
Lessons Learned in Porting Flight
Software to a Multicore Processor

Jet Propulsion Laboratory
California Institute of Technology

Amalaye Oyake

Jet Propulsion Laboratory
California Institute of Technology

©2012 California Institute of Technology. Government sponsorship acknowledged.

 Writing applications that take advantage of multicore
processors requires an understanding of the multiple
dimensions of the problem domain of the application and
processor characteristics, the features provided by the
operating system and the correct design patterns that can
make best use of the multiprocessing capabilities.

 This presentation looks at some concepts to migrate a flight
software application to a multicore (in this case VxWorks
SMP) environment.

INTRODUCTION

 The objective was to migrate a the multithreaded test
application was ported to VxWorks SMP

 The application was written in C and ran on Linux.

 The software could have been migrated multiprocessor

environment with some small changes – real time computers
connected via a messaging mechanism … in this case we
wanted to move to a multicore environment.

FSW to VxWorks SMP

 Organizations may be interested in preserving their install
base of useful legacy (VxWorks based) software and
migrate these applications to a multicore environment.

 There is a knowledge base of existing technology that is
often ‘reused’ between missions – attitude control,
navigation, proximity and deep space communication etc…

 Further more the increased performance capabilities will
allow organizations to meet the needs of future mission
requirements. Some of these future mission needs -
interferometry, (space and earth based) radar processing,
formation flying, video from space, autonomy, fault
protection and spacecraft communication (middleware),
onboard databases, autonomous responses to processed
sensor data and the like.

GOAL

Page 5

Initial Software Application

 Starting place may be a modular
FSW application.

 Application will sit ion top of the
OSAL.

 Modular Architecture
 Some layered core components.
 Some communications

interfaces.
 Some synchronization

mechanisms.
 Some automatically generated

code.

APPLICATION

6

Flight Software Architecture
 An Operating System Abstraction

Layer (OSAL) provides a level of
abstraction over the real-time
Operating System (VxWorks,
QNX, RTEMS).

 Flight Software OSAL provides a
generic interface to system
functions as well as ‘templates’
for commanding telemetry and
event reporting.

 In migrating an application to a real-time SMP multicore

environment, the software developer must understand the
lowest common functional units, the interaction between
these functional units and the datasets that they are
working on.

 Classifying or reclassifying parallel algorithms.

 Identify the needed high-level concurrency design patterns
where optimizations can be applied.

 Modifying the software configuration mechanism to support
deploying components amongst cores …

 Utilizing refactoring and Model Driven Development

methods.

Migration Steps

Amalaye Oyake, January 2007 ... keywords DTN, LTP

 Figure 1. - Independent tasks working on private data

 Figure 2 - Tasks cooperating on the same data region

 Figure 3 - Tasks working on a partitioned data region

Understanding the System Interaction

Understanding the System Design Patterns

 Creating active objects, which are tasks
with identification and state representation.

 Understanding the design patterns of the
application.

 Managing task groups, which are groupings
of active objects.

Producers and Consumers in Task groups

 The test application code was already a multithreaded

application using Tilera iLib function calls to spawn
processes.

 The implementation of the algorithms remained unchanged.

 Implementing task barriers for VxWorks tasks and thread

barriers for threads based algorithms and …

 Implementing standard time (Unix/POSIX/CCSDS
SOIS/IEEE) functions, functions for setting the clock time,
synchronizing clocks, propagating time ...

Porting to VxWorks SMP

 It should be noted that the POSIX Advanced Realtime
Threads section defines the following features:

 _POSIX_BARRIERS
 _POSIX_SPIN_LOCKS
 _POSIX_THREAD_CPUTIME
 _POSIX_THREAD_SPORADIC_SERVER

 The POSIX Realtime threads functions provide the same

functionality, but not all operating systems implement them.

 VxWorks supports a nominal implementation of POSIX but
does not provide the pthread_barrier_wait function.

 As such some of this functionality needed to be written and
tested and implemented.

VxWorks Supported Sync Primitives

 A pure VxWorks API task barrier implementation was
written.

 A Pthreads thread barrier implementation was written for
PORTABILITY.

 Various UTILITY functions were also written (mostly
relating to timing).

Added Sync Primitives to VxWorks

Amalaye Oyake, January 2007 ... keywords DTN, LTP

 I could have used automatic code generation in some cases.

 This would involve going from Statecharts to C code.

 This would require a statechart model, a statechart
framework and a code generator.

Other Lessons Learned

STAARS

Statechart Framework

 Use Miro Samek’s Quantum
Framework

 It provides a basic Event
passing mechanism

 It provides an Active Object
model.

* Image Sources: Garth Watney, Ed Benowitz, STAARS Document

STAARS

Autocoding the Statecharts

#ifndef _imc_h
#define _imc_h

#include <iostream>
#include <cstdio>
#include "port.h"

class ImcImpl;

class Imc : public QActive {

 public:
 Imc(char* objName, ImcImpl* implPtr)
 : QActive((QPseudoState)&Imc::initial)
 , objName(objName)
 , impl(implPtr)
 {}

 void Imc::initial(QEvent const* e);
 QSTATE CONTROLLER_IF_ST(QEvent const *e);
 QSTATE GET_MESSAGE_ST(QEvent const *e);
 QSTATE HANDLE_EVENT_ST(QEvent const *e);

 QSTATE Idle(QEvent const *e);

 private:
 string objName;
 ImcImpl* impl;

};
#endif // _imc_h

STATECHART

CODE

Amalaye Oyake, January 2007 ... keywords DTN, LTP

 Migrating to a multicore environment requires many
considerations, most importantly whether the
application will benefit from the capabilities provided
by the multiple processors.

 The process requires an understanding of the tools
that are available. Some real-time operating
systems do not provide the full suite of POSIX
capabilities. In cases where POSIX is implemented,
the programmer must be careful to look at the
inter-mixing of the POSIX and the proprietary task
management schemes.

 Multiple cores allow the functionality to be spread
out to other cores. In an SMP environment this task
distribution is done automatically, however VxWorks
allows tasks to be pinned to specific cores.

Conclusions

 Furthermore the application can be refactored and
statechart automatic code generation can be used to
streamline the application.

 In the case of the test application, several of these steps
were employed, most notably compensating for the lack of
POSIX capability, the writing of higher level
synchronization functions to implement task barriers, and
mapping the iLib message passing schemes to VxWorks
message passing Future work will look at refactoring and
the use of automatic code generation to replace hand
written code, and to increase modularity.

 We believe that the combination of these techniques hold
promise as a way to do application development on
multicore processors.

Conclusions

Amalaye Oyake, January 2007 ... keywords DTN, LTP

BACKUP

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Initial Software Application
	Flight Software Architecture
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Statechart Framework
	Autocoding the Statecharts
	Conclusions
	Conclusions
	Slide Number 18

