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Specification and development of fault management functionality in systems is 
performed in an ad hoc way - more of an art than a science. Improvements to system 
reliability, availability, safety and resilience will be limited without infusion of additional 
formality into the practice of fault management. Key to the formalization of fault 
management is a precise representation of off-nominal behavior. Using the upcoming Soil 
Moisture Active-Passive (SMAP) mission for source material, we have modeled the off-
nominal behavior of the SMAP system during its initial spin-up activity, using the System 
Modeling Language (SysML). In the course of developing these models, we have developed 
generic patterns for capturing off-nominal behavior in SysML. We show how these patterns 
provide useful ways of reasoning about the system (e.g., checking for completeness and 
effectiveness) and allow the automatic generation of typical artifacts (e.g., success trees and 
FMECAs) used in system analyses. 

I. Introduction 
E define off-nominal behavior as the unintended or unexpected behavior of a system. The process of 
considering the implications of off-nominal behavior in the development process and during system operation 

is referred-to as System Health Management (SHM)1. Fault Management (FM) is the subset of SHM that determines 
whether modifications or additions to system functionality, interfaces or components are necessary to prevent, 
mitigate or tolerate off-nominal performance of the system.  

While often locally effective, the ad hoc methods used in FM result in gaps and inefficiencies in the overall SHM 
design. These methods are also unable to answer, or only partially address important characteristics such as the 
completeness and effectiveness of the SHM design. As a result, precise answers to system success in off-nominal 
situations are incompletely-known, with incomplete assessments of safety, reliability and availability based on time-
consuming analyses and design processes that are based on multiple, often implicit, assumptions. As our designed 
systems grow in capability and complexity, the understanding of off-nominal behavior in these systems will become 
increasingly riddled with error and erroneous expectations, leading to systems that are actually less safe and reliable 
than systems fielded today. Only by increasing the rigor with which we consider system behavior as a whole – and 
off-nominal behavior in particular – can we improve our understanding of these systems, and make significant gains 
in safety, reliability and availability. Using the Systems Modeling Language (SysML) we show how some basic 
elelements of FM can be performed rigorously, and particular artifacts derived from a system model.   

 

II. Modeling Off-Nominal Behavior 
Systems are conceived, developed and designed with some defined purpose, expressed as a set of system 

objectives. The set of system objectives, over time, can be described as the intended behavior of the system. A 
realized system developed to accomplish these objectives has a resulting behavior that can be assessed to determine 
whether the system meets these objectives. This resulting behavior is determined from the design and current 
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operational state of the system. Off-nominal behavior is defined as the class of system behaviors that are outside of 
the boundaries of the intended behavior (based on purpose and objectives), or the expected behavior (based on 
performance of realized system).  

Developing a system requires an understanding of both the nominal (intended and expected) behavior and the 
off-nominal behavior. However, all too often the focus is primarily on the nominal behavior, and the consideration 
of the off-nominal behavior is an afterthought. This is evident in many systems engineering process descriptions, 
that do not include (or only mention off-hand) guidance for consideration of off-nominal behavior. This leads to all 
kinds of poor design choices and compromised/over-complicated behavior2. Including off-nominal behavior in a 
system model provides a much richer and more complete understanding of the system behavior under all conditions.  
However, the off-nominal state space is much larger than the nominal state space – capturing this in a way that 
allows development of appropriate design mechanisms, without losing essential information, is difficult and time-
consuming. What we define as off-nominal behavior is only a convenient characterization of a class of system 
behavior – it is only a defined subset of the possible set of state transitions within the system. When this subset is 
ignored or addressed incompletely, the design of the system, and the understanding of its behavior, is also 
necessarily incomplete.  

