
application of the spatial Hotelling observer. The ROC curves would be constructed for each of these methods. 
The final plot would show these curves. We hope to show that the exploitation of the temporal information is 



beneficial, and that advanced image processing methods, like the spatio-temporal Hotelling observer can actually 
be used on real data and produce a benefit in terms of detectability. The crucial question is: given the error 
in the sample-based estimate of the covariance matrix do we still gain by employing the Hotelling observer? At 
what level of error (or sample size) does the benefit, in terms of AUC, disappear? 

 
4.3 Compare how different algorithms make use of information in the data: Mouillet 
and Mugnier 
High contrast multi-lambda imaging data is very rich and in particular includes significant redundancy whereas 
the number of parameters of interest is relativelly small. The optimal detection method will need to fully benefit 
from data covariances (through e.g. hotelling approaches, possibly including pre-whitening). Various approaches 
already exists or are proposed to reduce such high contrast data. They have been developed in diffrent context 
and communities, and use part of the covariance of the data more or less explicitly. 

The data challenge will make possible a comparison of the performance of these various approaches in common 
and well-controlled conditions (with common simulated data sets). 

We propose to discuss these various approaches based on their principle and based on their performance 
in the data challenge, in terms of their of the various redundancies and a priori known properties of the data. 
Practically, we can list what we think is the most useful information that helps discrimating a planet from speckles 
(information on planet itself and on speckle halo properties), and identify whether and how each approach uses 
it. 

This discussion will also help us propose evolutions of the existing approaches, possibly 
 

1. understanding their behaviour, possibly different depending on the observing conditions (where the domi- 
nant limitation may vary and the interest of various information will weigh differently). 

 
2. merging the best properties of each of them. 

 
In particular, each method may estimate differently the prior information needed to do the detection, such as 
the different pieces of the data covariance matrix, which may be either calibrated prior to the observation, or 
from the telemetry if available, or most often estimated from the data. 

 
4.4 Derive more accurate models of the point-spread functions:  Devaney 
Together with Eric Thiébaut (Obs. de Lyon) I have developed code which will fit spline functions to multi- 
wavelength images in order to build an estimate of the PSF (including residual speckle). The fitting is inherently 
local and so could be equivalent to a multi-spectral LOCI . The difference is that a model of the PSF is built, 
rather than using a combination of the actual data. We believe that using the model may bring a gain in contrast 
ratio. (Perhaps it could be used to provide the noise-free AO covariance term?) 

The current approach to planet detection is simply to subtract the model from the data at any single (SDI) 
or at all wavelengths and look for planets in the residuals. For the data challenge I could use the model PSF in 
a simple diagonal covariance Hotelling (as in Daniel Burkes thesis). Eric Thiébaut is also interested in applying 
the DARWIN-type approach i.e. fitting splines and planets to the data. A simple (sub-optimal) approach to 
estimating the planet spectrum would be to follow up detection with re-fitting the data to provide the planet 
spectrum plus a new spline model of the PSF. 

Questions: will it work on coronographic data (more complex wavelength scaling)? How close to the core can 
it work ? How long will it take ? 



4.5 Make Optimal Use of Auxilliary Data Measurable by GPI and SPHERE: 
Savransky 

The actions on this task flow directly from the development of the Hotelling observer formalism for the specific 
problem of ground-based planet-finding (Task #1) and the experience gained from applying these tools to real 
and simulated data (Tasks #2 and #3). An initial priority must be to agree upon conventions between the two 
(or more) groups, especially on data formatting (and the inclusion of synchronized telemetry) and on a detection 
criteria (i.e., using ROC/LROC as the primary metric). 

The projects will independently create lists of all auxiliary data that they currently plan to collect, and 
identify any telemetry that should be added (in the case of GPI, this includes either raw or processed outputs 
from the CAL system). The teams will then exchange lists and thereby begin to populate a global list of useful 
auxiliary data for planet-finding that will be shared with the community in general. 

Along with the identification of all auxiliary data, we must decide whether each particular telemetry stream 
can be stored entirely, or whether we will only store a statistical description in the form of a recursively updated 
first and second moment estimate. The latter approach may also include using the Schur complement to calculate 
the conditional statistics of the science and auxiliary data. 

During the first year of science operations, the teams will build up experience on applying the techniques 
and algorithms from Task #1 on real science data. It would be useful for the teams to communicate during this 
period to compare experiences and any refinements they have made to their methodologies. 

At the same time, the groups must begin to prepare for the inclusion of the information provided by the Task 
#1 tools into their campaign scheduling; for example, incorporating AUROC statistics into dynamic campaign 
rescheduling after the initial KG matrices have been constructed from initial science data. As part of this 
preparation, it may be useful to construct simple campaign simulations to evaluate the effects of this type of 
information. 

Finally, Laurent Pueyo has a simulated CAL data set which can be used to evaluate maximum likelihood 
wavefront reconstruction. While the data is GPI CAL specific, it can act as a general test for the efficacy of an 
MLE in wavefront reconstruction. Furthermore, this data can be folded into an extension of the data challenge 
as an auxiliary data set. 

 
5. CONCLUSION 

 

At the time of writing the exoplanet imaging challenge is still in progress. The simulated datasets have been 
prepared and distributed for the first round of analysis in the exoplanet imaging challenge. The challenge itself 
will take place in several phases, with each phase introducing added complexity to the data. A preview of results 
is presented here. The final results will be published in the astronomical literature.  Work with this group is 
actively being planned through 2012–2013. 

Through support from the National Academies Keck Futures Initiative we have initiated several collabora- 
tions. This is a field that is still in its infancy. The formal approach that we advocate promises to yield a more 
profound understanding of correlations in noise in exoplanet data and how they may be used to our advantage. 
This work promises to help not only ground-based astronomy, but by extension space-based astronomy as well. 
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Szymon Gladysz, Luca Caucci, Lars Furenlid, Laurent Mugnier, Dmitry Savransky, Lisa Poyneer, Laurent Pueyo, 
Peter Lawson, Dimitri Mawet, Nicholas Devaney, and Richard Frazin. Not shown: Olivier Guyon, John Krist, 
Christian Marois, and Remi Soummer. 
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