MRAM Technology and Status

Jason Heidecker
Jet Propulsion Laboratory, California Institute of Technology

Table of Contents

1. Introduction
2. Magnetoresistance
3. State-of-the-Art: MTJ
4. Future: TAS, STT
5. SRAM-like Operation
6. Reliability
7. Radiation Effects
8. Comparison with Other NVM
9. Applications
10. Manufacturers & R&D
11. MRAM Market
12. Product History & Roadmap
13. Flight Heritage
14. Sources/References
What is an MRAM?

MRAM = Magnetoresistive RAM

- WRITE using magnetic hysteresis.
- READ using magnetoresistance.
- Built on CMOS. TSOP packages (or ceramic flat-pack for space)
- Architecture similar to SRAM.
- First memory to use magnetic structures exploiting electron SPIN as well as CHARGE.
- Future technologies have potential for very HIGH DENSITIES.
- MEMORY CELLS are nonvolatile (unlimited retention) and immune to radiation-induced upset. Also unlimited endurance.
MRAM: The Ideal Memory?

- DRAM Density
- SRAM Speed
- NAND Nonvolatility
- Rad-Hard Memory Cells

Potential to be first nonvolatile Gb memory with unlimited endurance and 20+ year retention (and SEU immunity bonus)
Spintronics

MRAM, The Spintronic Memory

Traditional Memory

- Bulk Movement/Storage of Electrons

Spintronics

- Exploitation of Electron Spin and Resulting Magnetic Moment

Information is carried by electron spin in addition to, or in place of its charge.
Read: Magnetoresistance (MR)

Types of magnetoresistance (MR):

<table>
<thead>
<tr>
<th>Name</th>
<th>Increase in Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary (OMR)</td>
<td>2%</td>
</tr>
<tr>
<td>Giant (GMR)</td>
<td>50%</td>
</tr>
<tr>
<td>Colossal (CMR)</td>
<td>99.9%</td>
</tr>
<tr>
<td>Tunnel (TMR)</td>
<td>200%</td>
</tr>
</tbody>
</table>

Modern “MTJ” MRAMs
“Ordinary” Magnetoresistance Effect

Resistance of material changes with applied magnetic field.

Corbino Disc

Magnetic field adds circular current component I_θ and creates resistance to radial component I_ρ.

Also known as “anisotropic magnetoresistance” (AMR) because effect is 0 when current and B are parallel and maximum when perpendicular.

Effect discovered by Lord Kelvin in 1856.

Increased resistance is due to Lorentz Force:

$$F = q(E + \mathbf{v} \times \mathbf{B})$$

Change in resistance is proportional to B^2 (Kohler’s Rule):

$$\frac{\partial \rho}{\rho} \propto a \left(\frac{H}{\rho} \right)^2$$
"Giant" Magnetoresistance

Birth of “spintronics”

- A much larger magnetoresistance effect (up to 50%) observed in thin-film structures composed of alternating ferromagnetic and non-magnetic layers (e.g. Fe/Cr/Fe). Thicknesses in nm.

- Current passes parallel to layers: current in plane (CIP).

- Resistance of material is affected by alignment of magnetic moments of magnetic materials which creates changes in scattering of spin up or spin down electrons.

- **In practical application as memory cell**, change in resistance is too small (4-8%). Not good enough for high density memory.

Using pinning layer also known as “spin valve” structure

Disc Head Readers

Discovered by IBM and published in 1991. Modern MRAM is derivative of this structure.

The 2007 Nobel Prize in physics was awarded to Albert Fert and Peter Grünberg for the discovery of GMR, which they did (independently) in the 1980s.
“Colossal” Magnetoresistance

- Very large change in resistance under magnetic field observed mostly in certain manganese oxide compounds

- First seen in 1950s by Jonker and Stanten (Philips)

- Effect not well understood

- Materials not to be seen in MRAM (or any other electronics) any time soon

Resistance has recently been discovered in La$_{1-x}$CoO$_x$. The largest effects have been observed for $x=0$, where effects are observed, on the order of $\Delta R/R(H) = 125$. The resistance changes by 99.9%. Figure 14 shows a resistivity of the material undergoes a low temperature. The colossal magnetoresistance effect has been shown that the insulating to metal transition temperature. HP has produced high-quality CMR film with a resistance of about 95%. This resistance reduction is relatively stable over degrees (Figure 16). These results were reported by National Laboratories in February, 1995 [Ref. 8]. The insulating materials is the field dependence of the resistance. These issues will be the focus...
“Tunnel” Magnetoresistance and the MTJ