Development of an integrated system model, used by the entire engineering team, has significant benefits over a 
document-centered approach to system development3. In this conception, typical engineering artifacts are views of 
the system model, instead of a set of documents with varying degrees of integration and connection to other 
documents. Typical FM artifacts, such as a failure modes and effects analysis (FMEA) or fault tree analysis (FTA) 
rely heavily on system descriptions such as block diagrams to define the components and sub-systems to which they 
refer. Development of an integrated system model that allows explicit connections between block diagrams and 
failure analysis artifacts has the potential to provide exceptional improvements in both the accuracy of the failure 
analyses and the amount of effort necessary to develop and maintain the analyses. Further, while it is possible and 
beneficial to merely include the results of failure analysis in the system model4, there is significant benefit to use the 
relations captured in the model to derive FM artifacts. The former allows explicit cross-checks between the failure 
analyses and the model structure, which significantly improves the ability of engineers to relate the two, but in the 
end is only an improved way of storing the information derived from the analysis. We believe that a much more 
powerful approach is to include the necessary relationships in the model, and to use these relationships to derive the 
necessary FM artifacts from the model. In this way, a FMEA or FTA becomes just another view of the system in the 
model, and is always current and consistent with the rest of the model. This approach enables significant 
improvements in both the accuracy and development time required. Other researchers have pursued a similar line of 
thinking by incorporating the necessary constructs in UML models5. 

Modeling a system first requires an understanding of the specific purpose(s) the model is intended to support 
(i.e., what questions is the model intended to answer? ). By articulating the modeling need in this form, the conent of 
the model and the effort to develop it can remain focused.  Without a focus of this sort, the model can become 
bloated with unnecessary and irrelevant information that takes time and attention away from the salient information. 
In our work, we have focused on the following questions that are relevant for understanding and assessing off-
nominal system behavior: 

1) What is the intended purpose of the system? (Describe system objectives) 
2) How are system objectives protected? (Describe intended alternate options/mechanisms to achieve 

objectives) 
3) How are alternative options/mechanisms (behaviors?) implemented (Describe FM functions - detection of 

off-nominal behavior, identification of cause, determination of appropriate actions) 
4) How are FM functions allocated to system components? 
5) What are the effects of non-intended behavior in the system? 
 
In the model we have developed, we have focused on development of concepts and relationships that allow us to 

reason about these questions and develop quantitative results. In this, we make use of mission ontologies developed 
at JPL by the Integrated Model-Centric Engineering (IMCE) team, that inform these relationships and basic SysML 
profiles that we utilize6. The general nature of SysML allows for many ways in which to represent concepts and 
relationships used to describe systems. We recognize that our solution is but one of many possible representations, 
but we have found significant utility in structuring our model in the manner described in the following section. 
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III. Concepts and Relationships 
The concepts and relationships that we have found to be essential to modeling off-nominal behavior are 

described in Fig. 1. In this figure, we show four basic concepts and the relationships of which we make use. These 
concepts are activity, component, goal, and state variable. We use activity to document intent, the actions that 
accomplish the intent of the system. In our model, we represent activity via SysML activity diagrams. Activity 
diagrams allow us to show the flow of intended action and the data transferred between the defined activities. 
Components are defined as blocks, and are intended to represent system elements at a given level of abstraction. 
Using the IMCE mission ontology, there is a specific set of relationships between function and component. Namely, 
that a component performs a function, and converse, that a given function is allocated to a component. In our 
relationship diagram, the activities we define can be thought of as an instance of a given function, so we apply the 
same relationship in our model. The set of system 
components are documented in a SysML block definition 
diagram, and swimlanes in the activity diagrams are used 
to show the allocation of activities to components. Our 
concept of activity contains a very important notion – goal 
definition – that allows us reason precisely about system 
intent and the boundary between intended and unintended 
behavior. In our conception, each activity is really a 
statement about the intended value of a given state 
variable. We do not yet excplicitly include the notion of 
time in our model, but otherwise this definition is intended 
to match the conception of goal as defined in the state 
analysis methodology7. A goal, then, is a constraint on the 
value of a state variable over some time duration as 
expressed by the order of a set of activities. Each activity 
has a single goal associated with it, but there may be 
multiple goals associated with each state variable. We 
relate each state variable to a component in the system, where each component typically has a set of state variables 
associated with it. This relation is captured in our model as a “characterizes” relations (as in “state variable X 
characterizes component A”). This relation is stated in this form, rather than the more direct “is a property of” 
relationship due to the multiple ways in which a set of state variables that describe a component could be derived. 
For example, depending on what specific information is necessary to capture, one could describe the temperature of 
a component as a single state variable (component A has temperature Y), or as a set of related state variables 
(component A has temperatures Y1, Y2, Y3 and Y4). It is up to the modeler, and the questions being addressed by the 
model, to determine which of these characterizations are appropriate to include at a given level of model abstraction. 
These different characterizations are not incompatible, they are merely different ways of viewing the component 
(similar to the way different coordinate systems can be used to represent the same spatial realtion).  

