
Modeling Off-Nominal Behavior in SysML

John C. Day1, Kenneth Donahue2, Michel Ingham3, Alex Kadesch4, Andrew K. Kennedy5 and Ethan Post6
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Specification and development of fault management functionality in systems is
performed in an ad hoc way - more of an art than a science. Improvements to system
reliability, availability, safety and resilience will be limited without infusion of additional
formality into the practice of fault management. Key to the formalization of fault
management is a precise representation of off-nominal behavior. Using the upcoming Soil
Moisture Active-Passive (SMAP) mission for source material, we have modeled the off-
nominal behavior of the SMAP system during its initial spin-up activity, using the System
Modeling Language (SysML). In the course of developing these models, we have developed
generic patterns for capturing off-nominal behavior in SysML. We show how these patterns
provide useful ways of reasoning about the system (e.g., checking for completeness and
effectiveness) and allow the automatic generation of typical artifacts (e.g., success trees and
FMECAs) used in system analyses.

I. Introduction
E define off-nominal behavior as the unintended or unexpected behavior of a system. The process of
considering the implications of off-nominal behavior in the development process and during system operation

is referred-to as System Health Management (SHM)1. Fault Management (FM) is the subset of SHM that determines
whether modifications or additions to system functionality, interfaces or components are necessary to prevent,
mitigate or tolerate off-nominal performance of the system.

While often locally effective, the ad hoc methods used in FM result in gaps and inefficiencies in the overall SHM
design. These methods are also unable to answer, or only partially address important characteristics such as the
completeness and effectiveness of the SHM design. As a result, precise answers to system success in off-nominal
situations are incompletely-known, with incomplete assessments of safety, reliability and availability based on time-
consuming analyses and design processes that are based on multiple, often implicit, assumptions. As our designed
systems grow in capability and complexity, the understanding of off-nominal behavior in these systems will become
increasingly riddled with error and erroneous expectations, leading to systems that are actually less safe and reliable
than systems fielded today. Only by increasing the rigor with which we consider system behavior as a whole – and
off-nominal behavior in particular – can we improve our understanding of these systems, and make significant gains
in safety, reliability and availability. Using the Systems Modeling Language (SysML) we show how some basic
elelements of FM can be performed rigorously, and particular artifacts derived from a system model.

II. Modeling Off-Nominal Behavior
Systems are conceived, developed and designed with some defined purpose, expressed as a set of system

objectives. The set of system objectives, over time, can be described as the intended behavior of the system. A
realized system developed to accomplish these objectives has a resulting behavior that can be assessed to determine
whether the system meets these objectives. This resulting behavior is determined from the design and current

1 Technical Group Supervisor, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490, AIAA Senior
Member.

2 Software Systems Engineer, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490.
3 Technical Group Supervisor, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490, AIAA Senior

Member.
4 Systems Engineer, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490.
5 Systems Engineer, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490.
6 Systems Engineer, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490.

W

1

operational state of the system. Off-nominal behavior is defined as the class of system behaviors that are outside of
the boundaries of the intended behavior (based on purpose and objectives), or the expected behavior (based on
performance of realized system).

Developing a system requires an understanding of both the nominal (intended and expected) behavior and the
off-nominal behavior. However, all too often the focus is primarily on the nominal behavior, and the consideration
of the off-nominal behavior is an afterthought. This is evident in many systems engineering process descriptions,
that do not include (or only mention off-hand) guidance for consideration of off-nominal behavior. This leads to all
kinds of poor design choices and compromised/over-complicated behavior2. Including off-nominal behavior in a
system model provides a much richer and more complete understanding of the system behavior under all conditions.
However, the off-nominal state space is much larger than the nominal state space – capturing this in a way that
allows development of appropriate design mechanisms, without losing essential information, is difficult and time-
consuming. What we define as off-nominal behavior is only a convenient characterization of a class of system
behavior – it is only a defined subset of the possible set of state transitions within the system. When this subset is
ignored or addressed incompletely, the design of the system, and the understanding of its behavior, is also
necessarily incomplete.

