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The National Aeronautics and Space Administration (NASA) Space Communications 
and Navigation office (SCaN) has commissioned a series of trade studies to define a new 
architecture intended to integrate the three existing networks that it operates, the Deep 
Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one 
integrated network that offers users a set of common, standardized, services and interfaces.  
The integrated monitor and control architecture utilizes common software and common 
operator interfaces that can be deployed at all three network elements. This software uses 
state-of-the-art concepts such as a pool of re-programmable equipment that acts like a 
configurable software radio, distributed hierarchical control, and centralized management 
of the whole SCaN integrated network.  For this trade space study a model-based approach 
using SysML was adopted to describe and analyze several possible options for the integrated 
network monitor and control architecture. This model was used to refine the design and to 
drive the costing of the four different software options.  This trade study modeled the three 
existing self standing network elements at point of departure, and then described how to 
integrate them using variations of new and existing monitor and control system components 
for the different proposed deployments under consideration. This paper will describe the 
trade space explored, the selected system architecture, the modeling and trade study 
methods, and some observations on useful approaches to implementing such model based 
trade space representation and analysis. 

I. Introduction 
riven by requirements to provide its users with an integrated network offering common services, to improve the 
level of system integration and re-use, and to reduce operations costs through higher level of automation, the 
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National Aeronautic and Space Administration (NASA) Space Communications and Navigation (SCaN) office has 
been studying a number of candidate integrated space communications system architectures.  SCaN’s three existing 
network elements, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN),have 
evolved independently since their initial deployment, starting more than 45 years ago.  When users only need one of 
these three network elements having separate service types and interfaces has not been a major problem. Some users 
apparently prefer to have simple, socket, or even radio frequency (RF), interfaces that meet only their minimum 
requirements for data delivery.  However, for the 20-30% of users who have on-going requirements for more than 
one network element, and sometimes for all three, it is challenging to obtain services in a consistent way.  Reducing 
the added complexity for these users, as well as responding to SCaN’s programmatic requirements to modernize its 
services, provide new capabilities, including common, internationally interoperable interfaces and space 
internetworking, and reducing operational costs are the primary drivers to move toward a more integrated future 
architecture. 

 The SCaN Integrated Network Architecture (INA) is essentially a System-of-Systems (SoS), to be composed of 
the three existing networks.  To represent this integration, these three networks are now referred to as elements of 
the INA: the Deep Space Element (DSE), the Earth Based Relay Element (EBRE) and the Near Earth Element 
(NEE).  A series of Analysis of Alternative (AoA) trade space studies have been conducted to analyze this problem 
and to successively prune the possible trade space. The details of this new architecture, and the outcome of the first 
several cycles of trade studies have been reported separately at this conference in the paper “NASA Integrated Space 
Communications Network” by Tai, Wright and Bhasin1.  This paper will describe the specific study cycle that 
explored the integrated network monitor and control software architecture, present the selected Network Control 
Software (NCS) system architecture, describe the modeling and study methods, employed and offer some 
observations on useful approaches to doing such model based trade space representation and analysis.  

A model-based system engineering (MBSE) approach using the Systems Modeling Language (SysML™)2 for 
representation was adopted by the trade study team to define, at a sufficient level of detail, several options for 
implementing the network monitor and control architecture. A multi-center team drawing on modeling expertise and 
Subject Matter Experts (SME) from three NASA centers, Jet Propulsion Laboratory (JPL), Goddard Space Flight 
Center (GSFC), and Glenn Research Center (GRC) performed this study. The SysML™ model was used to describe 
the integrated system, to evaluate the candidate architecture alternatives, and to support the costing of the four 
different software options. This trade study modeled the three existing self-standing network elements at Point of 
Departure, (PoD, roughly the expected states of the network elements by 2015) and then described how to integrate 
them using various combinations of new and existing monitor and control system components for the four candidate 
deployments.   