We also develop views of the model that allow us to relate these four concepts in different ways. The standard 
SysML views (activity diagrams, block definition diagrams, etc.) provide most of the utility we require, but we 
develop additional views to better describe and document other specific relations. In particular, we make use of a 
State-Effects Diagram (SED) to provide a graphical representation of the interrelations between state variables.  The 
interrelations are depicted using the "affects" relationship, which is an abstraction of a mathematical constraint that 
couples state variables.  The tail end of the relationship indicates the independent variable in the constraint, and the 
head indicates the dependent variable.  As the relationship between variables may be complicated, a single 

mathematical constraint may 
represent multiple "affects" 
relationships.  Figures 2 and 3 
show a State-Effects Diagram 
and how one of its "affects" 
relationships is expressed as a 
mathematical constraint8. 

 
 
 
 

  

Figure 1. Concepts and Relationships 

 
Figure 2. State Effects Represented in a SysML Internal Block Diagram 
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IV. Model of Behavior 
In September of 2011, we began participating in a model-based systems engineering (MBSE) pilot to develop a 

limited-scope SysML model of the proposed Soil-Moisture Active-Passive (SMAP) mission. A significant part of 
this pilot was to develop 
a model of the off-
nominal behavior of the 
SMAP mission.  The 
focus of the effort was on 
the behavior of the 
mission during the 
spinup of a large radar 
antenna. A structural 
model of the components 
and subsystems of the 
SMAP Mission (flight 
system, instrument, 
telecommunications etc) 
was created, followed by 
the development of a 
model of the system behavior using activity diagrams. The structural and behavior models were integrated by 

 
 
Figure 4. "Spinup and Orient" activity diagram 

 
Figure 3. Affects Relationship Captured as a Constraint in a SysML Parametric Diagram 

 
 
 

4 



allocating functions to the components responsible for performing them (i.e. gyro performs attitude rate 
measurement). We modeled the nominal sequence of events leading to spin up as SysML activity diagrams, using 
swimlanes to allocate these activities to components.  We were then able to decompose each activity into lower level 
activities and map these to lower level components responsible for performing them, allowing functional 
decomposition via an activity hierarchy. 

An example activity to spinup an antenna is provided in Figure 4. The Spacecraft Bus erforms four sub-activities 
in the course of the overall activity, “Receive Spinup Command”, “Detumble”, “Turn to Sun”, and “Turn to Nadir”. 
The Instrument performs a single sub-activity, “Spin Instrument to Science Rate”. These sub-activities are allocated 
to the Spacecraft Bus and Instrument components, shown using swim-lanes. The relationships between the 
components of interest for this example are shown in the block diagram in Figure 5. Note that the Spacecraft Bus 
and the Instrument are both parts of the Flight System, but they are just a subset of the total set of parts, the others 
not being included for simplicity. The Reaction Wheels are components of the Spacecraft Bus, and the Instrument 
motor is part of the Instrument. As described earlier, each component is associated with a set of state variables of 
interest as well as a set of performed operations (e.g. activities that are allocated to the component via the swimlanes 
defined in the activity diagrams). In the model, each state variable is represented as a “reference property” of a 
component. Our choice to represent them as reference properties was a convenient way to show their relationship to 
the components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The state variables are a powerful means for understanding the causes and effects of failure modes. Figure 6 

presents a notional state effects diagram for the components in the flight system. Using the relationships shown in 
this diagram, we can determine how one component’s state variables are affected by another’s. For example, we see 
that the angular rates (i.e. the three dimensional angular rate vector) of the Spacecraft Bus are affected by the 
Spacecraft Bus angular accelerations, which are in turn affected by the Spacecraft Bus inertia, the torques from the 
Reaction Wheels (“RW”s), and the Instrument’s angular accelerations. The torques from the RW’s are affected by 
the wheels’ power draw, and so on. The “affects” relationships shown between the Spacecraft Bus and Instrument 
angular accelerations are intended to be notional, representing the fact that the movement of one part of the 
spacecraft will affect the other. To be truly correct, additional interconnecting “affects” relationships would need to 
be drawn between the position, rate, and acceleration state variables for the spacecraft bus and the instrument. The 

