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A Radial Internal Material Handling System (RIMS) has been developed to service a 
circular floor area in variable gravity. On planetary surfaces, pressurized human habitable 
volumes will require a means to carry heavy equipment between various locations within the 
volume of the habitat, regardless of the partial gravity (Earth, moon, Mars, etc). On the 
NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined 
that a variety of heavy items would need to be carried back and forth from deployed 
locations to the General Maintenance Work Station (GMWS) when in need of repair, and 
other equipment may need to be carried inside for repairs, such as rover parts and other 
external equipment. The vertical cylindrical volume of the HDU lent itself to a circular 
overhead track and hoist system that allows lifting of heavy objects from anywhere in the 
habitat to any other point in the habitat interior. In addition, the system is able to hand off 
lifted items to other material handling systems through the side hatches, such as through an 
airlock. This paper describes the RIMS system which is scalable for application in a variety 
of circular habitat volumes. 

Nomenclature 
AES = NASA Advanced Exploration Systems 
D-RATS = NASA Desert Research and Technology Studies field analog tests 
DSH = Deep Space Habitat 
ECLSS = Environmental Control Life Support System 
EVA = Extra-Vehicular Activity 
GMWS = General Maintenance Work Station 
HDU = Habitat Demonstration Unit 
PEM = Pressurized Excursion Module 
RIMS = Radial Internal Material Handling System 

I. Introduction 
he Radial Internal Material Handling System (RIMS) project was born out of a need to provide for lift and carry 
capacity within the circular volume of the Habitat Demonstration Unit (HDU) operational field habitat. The 

HDU project consisted of a multi-center team brought together in a rapid prototyping tiger-team approach to quickly 
build, test, and validate hardware and operations in analog environments (Kennedy, Tri, Gill, & Howe, 2010). The 
project integrated operational hardware and software to assess habitat and laboratory functions in an operational 
prototype unit. The HDU project began in 2009, resulting in an analog of a Pressurized Excursion Module (PEM) 
laboratory for simulating a lunar habitat for the 2010 NASA D-RATS field analog. The initial elements included a 
5-meter diameter hard shell vertically oriented one-story cylindrical module with four side hatches as docking ports 
for support modules, analog rovers, spacecraft, and other mission elements (Howe, Spexarth, Toups, Howard, 
Rudisill, & Dorsey, 2010). With a portable base configuration compatible with multi-mission architecture, various 
teams from all over NASA brought their technologies into the HDU shell to participate in a functionally integrated 
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environment. Extra-Vehicular Activity (EVA), power, communications, Environmental Control Life Support 
Systems (ECLSS), dust management, avionics, human factors, and many other teams contributed technologies that 
have been maturing in laboratories around NASA, but have heretofore not had a common portable platform that 
would allow them to come together in an integrated manner. For 2011 NASA built and tested a Habitat 
Demonstration Unit Deep Space Habitat (HDU-DSH) habitat/laboratory (Figure 1), using the 2010 configuration 
and technologies as a foundation, that was utilized to advance NASA's understanding of alternative mission 
architectures, requirements definition and validation, and operations concepts definition and validation. The HDU 
project has since become the Advanced Exploration Systems (AES) Habitation Systems project. 
 

  
Figure 1: Habitat Demonstration Unit, 2011 D-RATS configuration (left), section (right) 
 

Within the 2010 HDU-PEM configuration, the General Maintenance Work Station (GMWS) was tested with 
repair operations for suit maintenance and rover mechanical components. The GMWS was equipped with an 
overhead hoist located directly over the work surface, but items needing to be transfered to and from the work 
surface had to be hand-carried. The importance of in-field maintenance operations and the difficulty of hand-
carrying heavy equipment stressed the need to develop a material handling system for the habitat. Even though the 
DSH 2011 configuration was intended to test a deep space habitat in a zero-g environment, the need for a material 
handling system in the 1-g earth analog provided an opportunity to design a system that could eventually be applied 
to planetary surface habitats, including the moon and Mars. In this paper the material handling obstacles and unique 
solutions provided by the RIMS are discussed. 

II. RIMS Description 
The RIMS consists of two concentric circular tracks connected by a radial beam. On the beam is a trolley where 

a removable hoist connects. The hoist used is an off the shelf, removable hoist. The trolley travels radially on the 
beam while the beam itself can be rotated around the two circular tracks, allowing the trolley to reach virtually any 
point within the habitat. A CAD model of the system, including stowage system, is shown in Figure 2, and Figure 3 
shows the RIMS in its final configuration in the habitat. 