Magnetic Tunnel Junction (MTJ) Cell Structures

• Two layers of magnetic metal (such as cobalt-iron) separated by a layer of insulator (typically aluminum oxide, ~1 nm)

• Tunneling Magnetoresistance
 – Consequence of spin-dependent tunneling
MTJ Operation

MTJ STORAGE ELEMENT

- S → N (Low Resistance)
- Magnetic layer 1 (free layer)
- Tunnel barrier
- Magnetic layer 2 (fixed layer)
- S → N (High Resistance)

N → S
MTJ Drawbacks

- **Scaling Issues**
 - Smaller bits are more susceptible to thermal fluctuations

- **Complicated Lithography**

1st Gen: MTJ Cell

2nd Gen: STT Cell
MRAM Future: Thermally Assisted Switching (TAS)

• Idea is to heat the cell, which lowers the strength of the required magnetic fields for switching

• Advantages:
 – Eliminates write selectivity problems: write select is temperature driven
 – Lower power: only one magnetic field required for write
 – It is thermally stable due to the exchange bias of the storage layer.

• Main Advocate: Crocus (Spintec spin-off): Just received $300M to build factory in Russia.
MRAM Future: Spin Torque Transfer (STT)

- Advantages:
 - Lower Power Consumption
 - Better Scalability
 - Simpler Cells
SRAM-like Operation

MRAM Read

MRAM Write

SRAM Read

SRAM Write
Device Reliability: 1 Mb Everspin (JPL)

- Unlimited Endurance
- 20+ year Retention
- Low susceptibility to external magnetic fields
- -55 to 125°C operation (E2V upscreen)
 - Sold by Everspin as -45 to 130°C

B field measurements at JPL

Bit Errors Vs B Field

~25 mT
Radiation Effects - JPL

A 1 Mbit MRAM die packaged in a 40-pin dual-in-package (DIP) for SEL testing (top) and thin-small-outline-package (TSOP) for TID testing (bottom).

<table>
<thead>
<tr>
<th>Run #</th>
<th>Device</th>
<th>Energy (MeV/AMU)</th>
<th>Energy (MeV)</th>
<th>Ion</th>
<th>Eff. LET</th>
<th>Run Time (s)</th>
<th>Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>25</td>
<td>1766</td>
<td>Kr</td>
<td>21.2</td>
<td>177</td>
<td>2.0E+05</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>25</td>
<td>1766</td>
<td>Kr</td>
<td>21.2</td>
<td>242</td>
<td>3.0E+06</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>25</td>
<td>1766</td>
<td>Kr</td>
<td>21.2</td>
<td>45</td>
<td>5.0E+06</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>25</td>
<td>313</td>
<td>Kr</td>
<td>39</td>
<td>54</td>
<td>5.0E+06</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>25</td>
<td>1077</td>
<td>Xe</td>
<td>56</td>
<td>51</td>
<td>5.0E+06</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>25</td>
<td>1077</td>
<td>Xe</td>
<td>56</td>
<td>61</td>
<td>5.0E+06</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>25</td>
<td>1077</td>
<td>Xe</td>
<td>56</td>
<td>62</td>
<td>5.0E+06</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>15</td>
<td>2429</td>
<td>Au</td>
<td>84.1</td>
<td>89</td>
<td>1.0E+07</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>15</td>
<td>2429</td>
<td>Au</td>
<td>84.1</td>
<td>79</td>
<td>1.0E+07</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>15</td>
<td>2429</td>
<td>Au</td>
<td>84.1</td>
<td>54</td>
<td>1.0E+07</td>
</tr>
</tbody>
</table>

Ion beams used for SEL testing. No latchup observed during any testing.
Memory Comparison