 
 
Figure 5. Block Definition Diagram for the Flight System 
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depth of the state effects diagram was 
limited here for simplicity, but it is 
evident that it can be elaborated much 
further. For example, we could 
connect the Power Draw state 
variables with other state variable 
from SMAP’s power subsystem, or we 
could connect the Spacecraft Bus 
inertia to any state variables of moving 
components elsewhere on the 
spacecraft. Thus we need not limit 
ourselves in scope to just looking at 
one subsystem on the spacecraft. 

 
 
 
 

V. Application to Representative 
System 

With the simple SMAP model defined above, we can begin 
to apply our defined concepts and relationships to derive 
information relevant to off-nominal system behavior. 
Characterization of the failure space is a key element of 
defining a fault management solution, and is necessary to 
determine coverage and completeness of a given fault 
management design solution. Typical methods for 
characterizing the failure space are Fault Tree analysis (FTA) 
and Failure Modes and Effects Analysis (FMEA). First we will 
show how a FMEA can be generated from the model.   

In our model, every nominal activity is allocated to a 
component and each activity is associated with higher and/or 
lower level activities.  To build the FMEA, we looked at each 
component and listed all the activities allocated to it. The 
identification of activities is shown, generically, in Figure 7. 
Each activity defines an intended outcome, and we define the 
inability to perform that activity as the defining characteristic 
of a failure mode. We applied this approach by using the logical negation of each activity (“Failure to Spin-up” 
instead of “Spin-up”) to define the set of failure modes for a each component of the system. These failure modes can 
be seen in Figure 8. This table organizes the failure modes as follows; each row lists the component of interest 
followed by a state variable then a failure mode. We include the state variable in our FMEA table to highlight the 
important role of state in our approach. Note that not all state variables associated with a given component are 
associated with a unique failure mode; if there are multiple activities that constrain a state variable, multiple failure 
modes will result. In this sense, a failure mode reflects an inability to constrain a state variable (or multiple state 
variables) in an intended way. A FMEA generated in this way is only as complete as the set of activities defined in 
the model. An incomplete model will result in an incomplete FMEA. The benefit of this approach, though, is that 
system functionality (intent) is directly linked to the FMEA, and changes to the system design or intended 
functionality change the FMEA in a precise and direct way.  

 

 

Figure 7. Collection of Activities Allocated to 
a Component 

 
Figure 6: State Effects Diagram for the Flight System 
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Identification of the failure modes is only the 
first step in the development of a FMEA. To 
make the FMEA complete we need to include 
cause and effect information. In general, the 
information contained within a FMEA is more 
accurate for immediate failure effect or failure 
symptoms, but often becomes progressively more 
inaccurate the further away the effect is from the 
originating component. This is because the 
methods used to determine the downstream 
effects can vary depending on the FMEA analyst 
or designer that contributes to the writing the 
English- language text descriptors9. We can use 
the SED to determine possible causes and effects 
of the failure modes in our FMEA. An FMEA is 
shown in Figure 9 with this information included.  Again, in this example we consider a failure mode to be an 
inability of a given activity to constrain a state variable to a desired range (over time?). We can determine causes for 
the state variable being out-of-range by observing what other state variables affect it. For example, the state variable 
associated with failure mode “Failure to Detumble” is “Spacecraft Bus Angular Rates”. These angular rates will 
only go out of range due to off-nominal accelerations. These accelerations could be caused by a lack of knowledge 
about the SCB inertia tensor, bad torques from the reaction wheels, or unexpected perturbing accelerations of the 
Instrument. We could continue to trace these effects threads, but we chose to only trace effects to either a leaf on the 
SED or first state variable after a change in abstraction level in the component hierarchy. Additional work is 
required to determine an approach that includes an appropriate level of causal information. Hence, causes for 
“Failure to Detumble” can be traced through its constrained state variable to the four state variables listed under 
“Causes” in the second row of Figure 9. If desired we can even trace the state variables all the way down to the 
Power Draw state variables. At this point however it suffices to use “RW’s unable to provide necessary torque” as a 