 

 

Plant growth system (rests on 
top of RIMS inner track) 
 
Stowage system 
 
RIMS outer track 
 
Cross beam with hoist 

Figure 2: HDU Radial Internal Material System (RIMS) and stowage system final CAD design 
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RIMS outer track 
 
Underside of fold-down 
stowage units 
 
RIMS inner track 
 
Cross beam with hoist 
 
HDU module with integrated 
subsystems 

Figure 3: HDU RIMS and stowage system installed on ceiling of habitat 
 

The RIMS system was created specifically for the circular geometry of the habitat. The circular geometry of 
RIMS warrants smooth, continuous movement from any part of the habitat while avoiding the "no-fly zones" in the 
middle and in areas where people are working. The cross beam functions in the same way a bridge crane covers a 
rectangular floor area, allowing lifting of any load on the floor to any other location. The circular tracks allow the 
cross beam motion to be continuous around the perimiter of the cylindrical volume. 

As a supplemental material storage space, a series of overhead bins were created to stow extra cargo. These bins 
were uniquely shaped for the geometry of the habitat and sit between each of the ribs of the habitat structure. They 
are between the two tracks of the RIMS and are up and out of the way until needed as shown in Figure 4. 

 

 

Stowage unit (shown in closed 
position) 
 
 
Cargo Transfer Bag (CTB) 
 
 
RIMS inner track 
 
 
 
 
 
Stowage unit (shown in open 
position) 

Figure 4: Stowage system with Cargo Transfer Bag (CTB) 
 

A special roller system was designed for the radial I-beam to interface with the circular track. The roller sytem 
consists of a set of castors for the beam to roll along the track and arms with additional rollers to constrain the 
twisting of the I-beam (Figure 5). Spring-loaded end carriages make up for any slight inconsistencies in the width 
between inner and outer tracks, and keep the motion of the cross beam smooth and continuous. 
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RIMS inner track 
 
 
Spring-loaded end carriage 
 
 
 
Cross beam 
 
Manual trolley 
 
 
 
RIMS outer track 

Figure 5: Sliding cross beam and trolley 

III. Material Handling Operations 
In a planetary surface outpost, such as those planned for the moon or Mars, multiple pressurized volumes 

brought up in several launch manifests will be docked together to create the target volume (Figure 6). For long-
duration missions it will be necessary to repair and perform maintenance on various equipment at the outpost. In the 
DSH, a General Maintenance Work Station (GMWS) has been designed and tested for this purpose. The RIMS 
system was designed to help carry equipment from not only other locations in the circular volume of the single 
volume, but also to pass payloads between volumes. 

 

 
 
 
 
 
 
 
Mulitple pressurized volumes 
docked together 

Figure 6: Lunar outpost scenario with docked pressurized volumes 
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The RIMS incorporates two methods of use to safely transport items 1) in the habitat and 2) from/to the main 
chain of the habitat to/from the suitlock, dust mitigation, and other volumes. Figure 7 depicts the floor plan of the 
habitat with destination areas indicated. The RIMS is currently set up on Level 1, where the cargo lift in the center 
will allow equipment to be passed between decks. 

 

 
Figure 7: HDU-DSH floor plan showing layout of workstations 
 

The GMWS, shown on Level 1 in Figure 7 as "Maint. W/S", contains work surfaces, tools, diagnostic 
equipment, and digital manuals for the repair of various equipment in the habitat or outpost. Other workstations in 
the DSH include Med Ops medical operations, Geolab science workstation and glovebox, TeleRobotics Work 
Station (TRWS), Hygiene stations, and other workstations not shown. Avionics and ECLSS equipment are located 
under the deck, which is removable and will allow for un-plugging and transport of that equipment for maintenance 
and repair at the GMWS. 

For operations within the habitat only, the user must first attach the hand-operated hoist to the trolley on RIMS. 
Next, the object to be moved is securely attached to the hoist. Then, the user will use the hoist to lift the object and 
move item to desired location in habitat. Finally the object is detached from the hoist and the trolley and the hoist is 
stored away.  

The user may also carefully push the payload to/from directly underneath the RIMS coverage area onto the lift in 
the center of the habitat, to the avionics bays, or to other areas of the habitat while the hoist is being raised or 
lowered. This will likely require more than one user to carry out; however, it increases the mobility of the system. 

To transport from/to inside the habitat to/from the suitlock and other volumes, the RIMS must pass off the object 
to a winch located in the suitlock or passed off to another RIMS system in the neighboring volume. the RIMS in the 
habitat is designed with a stop on the radial I-beam for the hoist to rest against. Figure 5 shows the block clamp stop 
that allows for side loading. The hoist rests against the stop while the springs compress fully. 