<table>
<thead>
<tr>
<th></th>
<th>SRAM</th>
<th>DRAM</th>
<th>NOR Flash</th>
<th>NAND Flash</th>
<th>FRAM</th>
<th>PRAM</th>
<th>MTJ MRAM</th>
<th>STT MRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>144 Mb</td>
<td>1 Gb</td>
<td>1 Gb</td>
<td>64 Gb</td>
<td>4 Mb</td>
<td>512 Mb</td>
<td>16 Mb</td>
<td>Gb?</td>
</tr>
<tr>
<td>Access Time</td>
<td><1 ns</td>
<td>260 ps</td>
<td>25 ns</td>
<td>20 ns</td>
<td>110 ns</td>
<td><16 ns</td>
<td>35 ns</td>
<td><10?</td>
</tr>
<tr>
<td>Standby I (mA)</td>
<td>2</td>
<td>150</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Read I (mA)</td>
<td>100</td>
<td>1000</td>
<td>20</td>
<td>25</td>
<td><10</td>
<td>16</td>
<td>30</td>
<td>15?</td>
</tr>
<tr>
<td>Write I (mA)</td>
<td>100</td>
<td>1000</td>
<td>50</td>
<td>25</td>
<td><10</td>
<td>20</td>
<td>30</td>
<td>15?</td>
</tr>
<tr>
<td>Endurance</td>
<td>Infinite</td>
<td>Infinite</td>
<td>100k</td>
<td>0.5-100k</td>
<td>10^{14}</td>
<td>10^6</td>
<td>Infinite</td>
<td>Infinite</td>
</tr>
<tr>
<td>Retention</td>
<td>~0</td>
<td>~0</td>
<td>~0</td>
<td>>10 yrs</td>
<td>>10 yrs</td>
<td>>10 yrs</td>
<td>>20 yrs</td>
<td>>20 yrs</td>
</tr>
<tr>
<td>Cell Size (F^2)</td>
<td>100</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td><4?</td>
</tr>
<tr>
<td>Rad-Hard Cell</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Applications

Wherever nonvolatility, quick booting, high endurance, and/or radiation-hardness are important.

- **Home Computing**
 - Quick boot discs, similar to Flash

- **Mobile Computing**
 - Nonvolatility

- **Military/Space**
 - Nonvolatile, Rad-Hard

- **RFID**
 - Embedded MRAM
MRAM Players (Past and Present)
MRAM Areas of Focus

Commercial MTJ Vendors
- Everspin
- E2V (Everspin Upscreen)

Commercial Rad-Hard MTJ
- Honeywell
- Aeroflex

MTJ IP
- NVE
- Spintec

Thermally Assisted Technology (TAS) R&D
- Crocus, IBM
- Spintec

Inactive
- Motorola (2005, spun off Freescale)
- Freescale (2008, spun off Everspin)
- Infineon (~2006)
- Cypress (2005)

Spin Transfer Torque (STT) R&D
- IBM
- Samsung
- Hynix-Grandis
- Everspin
- Avalanche Technology (CA start-up)
- Spin Transfer Technologies (NYU start-up)
- Intel
- NEC
- Renesas
- Fujitsu
- Toshiba
- Micron, A*Star (Singapore)
though there might be other concurrent players in the non-volatile segment, MRAM will still have the maximum share of the memory market.

MRAM Market

![Pie Chart](image)

MRAM Compared to Other Nanotechnologies

![Graph](image)

3.2 Funding resources: Throughout the past decade, many companies as well as research centers have been receiving constant funding from government agencies as well as other sources like...
MRAM Product Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Device</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>4 Mb MTJ</td>
<td>Freescale</td>
</tr>
<tr>
<td>2005</td>
<td>1 Mb MTJ Rad-hard</td>
<td>Honeywell</td>
</tr>
<tr>
<td>2005</td>
<td>STT MRAM Prototype</td>
<td>Sony</td>
</tr>
<tr>
<td>2009</td>
<td>32 Mb STT MRAM Prototype</td>
<td>Hitachi</td>
</tr>
<tr>
<td>2010</td>
<td>4/16 Mb MTJ Rad-hard</td>
<td>Aeroflex</td>
</tr>
<tr>
<td>2012?</td>
<td>16/64 Mb Rad-hard QML Class V</td>
<td>Aeroflex/Honeywell</td>
</tr>
<tr>
<td>2015?</td>
<td>Gb STT</td>
<td>Toshiba</td>
</tr>
</tbody>
</table>
Flight Heritage - SpriteSat

- SpriteSat – Tohoku University, Japan
- Various Payloads/Launches Since 2008
- 4 Mb Freescale devices
- Replacing Flash and SRAM with MRAM

Flight Heritage – CubeSat - COVE (JPL)

- Launch October 2011
- CubeSat On-board Processing Validation Experiment, “COVE”
- Secondary Payload on University of Michigan M-Cubed CubeSat
- Included:
 - Xilinx Virtex-5QV FPGA
 - Everspin MR4A16B MRAM (4 Mb)
 - Numonyx P5QPCM PRAM (128 Mb)
- First attempt: NPOESS Preparyory Project (NPP)
- M-Cubed did not separate from another CubeSat, Explorer 1-Prime
 - Although beacons have been heard, University of Michigan team has been unable to send commands to satellite.
Sources/References

7. NVE/Daughton, J. “Magnetoresistive Random Access Memory (MRAM).”