proximate cause. Note in this example we have only defined a failure mode for each defined activity. We expect that 
there is additional utility in including variants of failure modes, further distinguished by either the cause or the 
effect. For example, it is often useful in a FMEA to make a distinction of this sort to identify different responses that 
are intended to mitigate a given failure mode. 

We can also use the same approach to determine the downstream effects of a failure mode by tracing state 
variable “affects” relationships. For “Failure to Detumble”, we see that the spacecraft bus angular positions are 
affected by our rates state variables, hence an effect of this failure would be that the spacecraft bus is unable to 
control its angular positions sufficiently well. This is only a notional example, considering that rates can be 
integrated to yield positions, but nonetheless it does illustrate that effects in the FMEA can be determined in exactly 
the same way as causes. Using the “affects” relation between state variables allows both an initial cut of component 
failure mode causes and effects; however in theory a completely exhaustive specification of the state effects within a 
overall system would allow the FMEA to be complete, capturing all possible causes and effects. 

 
Figure 9. Full FMEA Derived from Information in System Model 

 
Figure 8: Basic FMEA for SCB and instrument 
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VI. Future Research and Development 
This work described here only scratches the surface of the possible applications of modeling off-nominal 

behavior. Determination of the relevant concepts and relationships needed to derive a FMEA only required a small 
set of relevant concepts and relationships. Other typical FM artifacts, and the ability to perform other analyses 
require additional concepts and relationships to be defined. In particular, we are interested in generation of fault 
trees, success trees and reliability block diagrams directly from the system model, and querying the information in 
the model to assess the completeness and effectiveness of the FM functionality. Ultimately, we intend to develop a 
SysML profile that captures these concepts and relationships and allows effective and consistent application within a 
system model.  

We have performed some preliminary work in two areas – fault tree generation and representation of redundancy 
– that are important to our future goals. In each area, described in additional detail below, we have developed some 
initial insights and as well encountered some difficulties.  

A. Fault Tree Generation 
In addition to the generation of an FMEA, one of our initial goals was the generation of a fault tree using the 

system behavior model.  Our behavior model includes the nominal activities of the mission, so our first approach 
was to negate all the activities and turn this into our fault tree.  We were able to write a script that could 
automatically do this by assuming that a failure of an activity leads to the failure of the higher-level activity.  Each 
lower level activity in turn is composed of 
even lower level sub-activities that complete 
the leaves of the fault tree. Figure 10 shows 
the output of this script in XML.  This 
approach gives a rough cut at a fault tree, but 
has a number of weaknesses.  For one, we 
have not distinguished between activities that 
are necessary for mission success and simply 
desired.  For this reason, every activity in our 
activity hierarchy shows up in the fault tree 
as an “or” leaf.  A priority for us moving 
forward is to identify and distinguish these 
necessary activities from the non-necessary 
ones and apply this to our fault tree.  

This approach also leaves out a number of relationships we have in the model that can lead to a more complete 
fault tree.  The three relationships we have identified, as shown in Figure 11, are the activity hierarchy, state 
elaboration, and component allocation. Our initial approach was to use the activity hierarchy, but as discussed 
above, this was insufficient. The state elaboration method takes advantage of the relationship different state 
variables have to one another.  Each activity in the model is defined as a constraint on a state variable.  We can use a 
state-effects diagram to show the relationship all of these states have to one another.  Using these relationships, we 
are able to identify faults that lead to the failure of an activity.  Each activity in the model is also allocated to a 
component, which is made up of sub-
components.  The failure of a component 
will cause an activity to fail, as will the 
failure of a sub-component.  This allows 
a third way of showing the faults that 
make up a fault tree.  Each approach by 
itself might fail to provide a complete 
fault tree, but each can be used as a 
cross-check on the others to find the 
complete set of faults.  We have made 
some attempts to include the state 
elaborations and component allocations 

 
Figure 10: XML Output of a Fault Tree—Failure of any 

activity leads to the failure at a higher level 

 
Figure 11: Types of faults that can cause the failure of an activity  
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in our fault tree, but have not yet formalized the effort. Our future work is to make a more complete fault tree using 
all three relationships to cross-check each other.  