Development of an integrated system model, used by the entire engineering team, has significant benefits over a
document-centered approach to system development3. In this conception, typical engineering artifacts are views of
the system model, instead of a set of documents with varying degrees of integration and connection to other
documents. Typical FM artifacts, such as a failure modes and effects analysis (FMEA) or fault tree analysis (FTA)
rely heavily on system descriptions such as block diagrams to define the components and sub-systems to which they
refer. Development of an integrated system model that allows explicit connections between block diagrams and
failure analysis artifacts has the potential to provide exceptional improvements in both the accuracy of the failure
analyses and the amount of effort necessary to develop and maintain the analyses. Further, while it is possible and
beneficial to merely include the results of failure analysis in the system model4, there is significant benefit to use the
relations captured in the model to derive FM artifacts. The former allows explicit cross-checks between the failure
analyses and the model structure, which significantly improves the ability of engineers to relate the two, but in the
end is only an improved way of storing the information derived from the analysis. We believe that a much more
powerful approach is to include the necessary relationships in the model, and to use these relationships to derive the
necessary FM artifacts from the model. In this way, a FMEA or FTA becomes just another view of the system in the
model, and is always current and consistent with the rest of the model. This approach enables significant
improvements in both the accuracy and development time required. Other researchers have pursued a similar line of
thinking by incorporating the necessary constructs in UML models5.

Modeling a system first requires an understanding of the specific purpose(s) the model is intended to support
(i.e., what questions is the model intended to answer?). By articulating the modeling need in this form, the conent of
the model and the effort to develop it can remain focused. Without a focus of this sort, the model can become
bloated with unnecessary and irrelevant information that takes time and attention away from the salient information.
In our work, we have focused on the following questions that are relevant for understanding and assessing off-
nominal system behavior:

1) What is the intended purpose of the system? (Describe system objectives)
2) How are system objectives protected? (Describe intended alternate options/mechanisms to achieve

objectives)
3) How are alternative options/mechanisms (behaviors?) implemented (Describe FM functions - detection of

off-nominal behavior, identification of cause, determination of appropriate actions)
4) How are FM functions allocated to system components?
5) What are the effects of non-intended behavior in the system?

In the model we have developed, we have focused on development of concepts and relationships that allow us to

reason about these questions and develop quantitative results. In this, we make use of mission ontologies developed
at JPL by the Integrated Model-Centric Engineering (IMCE) team, that inform these relationships and basic SysML
profiles that we utilize6. The general nature of SysML allows for many ways in which to represent concepts and
relationships used to describe systems. We recognize that our solution is but one of many possible representations,
but we have found significant utility in structuring our model in the manner described in the following section.

2

III. Concepts and Relationships
The concepts and relationships that we have found to be essential to modeling off-nominal behavior are

described in Fig. 1. In this figure, we show four basic concepts and the relationships of which we make use. These
concepts are activity, component, goal, and state variable. We use activity to document intent, the actions that
accomplish the intent of the system. In our model, we represent activity via SysML activity diagrams. Activity
diagrams allow us to show the flow of intended action and the data transferred between the defined activities.
Components are defined as blocks, and are intended to represent system elements at a given level of abstraction.
Using the IMCE mission ontology, there is a specific set of relationships between function and component. Namely,
that a component performs a function, and converse, that a given function is allocated to a component. In our
relationship diagram, the activities we define can be thought of as an instance of a given function, so we apply the
same relationship in our model. The set of system
components are documented in a SysML block definition
diagram, and swimlanes in the activity diagrams are used
to show the allocation of activities to components. Our
concept of activity contains a very important notion – goal
definition – that allows us reason precisely about system
intent and the boundary between intended and unintended
behavior. In our conception, each activity is really a
statement about the intended value of a given state
variable. We do not yet excplicitly include the notion of
time in our model, but otherwise this definition is intended
to match the conception of goal as defined in the state
analysis methodology7. A goal, then, is a constraint on the
value of a state variable over some time duration as
expressed by the order of a set of activities. Each activity
has a single goal associated with it, but there may be
multiple goals associated with each state variable. We
relate each state variable to a component in the system, where each component typically has a set of state variables
associated with it. This relation is captured in our model as a “characterizes” relations (as in “state variable X
characterizes component A”). This relation is stated in this form, rather than the more direct “is a property of”
relationship due to the multiple ways in which a set of state variables that describe a component could be derived.
For example, depending on what specific information is necessary to capture, one could describe the temperature of
a component as a single state variable (component A has temperature Y), or as a set of related state variables
(component A has temperatures Y1, Y2, Y3 and Y4). It is up to the modeler, and the questions being addressed by the
model, to determine which of these characterizations are appropriate to include at a given level of model abstraction.
These different characterizations are not incompatible, they are merely different ways of viewing the component
(similar to the way different coordinate systems can be used to represent the same spatial realtion).