II. Architecture Trade Study Overview 
A set of trade study cycles has been defined to deal with a broad range of optimization topics for the SCaN 

Integrated Network.  The problem is inherently one of system-of-systems design and optimization.  The studies have 
dealt with topics like the level of integration, level of hardware / software commonality, physical deployment 
(distribution / centralization), system operability, and ease of use.  A core challenge is that there are very different 
mission and operational models, and different kinds of physical communications assets, in the three network 
elements.  The communications assets in the EBRE (Tracking Data Relay Satellite (TDRS) spacecraft and 
essentially static ground stations), the NEE (small-medium antennas with a fast slew rates for near Earth 
communications), and DSE (large, but slow moving, antennas for deep space with sensitive receivers and powerful 
transmitters) are distinct and focused on their particular communications regimes.  In addition to addressing how to 
integrate these diverse assets, each cycle of trade studies has investigated one or more major topics and then 
recommended an outcome (possibly with variations), which pruned the trade space.  The initial trade space study 
cycles cover: 

 
• Cycle 1: Evaluate vastly different physical deployments of service execution and integrated network 

management system elements, highly centralized vs highly distributed; evaluate COOP impacts 
• Cycles 2-3: Evaluate different network control software / system architectures, evaluate COOP and security 

impacts; evaluate different network control team organizations 
• Cycles 4-5: Evaluate different planning and scheduling system approaches; evaluate different planning and 

scheduling team processes and organizations 
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The results of each cycle have fed forward into the next, and at each successive step the previous cycle’s results 
were adopted as a baseline.  Each cycle of studies also adopted stated assumptions about elements external to the 
study focus until those system elements could be studied in turn.  This paper discusses the data system architecture 
results, methods used, and observations from, the Cycle 2-3 study. 

Each of the trade spaces are inherently multi-dimensional, involving three separate network elements, each with 
its own PoD architecture and each including with multiple candidate future options that typically ranged from those 
are very similar to PoD, i.e. as-is architectures, to those that are very different from the current architecture..   

Each of the trade study cycles was initiated by producing a guiding document that typically covered the 
following topics in a compact form: 

1. An overall process flow for the trade study 
2. A description of each of the separate parts of the study e.g., software, hardware, operations 
3. Statement of the purpose and objectives of each part of the trade study 
4. Any assumptions and constraints 
5. The scope of the study, typically related to the baseline functional overview 
6. Description of how the network and system elements mapped into the trade study 
7. Definition of the trade space options to be considered 
8. Description of the approach to be used for the trade study 
9. Team composition, duration, and planned schedule for the effort 

 
The results of each of the trade studies have been documented in a combination of presentation materials, 

SysML™ models, costing spreadsheets, and a trade study end of cycle report.  Each of the cycles has also had at 
least two reviews by two separate boards, one composed of SCaN leadership and a second one composed of 
stakeholders from the network elements and the mission user community. 

The Cycle 1 trade space models used a combination of presentation diagrams (in PowerPoint™) to model the 
system options and Excel spreadsheets to do the costing.  PowerPoint™ is convenient and familiar, but its 
limitations for doing complex system modeling quickly became evident.  Any changes anywhere in the “model”, to 
use the term very loosely, caused changes to that had to be propagated throughout the set of slides.  This was an 
entirely manual effort that was found to be highly subject to transcription errors and prone to discrepancies.  As a 
modeling tool it offers no framework or support other than drawing objects.  

Starting with the Cycle 2 studies, in March 2011, the team agreed to adopt SysML™ and to use a common 
implementation of it NoMagic’s MagicDraw™ modeling tool.  A Teamwork server was set up where it would be 
securely accessed from anyone at a NASA center.  This adoption of a common toolset and a “single-source-of-truth” 
model repository was essential to support the work of the distributed, multi-center, team.  The goal of this modeling 
effort was to develop sufficiently accurate system hardware and software representation models (using SysML™’s 
Block Definition Diagrams and Internal Block Diagrams) to clarify understanding of the options, support analysis of 
alternatives, and support costing efforts.  This involved producing PoD and integrated network models for the 
identified options.  Operations functional models (using SysML™ activity diagrams) that relate to the system 
models were also developed, but these are described separately.  A secondary intent of this modeling effort has been 
to support evolution of the architecture models to support future study cycles and to provide some level of objective 
analyses of model completeness and complexity.   