B. Representation of Redundancy 
Capturing system redundancies in a system model is crucial for FM as mission-critical hardware generally has a 

fully redundant assembly (two flight processors, extra reaction wheels, etc).  Capturing physical redundancies is 
necessary for bookkeeping, like mass budgeting, but even more important for expressing contingency plans: if the 
flight processor experiences a failure, swap to the secondary flight processor.  Although we are still working on 
formalisms for capturing functional redundancies, our pattern for capturing physical redundancies seems sound. 

In SysML, physical redundancies are usually represented in the form of multiplicities.  SysML has only a very 
limited expression of multiplicities.  Multiplicities are a part of the SysML language that express, as a number pair, 
the minimum and maximum cardinality of a property.  We can therefore create a SpacecraftBus (Bus) and a 
ReactionWheelAssembly (RWA) and say that Bus has exactly 4 RWAs. 

Multiplicities are insufficient because if they are used, there is no way to indicate that RWA[2] is responsible for 
performing a behavior.  Allocating a behavior to the type RWA allocates the behavior to all RWAs, and allocating 
instead to the part property RWA[4] allocates the behavior all 4 of our RWAs, neither of which is the desired 
allocation. 

We decided that multiplicities were not a sufficient representation of redundancy in our model We decided that 
we could not use multiplicities in our model.  To solve this problem, we created a template RWA and created 4 
specializations RWA1 through RWA4.  This way, if we needed to allocate behavior to RWA1 specifically, we 
could.  The RWA template had all properties and relationships that were common to all RWAs.  Each of the RWA 
singletons specialized the parent and completely redefined all inherited properties (a process we are calling 
Symmetric Redefinition). The Multiplicity Pattern is the idea that the modeler should be able to represent a 
relationship and its cardinality and that the tool (via some script) should transform that multiplicity into n Part-
Specific Types.  Part-Specific Types are generated via a process called Symmetric Redefinition which recursively 
specializes and redefines all elements in a tree from a specific node (in this case, SRMultiplicityChild). 
 

 
Unfortunately, the multiplicity solution is very modeling intensive.  JPL has created a plugin to our modeling 

environment to aid in automating this process. 
 
Our issues with multiplicities also made apparent the need for a Group.  In SysML, there is currently no good 

way to show that a combination of elements is needed to do something.  For example, any 3 of the 4 RWAs are 
needed to “Detumble” the Bus.  Another missing concept we found was that of a Variant.  Variants represent trade 
options and would be helpful for configuring analyses and documenting the rationale behind trades.  For example, a 
FlightSystem with 5 RWAs.  Groups and Variants are being discussed at OMG10 and will (hopefully) be added to 
the SysML specification in a later release. 

 

Figure 1: The Multiplicity Pattern, Part-Specific Types and Symmetric Redefinition 
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VII. Conclusion 
Fault Management is an essential part of the system engineering process that is limited in its effectiveness by the 

ad hoc nature of the applied approaches and methods. Providing a rigorous way to develop and describe off-nominal 
behavior is a necessary step in the improvement of fault management, and as a result, will enable safe, reliable and 
available systems even as system complexity increases. The basic concepts described in this paper provide a 
foundation to build a larger set of necessary concepts and relationships for precise modeling of off-nominal 
behavior, and a basis for incorporating these ideas into the overall systems engineering process. The simple FMEA 
example provided applies the modeling patterns we have developed and illustrates how the information in the model 
can be used to reason about the system and derive typical fault management artifacts. A key insight from the FMEA 
work was the utility of defining failure modes as the “inverse of intent”, and deriving this from the activity models. 
Additional work is planned to extend these ideas and capabilities to other types of relevant information and 
additional products. 
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