We also develop views of the model that allow us to relate these four concepts in different ways. The standard
SysML views (activity diagrams, block definition diagrams, etc.) provide most of the utility we require, but we
develop additional views to better describe and document other specific relations. In particular, we make use of a
State-Effects Diagram (SED) to provide a graphical representation of the interrelations between state variables. The
interrelations are depicted using the "affects" relationship, which is an abstraction of a mathematical constraint that
couples state variables. The tail end of the relationship indicates the independent variable in the constraint, and the
head indicates the dependent variable. As the relationship between variables may be complicated, a single

mathematical constraint may
represent multiple "affects"
relationships. Figures 2 and 3
show a State-Effects Diagram
and how one of its "affects"
relationships is expressed as a
mathematical constraint8.

Figure 1. Concepts and Relationships

Figure 2. State Effects Represented in a SysML Internal Block Diagram

3

IV. Model of Behavior
In September of 2011, we began participating in a model-based systems engineering (MBSE) pilot to develop a

limited-scope SysML model of the proposed Soil-Moisture Active-Passive (SMAP) mission. A significant part of
this pilot was to develop
a model of the off-
nominal behavior of the
SMAP mission. The
focus of the effort was on
the behavior of the
mission during the
spinup of a large radar
antenna. A structural
model of the components
and subsystems of the
SMAP Mission (flight
system, instrument,
telecommunications etc)
was created, followed by
the development of a
model of the system behavior using activity diagrams. The structural and behavior models were integrated by

Figure 4. "Spinup and Orient" activity diagram

Figure 3. Affects Relationship Captured as a Constraint in a SysML Parametric Diagram

4

allocating functions to the components responsible for performing them (i.e. gyro performs attitude rate
measurement). We modeled the nominal sequence of events leading to spin up as SysML activity diagrams, using
swimlanes to allocate these activities to components. We were then able to decompose each activity into lower level
activities and map these to lower level components responsible for performing them, allowing functional
decomposition via an activity hierarchy.

An example activity to spinup an antenna is provided in Figure 4. The Spacecraft Bus erforms four sub-activities
in the course of the overall activity, “Receive Spinup Command”, “Detumble”, “Turn to Sun”, and “Turn to Nadir”.
The Instrument performs a single sub-activity, “Spin Instrument to Science Rate”. These sub-activities are allocated
to the Spacecraft Bus and Instrument components, shown using swim-lanes. The relationships between the
components of interest for this example are shown in the block diagram in Figure 5. Note that the Spacecraft Bus
and the Instrument are both parts of the Flight System, but they are just a subset of the total set of parts, the others
not being included for simplicity. The Reaction Wheels are components of the Spacecraft Bus, and the Instrument
motor is part of the Instrument. As described earlier, each component is associated with a set of state variables of
interest as well as a set of performed operations (e.g. activities that are allocated to the component via the swimlanes
defined in the activity diagrams). In the model, each state variable is represented as a “reference property” of a
component. Our choice to represent them as reference properties was a convenient way to show their relationship to
the components.

The state variables are a powerful means for understanding the causes and effects of failure modes. Figure 6

presents a notional state effects diagram for the components in the flight system. Using the relationships shown in
this diagram, we can determine how one component’s state variables are affected by another’s. For example, we see
that the angular rates (i.e. the three dimensional angular rate vector) of the Spacecraft Bus are affected by the
Spacecraft Bus angular accelerations, which are in turn affected by the Spacecraft Bus inertia, the torques from the
Reaction Wheels (“RW”s), and the Instrument’s angular accelerations. The torques from the RW’s are affected by
the wheels’ power draw, and so on. The “affects” relationships shown between the Spacecraft Bus and Instrument
angular accelerations are intended to be notional, representing the fact that the movement of one part of the
spacecraft will affect the other. To be truly correct, additional interconnecting “affects” relationships would need to
be drawn between the position, rate, and acceleration state variables for the spacecraft bus and the instrument. The

Figure 5. Block Definition Diagram for the Flight System

5

depth of the state effects diagram was
limited here for simplicity, but it is
evident that it can be elaborated much
further. For example, we could
connect the Power Draw state
variables with other state variable
from SMAP’s power subsystem, or we
could connect the Spacecraft Bus
inertia to any state variables of moving
components elsewhere on the
spacecraft. Thus we need not limit
ourselves in scope to just looking at
one subsystem on the spacecraft.

V. Application to Representative
System

With the simple SMAP model defined above, we can begin
to apply our defined concepts and relationships to derive
information relevant to off-nominal system behavior.
Characterization of the failure space is a key element of
defining a fault management solution, and is necessary to
determine coverage and completeness of a given fault
management design solution. Typical methods for
characterizing the failure space are Fault Tree analysis (FTA)
and Failure Modes and Effects Analysis (FMEA). First we will
show how a FMEA can be generated from the model.