III. Network Monitor and Control Architecture Trade Study 

A. Initiate the Trade Study Cycle 
The outcome of Cycle 1 was to adopt a common set of Integrated Service Execution (ISE) hardware and 

software derived from the next generation EBRE system development that is now underway, called the SN Ground 
Segment Sustainment (SGSS) Project.  The selected option, ISE-1, assumes that each ground station site, with one 
or more antennas, will have a pool of re-programmable equipment that acts like a configurable Software Defined 
Radio (SDR) and will do data delivery using Consultative Committee for Space Data Systems Space Link Extension 
(CCSDS SLE)3 and Cross Support Transfer Services (CSTS)4 services directly to and from the ground station site to 
the users.  This system architecture also includes a hierarchically distributed monitor and control framework, along 
with centralized network scheduling and planning. As with each of these trade studies there remain some open 
questions regarding suitability of this architecture for all of the operational domains of interest.  In this case a key 
issue is applicability of this particular SDR approach for sensitive, low SNR, deep space signal processing.  
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The Network Control Software (NCS) study assumed the ISE-1 outcome from the first cycle and that some form 
of centralized service management (planning, scheduling, and user interface portal) would be adopted.  The details 
of this were deferred to the next trade study, Cycle 3-4.  The scope of the NCS trade study, Cycle 2-3, was to: 

– Assess the benefit of common software for network monitor and control of the three SCaN network 
elements. 

– Determine the optimum degree of commonality for the network monitor and control software. 
– Assess the potential use/reuse of the EBRE developed network monitor and control software for the other 

two SCaN network elements:  NEE and DSE. 
 
For the network monitor and control architecture study four different trade space options were identified, as 

shown in Table 1. These are differentiated by the degree of integration and commonality of software, they range 
from use of a common network control framework, to common interface software, to protocol translating gateway 
approaches. 

Table 1: Network Control Software Option Descriptions 
 

Software Alternatives Description 

Option 1 
(NCS-1) 

Common network 
control framework 

Common software framework for the entire network control functionalities 
across all network elements, i.e., EBRE, NEE, and DSE. Such a software 

framework includes common code providing generic network control 
functionality, but can be selectively adapted or specialized by network 
elements, thus accommodating network asset-specific functionality. 

Option 2 
(NCS-2) 

Common network 
control interface 

Common software components (within the network control function) that 
provide the interfaces with human operators, service management, and user 

mission elements. 

Option 3 
(NCS-3) 

Central gateway A singly implemented and centrally deployed gateway that functions as the 
single interface point (for the network control function) with the service 

management and user mission elements.  The gateway performs necessary 
protocol conversions for the dissimilar and network asset-specific network 
control interfaces at the various network elements, i.e., EBRE, NEE, and 

DSE. 

Option 4 
(NCS-4) 

Network element 
gateway 

Multiply deployed gateways that function as the interface points (for the 
network control function) with the service management and user mission 

elements through common interface protocols.  The gateway at each network 
element, i.e., EBRE, NEE, and DSE, performs necessary protocol 

conversions for the dissimilar and network asset-specific network control 
interfaces in each element. 

 
For each of these options a simple diagram was produced to describe how these options differ.  Having this 

model was an important reference for the whole team because it was familiar and represented a high level point of 
agreement regarding system decomposition for each option.  Figure 1 shows an evolution of the initial model that 
was produced in order to more clearly identify the Network Control interfaces.  The model includes other elements 
than just Network Control, but the focus is upon those elements within the red dashed line. 