The RIMS was designed to interface with a recommended system in the suitlock because the suitlock and the 
RIMS were under construction at the same time. Figure 8 shows a floor plan of the suitlock docked to the DSH 
volume. To interface the two systems, a load can be brought into the suitlock via EVA crane and lifted using the 
suitlock winch (Figure 9, Figure 10). A user will hook both chains to the payload, and ease the chain of one while 
cranking in the chain of the other (Figure 11, Figure 12). Once the payload is directly under the other hoist, the user 
can disconnect the other chain and proceed to place the payload where they wish (Figure 13, Figure 15). 
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Figure 8: Floor plan showing suitlock docked to the cylindrical laboratory module volume 
 

 
Figure 9: Section of suitlock showing winch  and EVA crane locations 
 

 
Figure 10: Passing from suitlock to module STEP 1: load hangs on suitlock winch (EVA crane also shown) 
 

Winch EVA Crane 
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Figure 11: Passing from suitlock to module STEP 2: connect RIMS chain to load 
 

 
Figure 12: Passing from suitlock to module STEP 3: slack winch cable while tightening RIMS chain 
 

 
Figure 13: Passing from suitlock to module STEP 4: disconnect winch cable 
 

 
Figure 14: Passing from suitlock to module STEP 5: move load to wherever needed in habitat volume 
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In a similar way, loads can be passed between two RIMS systems where two modules are docked together, to 
allow any cargo load to be moved from any location in the outpost to any other location. It should be noted that the 
user will require additional ties/chains or other restraints of their choice to attach the object to the RIMS hoist. The 
RIMS was not designed with a specific type of tie-in in mind in order to accommodate more types of objects. Figure 
15 shows the Level 1 laboratory deck that the RIMS operational envelope covers, and Figure 16 shows the RIMS in 
its operational environment. 

Because the RIMS is installed in a very tight space, it was assumed during design that the user(s) should 
communicate with others in the Habitat before and during the transport of objects, alleviating the need for an alarm. 
Future work could include development of a visual or audible alert system to indicate that the RIMS is in use as an 
extra safety precaution. 
 

 
Figure 15: 360 degree view of HDU-DSH laboratory deck, with RIMS installed in ceiling 

 

 

RIMS outer track 
 
Stowage system 
 
Underside of plant growth 
system trays 
 
RIMS cross beam 
 
 
RIMS inner track 
 
 
Central cargo lift illuminated by 
red / blue spectrum of plant 
growth LED lighting system 

Figure 16: Deep Space Habitat (DSH) interior with RIMS in place on ceiling (photo: James W. Young) 

IV. Future Work 
Among the future work do be done on the RIMS is determining scalability, both for the volume which the RIMS 

will cover, and for the mass of objects it will carry. Several improvements and assessments will be made along these 
efforts. 

In terms of volume scaling, the scalable parameters are the radius of the track, the length and cross-section of the 
radial beam, and features of the roller assembly. Scaling up may cause increased torqueing on the roller assembly. If 
a different I-beam cross section is chosen, a different trolley will be needed. Scaling down may eliminate the need 
for a radial beam, however it is not possible to curve the track to very tight radii.  
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In terms of load scaling, the scalable parameters are the cross-section of the track and beam, features of the roller 
assembly, and the hoist. Again, scaling up will increase torque on parts of the system. For future work, a study could 
be conducted showing minimal and maximal radii for the system, and sizes track, cross beam, and hoist for a variety 
of configurations. It is assumed that tracks and cross beams could be designed as truss structures for very large 
diameters, similar to the way large bridge cranes operate in rectangular volumes. 

The current RIMS system is all manual, with no electric motors, winches or drives. Further work may include 
capacity for remote control winches and drives, with the ability to move the trolley to any required location using 
remote commands. The RIMS material handling system will eventually be one component in a fully automated 
material handling chain, to support habitat maintenance and repair when crew members are not present. 

Keeping the above parameters in mind, as well as others, the RIMS will be assessed in its scalability. It is 
believed that the RIMS will be scalable to other cylindrical volumes and a useful tool for material handling within 
them. 

The RIMS system was designed with the assumption that the habitat would be equipped with a self-leveling base 
that overcomes unevenness in the terrain upon which it is placed. The current HDU-DSH was equipped with manual 
leveling devices to keep the habitat level in the desert environment. The RIMS system would not work as well in a 
tilted habitat, since part of the time the load will be free rolling down hill, and part of the time pulled uphill by the 
user. 

V. Conclusion 
The RIMS system has borne the problem of transporting large and/or heavy items in order to maintain the 

nominal functions of the HDU-DSH. It consists of two concentric circular tracks with a radial beam spanning them, 
a trolley that moves radially on the beam, and rollers on the ends of the beam that allow the beam to rotate around 
the habitat on the tracks. The RIMS was designed to interface with other material handling solutions outside habitat 
during normal operations and can service virtually every part of the habitat. It is a unique solution, but is likely 
scalable to other cylindrical volume material handling needs. Since the 2011 D-RATS activities provided for tests 
and demonstrations for a Deep Space Habitat in a zero-g environment, the RIMS system was not included in the 
primary tests at D-RATS during simulated missions, but was used successfully for maintenance purposes by ground 
crew. 
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