In our model, every nominal activity is allocated to a
component and each activity is associated with higher and/or
lower level activities. To build the FMEA, we looked at each
component and listed all the activities allocated to it. The
identification of activities is shown, generically, in Figure 7.
Each activity defines an intended outcome, and we define the
inability to perform that activity as the defining characteristic
of a failure mode. We applied this approach by using the logical negation of each activity (“Failure to Spin-up”
instead of “Spin-up”) to define the set of failure modes for a each component of the system. These failure modes can
be seen in Figure 8. This table organizes the failure modes as follows; each row lists the component of interest
followed by a state variable then a failure mode. We include the state variable in our FMEA table to highlight the
important role of state in our approach. Note that not all state variables associated with a given component are
associated with a unique failure mode; if there are multiple activities that constrain a state variable, multiple failure
modes will result. In this sense, a failure mode reflects an inability to constrain a state variable (or multiple state
variables) in an intended way. A FMEA generated in this way is only as complete as the set of activities defined in
the model. An incomplete model will result in an incomplete FMEA. The benefit of this approach, though, is that
system functionality (intent) is directly linked to the FMEA, and changes to the system design or intended
functionality change the FMEA in a precise and direct way.

Figure 7. Collection of Activities Allocated to
a Component

Figure 6: State Effects Diagram for the Flight System

6

Identification of the failure modes is only the
first step in the development of a FMEA. To
make the FMEA complete we need to include
cause and effect information. In general, the
information contained within a FMEA is more
accurate for immediate failure effect or failure
symptoms, but often becomes progressively more
inaccurate the further away the effect is from the
originating component. This is because the
methods used to determine the downstream
effects can vary depending on the FMEA analyst
or designer that contributes to the writing the
English- language text descriptors9. We can use
the SED to determine possible causes and effects
of the failure modes in our FMEA. An FMEA is
shown in Figure 9 with this information included. Again, in this example we consider a failure mode to be an
inability of a given activity to constrain a state variable to a desired range (over time?). We can determine causes for
the state variable being out-of-range by observing what other state variables affect it. For example, the state variable
associated with failure mode “Failure to Detumble” is “Spacecraft Bus Angular Rates”. These angular rates will
only go out of range due to off-nominal accelerations. These accelerations could be caused by a lack of knowledge
about the SCB inertia tensor, bad torques from the reaction wheels, or unexpected perturbing accelerations of the
Instrument. We could continue to trace these effects threads, but we chose to only trace effects to either a leaf on the
SED or first state variable after a change in abstraction level in the component hierarchy. Additional work is
required to determine an approach that includes an appropriate level of causal information. Hence, causes for
“Failure to Detumble” can be traced through its constrained state variable to the four state variables listed under
“Causes” in the second row of Figure 9. If desired we can even trace the state variables all the way down to the
Power Draw state variables. At this point however it suffices to use “RW’s unable to provide necessary torque” as a

proximate cause. Note in this example we have only defined a failure mode for each defined activity. We expect that
there is additional utility in including variants of failure modes, further distinguished by either the cause or the
effect. For example, it is often useful in a FMEA to make a distinction of this sort to identify different responses that
are intended to mitigate a given failure mode.

We can also use the same approach to determine the downstream effects of a failure mode by tracing state
variable “affects” relationships. For “Failure to Detumble”, we see that the spacecraft bus angular positions are
affected by our rates state variables, hence an effect of this failure would be that the spacecraft bus is unable to
control its angular positions sufficiently well. This is only a notional example, considering that rates can be
integrated to yield positions, but nonetheless it does illustrate that effects in the FMEA can be determined in exactly
the same way as causes. Using the “affects” relation between state variables allows both an initial cut of component
failure mode causes and effects; however in theory a completely exhaustive specification of the state effects within a
overall system would allow the FMEA to be complete, capturing all possible causes and effects.

Figure 9. Full FMEA Derived from Information in System Model

Figure 8: Basic FMEA for SCB and instrument

7

VI. Future Research and Development
This work described here only scratches the surface of the possible applications of modeling off-nominal

behavior. Determination of the relevant concepts and relationships needed to derive a FMEA only required a small
set of relevant concepts and relationships. Other typical FM artifacts, and the ability to perform other analyses
require additional concepts and relationships to be defined. In particular, we are interested in generation of fault
trees, success trees and reliability block diagrams directly from the system model, and querying the information in
the model to assess the completeness and effectiveness of the FM functionality. Ultimately, we intend to develop a
SysML profile that captures these concepts and relationships and allows effective and consistent application within a
system model.