In this diagram the color-coding is significant.  The Service Execution elements look nearly identical because 
this is the ISE-1 conclusion. The Service Execution elements are all derived from the EBRE upgrade project.  The 
embedded green, yellow, and grey parts identify the asset specific elements for the DSE, EBRE, and NEE.  In NCS-
1 adoption of a common network control framework is assumed, but an instance is deployed in each network 
element. In the other three options, use of much of the existing asset specific NCS subsystems is assumed (green, 
yellow, grey), but different methods of interfacing these to the central service management and to the common 
service execution is assumed. 
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Figure 1.  Integrated Network Control Software Architecture – System Context Per Options  

B. Gather the Requirements and Background Materials 
 A key aspect of the network control trade study was to divide the task into three separate, parallel, but related 
activities: common network monitor and control software; integrated network monitor and control process; and 
integrated network monitor and control team structure.  Only the first of these trade study activities is described in 
this paper.   
 As a form of requirements gathering the whole trade study team started by surveying and then analyzing the 
mission and operational drivers on the existing systems:  

• Identify key mission operations drivers associated with different mission domains: 
– Sub-orbital, Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), Highly Elliptical Orbit 

(HEO), Lunar, Deep Space, Robotic Exploration, Human Exploration 
• Identify key characteristics of network monitor and control (in operational aspect) at three network elements 

present and future. 
• Assess commonality, differences, similarities, and dissimilarities for network monitor and control operations 

among the three network elements. 
– Analyze software ramifications 
– Analyze operational process ramifications 

C. Define the Modeling Approach 
The Cycle 1 study had used Microsoft PowerPoint™ and the benefits and issues of that that approach were well 

understood.  However, because of the complexity of this trade study, and because there was a belief within the team 
that a model-based approach would prove valuable we agreed to adopt this formal approach for this study cycle.  
The goals for the modeling effort were to: 

• Identify how to develop models that would support the trade study; and 
• provide sufficient design clarity; and 
• permit maximum re-use of elements. 
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Two of the three centers had already invested in the MagicDraw™ UML tool and the Teamwork model repository.  
There was also an existing level of expertise at these two centers.  Because of this, it was the obvious choice. 

However, the two groups of modelers had each adopted different UML profiles: one had been using the UPDM 
profile (based on DoDAF and MoDAF)5 and the other had been using the SysML™ profile. While the UPDM 
profile works well for operational models and high level views of architectures, its limitations for doing more 
detailed system and software views in this SoS trade space quickly became problematic.  After some trials, an early 
decision was made to abandon UPDM and to produce a SysML™ based model decomposition hierarchy that 
includes stereotyped system decomposition (system, system element, subsystem, SW module, SW component, SW 
unit) and operational decomposition elements (ops function, activity, task, action).  In the system decomposition 
hierarchy, below the subsystem level, there are also hardware elements parallel to the software ones (HW 
configuration item, HW component, HW unit). A common set of color codes was also adopted in the model to 
enable discrimination among components belonging to different system elements and to distinguish new and 
modified components from existing ones.  In the PoD diagrams the service management systems, for planning and 
scheduling, are shown as a yellow-green, the network control systems as a golden yellow, and the service execution 
systems as a blue-green. The modified versions are shown respectively as a darker green, orange, and purple. 

 
The architecture model itself is structured into three main parts: 

1. An information model with data objects and data structures 
2. A model library with a hierarchically decomposed set of components that could be instantiated, 

assembled, generalized, and specialized as needed 
3. A set of trade space options that each had their own multi-level decomposition with multiple views for 

overall system structure, element structure, logical composition, system deployment, and data and 
control flows 

While SysML™ provides a very good set of general modeling and representational primitives, it provides little 
guidance in how to define suitable views on the system, especially for the SoS trade space models.  To rectify this 
deficiency the functional, connectivity, and information views defined in the Reference Architecture for Space Data 
Systems (RASDS)6 were used to guide the development of suitable viewpoint specifications.   In particular, the 
following diagram types and objects were used to create the model views: 

• System software structures and data / control flows (function BDD structure and IBD composition) 
• System and software product line / variation points (function BDD generalization and specialization) 
• System deployment across multiple sites (site and function BDD showing allocation) 
• Software functional abstractions (abstract function activity and BDD generalization and specialization) 
• Information models (information object BDD) 