We have performed some preliminary work in two areas – fault tree generation and representation of redundancy
– that are important to our future goals. In each area, described in additional detail below, we have developed some
initial insights and as well encountered some difficulties.

A. Fault Tree Generation
In addition to the generation of an FMEA, one of our initial goals was the generation of a fault tree using the

system behavior model. Our behavior model includes the nominal activities of the mission, so our first approach
was to negate all the activities and turn this into our fault tree. We were able to write a script that could
automatically do this by assuming that a failure of an activity leads to the failure of the higher-level activity. Each
lower level activity in turn is composed of
even lower level sub-activities that complete
the leaves of the fault tree. Figure 10 shows
the output of this script in XML. This
approach gives a rough cut at a fault tree, but
has a number of weaknesses. For one, we
have not distinguished between activities that
are necessary for mission success and simply
desired. For this reason, every activity in our
activity hierarchy shows up in the fault tree
as an “or” leaf. A priority for us moving
forward is to identify and distinguish these
necessary activities from the non-necessary
ones and apply this to our fault tree.

This approach also leaves out a number of relationships we have in the model that can lead to a more complete
fault tree. The three relationships we have identified, as shown in Figure 11, are the activity hierarchy, state
elaboration, and component allocation. Our initial approach was to use the activity hierarchy, but as discussed
above, this was insufficient. The state elaboration method takes advantage of the relationship different state
variables have to one another. Each activity in the model is defined as a constraint on a state variable. We can use a
state-effects diagram to show the relationship all of these states have to one another. Using these relationships, we
are able to identify faults that lead to the failure of an activity. Each activity in the model is also allocated to a
component, which is made up of sub-
components. The failure of a component
will cause an activity to fail, as will the
failure of a sub-component. This allows
a third way of showing the faults that
make up a fault tree. Each approach by
itself might fail to provide a complete
fault tree, but each can be used as a
cross-check on the others to find the
complete set of faults. We have made
some attempts to include the state
elaborations and component allocations

Figure 10: XML Output of a Fault Tree—Failure of any

activity leads to the failure at a higher level

Figure 11: Types of faults that can cause the failure of an activity

8

in our fault tree, but have not yet formalized the effort. Our future work is to make a more complete fault tree using
all three relationships to cross-check each other.

B. Representation of Redundancy
Capturing system redundancies in a system model is crucial for FM as mission-critical hardware generally has a

fully redundant assembly (two flight processors, extra reaction wheels, etc). Capturing physical redundancies is
necessary for bookkeeping, like mass budgeting, but even more important for expressing contingency plans: if the
flight processor experiences a failure, swap to the secondary flight processor. Although we are still working on
formalisms for capturing functional redundancies, our pattern for capturing physical redundancies seems sound.

In SysML, physical redundancies are usually represented in the form of multiplicities. SysML has only a very
limited expression of multiplicities. Multiplicities are a part of the SysML language that express, as a number pair,
the minimum and maximum cardinality of a property. We can therefore create a SpacecraftBus (Bus) and a
ReactionWheelAssembly (RWA) and say that Bus has exactly 4 RWAs.

Multiplicities are insufficient because if they are used, there is no way to indicate that RWA[2] is responsible for
performing a behavior. Allocating a behavior to the type RWA allocates the behavior to all RWAs, and allocating
instead to the part property RWA[4] allocates the behavior all 4 of our RWAs, neither of which is the desired
allocation.

We decided that multiplicities were not a sufficient representation of redundancy in our model We decided that
we could not use multiplicities in our model. To solve this problem, we created a template RWA and created 4
specializations RWA1 through RWA4. This way, if we needed to allocate behavior to RWA1 specifically, we
could. The RWA template had all properties and relationships that were common to all RWAs. Each of the RWA
singletons specialized the parent and completely redefined all inherited properties (a process we are calling
Symmetric Redefinition). The Multiplicity Pattern is the idea that the modeler should be able to represent a
relationship and its cardinality and that the tool (via some script) should transform that multiplicity into n Part-
Specific Types. Part-Specific Types are generated via a process called Symmetric Redefinition which recursively
specializes and redefines all elements in a tree from a specific node (in this case, SRMultiplicityChild).

Unfortunately, the multiplicity solution is very modeling intensive. JPL has created a plugin to our modeling

environment to aid in automating this process.

Our issues with multiplicities also made apparent the need for a Group. In SysML, there is currently no good

way to show that a combination of elements is needed to do something. For example, any 3 of the 4 RWAs are
needed to “Detumble” the Bus. Another missing concept we found was that of a Variant. Variants represent trade
options and would be helpful for configuring analyses and documenting the rationale behind trades. For example, a
FlightSystem with 5 RWAs. Groups and Variants are being discussed at OMG10 and will (hopefully) be added to
the SysML specification in a later release.

Figure 1: The Multiplicity Pattern, Part-Specific Types and Symmetric Redefinition

9

VII. Conclusion
Fault Management is an essential part of the system engineering process that is limited in its effectiveness by the

ad hoc nature of the applied approaches and methods. Providing a rigorous way to develop and describe off-nominal
behavior is a necessary step in the improvement of fault management, and as a result, will enable safe, reliable and
available systems even as system complexity increases. The basic concepts described in this paper provide a
foundation to build a larger set of necessary concepts and relationships for precise modeling of off-nominal
behavior, and a basis for incorporating these ideas into the overall systems engineering process. The simple FMEA
example provided applies the modeling patterns we have developed and illustrates how the information in the model
can be used to reason about the system and derive typical fault management artifacts. A key insight from the FMEA
work was the utility of defining failure modes as the “inverse of intent”, and deriving this from the activity models.
Additional work is planned to extend these ideas and capabilities to other types of relevant information and
additional products.

Acknowledgments
The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration. We wish to acknowledge the
the JPL Engineering Science Directorate, and Office of the Chief Engineer, for providing enabling support for the
performing the MBSE pilot, SMAP flight system engineering team for their time and support, and the technical
support of Sandy Friedenthal, Steven Jenkins and Robert Rasmussen in working out the essential concepts and
appropriate modeling representations.

References

1 Johnson, Stephen B., and John C. Day, “Conceptual Framework for a Fault Management Design Methodology,” AIAA
Infotech Conference, Atlanta, Georgia, April 2010; AIAA paper 227006.

2 Rasmussen, R.D. 2008. “GN&C Fault Protection Fundamentals”, 31st Annual American Astronautical Society Guidance,
Navigation, and Control Conference, AAS 08-031, Breckenridge, Colorado, February 1-6, 2008.

3 reference Bayer paper - Bayer, T.J.,  Bennett, M. ; Delp, C.L. ; Dvorak, D. ; Jenkins, J.S. ; Mandutianu, S, “Update -
concept of operations for Integrated Model-Centric Engineering at JPL”, IEEE Aerospace Conference, Big Sky, Montana, March
2011.

4 Day, John C., Murray, Alexander X., and Meakin, Peter, “Toward a Model-Based Approach to Flight System Fault
Protection”, IEEE Aerospace Conference, Big Sky, MT, 2012

5 Pai, G., Dugan, J. B., “Automatic Synthesis of Dynamic Fault Trees from UML System Models”, Proceedings of the 13th
International Symposium on Software Reliability Engineering, 2002.

6 Rouquette, N., Jenkins, S., “Transforming OWL2 Ontologies into Profiles Extending the SysM L ”, 12th NASA-EST
Workshop on Product Data Exchange, Oslo, Norway, May 2010.

7 Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State Analysis
and the Mission Data System”, AIAA Intelligent Systems Technical Conference. Chicago, IL. September 2004 .

8 Bennett, Matthew B., Ingham, Michel, Jenkins, Steven, Karban, Robert,  R ouquette, N icola
Ontology for State Analysis: Formalizing the Mapping to SysML”, IEEE Aerospace Conference, Big Sky, MT, 2012

9 Day, John C., Murray, Alexander X., and Meakin, Peter, “Toward a Model-Based Approach to Flight System Fault
Protection”, IEEE Aerospace Conference, Big Sky, MT, 2012

10 http://www.omg.org/issues/sysml-rtf.open.html#Issue14827

10

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bennett,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Delp,%20C.L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dvorak,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jenkins,%20J.S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mandutianu,%20S..QT.&newsearch=partialPref

	Modeling Off-Nominal Behavior in SysML
	I. Introduction
	II. Modeling Off-Nominal Behavior
	III. Concepts and Relationships
	IV. Model of Behavior
	V. Application to Representative System
	VI. Future Research and Development
	A. Fault Tree Generation
	B. Representation of Redundancy

	VII. Conclusion
	Acknowledgments
	References