D. Define the Point of Departure Architectures 
In order to model and compare the candidate NCS architecture options a sufficiently accurate model of the PoD 

architectures of all three network elements was required as a baseline.  NCS-1 essentially presumes wholesale 
adaptation of the new EBRE architecture; NCS-2 presumes adaptation of the ERBE developed operator environment 
and integration with the evolved PoD asset specific network control architectures, and NCS-3, and -4 both presume 
re-use of the evolved asset specific PoD network control architectures.  The modeling team, and the SMEs, 
developed the set of PoD models.  The model for the EBRE version is much more comprehensive, in part because 
there was more documentation at the architectural level and in part because it forms such an important part of the 
forward planning for the system evolution in all of the options.  The PoD models for the DSE and NEE are less 
detailed, but these are presently operational and much better understood than the EBRE version that is still being 
designed.  

It was critical to adopt common terminology during the course of the trade studies.  While many terms are 
different than those used in the present three networks, but they are used here, in the PoD discussion, to make 
comparisons among the network elements clearer.  Some of these terms are used to associate functional capabilities 
with physical system entities.  There are three types of physical system entities for the integrated network, i.e., the 
ground station site (GSS), the Network Operations Node (NON), and the Integrated Network Operations Center 
(INOC).  Other terms, for common functions, data objects, operations and interfaces have also been defined. 
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1. EBRE PoD Architecture 
The EBRE PoD system architecture has several key elements and all of them were modeled at a common level 

of detail, derived from pre-PDR level presentations and documentation as source materials.  All of these elements 
were essential to an understanding of how the NCS parts of the system were to function; they were either parts of the 
control system, or parts of the system under control, or were in a supporting role to schedule execution.   

At a high level the EBRE system contains the following elements as shown in Figure 2: 
• Space Ground Link (SGL) - includes high power amplifiers, low-noise amplifiers (LNA), and frequency 

converters; User Services Gateway (USG) - includes SLE, CSTS and user data interfaces; Digital Signal 
Processor (DSP), Service Management (SM) – includes planning, scheduling, and schedule execution; 
Fleet Ground Management (FGM) – includes TDRS Telemetry, Tracking and Command (TT&C) 
operations and ground equipment monitor and control; Enterprise Infrastructure (EI) – includes hardware, 
network, storage, and display platform.  

• The new EBRE architecture uses a number of modern concepts, including a pool of shared, programmable 
servers (including blades servers and FPGAs), several high speed networks (10GigE), and a message bus 
based enterprise infrastructure. 

• Network control is primary at one site, with a nearby backup site and executable schedules good for several 
hours of operation are distributed to the GSS and periodically updated. 

• Planning and scheduling is centralized at the White Sands Complex (WSC).. 
• Service Management (SM) orchestrates the schedule execution and the delivery of user services. It provides 

the users with service management interfaces. 
• The Fleet Ground Management (FGM) element manages and controls the TDRS Fleet, and manages the 

Ground Segment hardware.  
• SGL, DSP and USG all have local Control Test and Monitor functions that accept service requests and 

provide service status on the control plane. The CTM also functions load software and configurations, 
report detected faults, and provide performance information. 

• The EBRE model has 2+ levels below that shown in Figure 2. 
 

 
Figure 2. EBRE PoD Level 2 Software Architecture 
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The EBRE deployment model has two primary sites that act as Network Operations Nodes (NON) that may each do 
network control. There are Ground Station Sites (GSS) collocated with the NONs and two other Ground Station 
Sites (GSS) that have antennas and run schedule execution, and do signal processing and data delivery.   The two 
sites with NONs also have GSS signal processing installations.  This is similar to the existing SN deployment 
architecture that has been previously described elsewhere 7. 
 
2. DSE PoD Architecture 
 For purposes of this study the DSE PoD system architecture is modeled as having three major elements, as 
shown in Figure 3.  In the DSE architecture many more subsystems are identified, but in the following list only the 
ones most relevant for this study as shown: 

• Service Preparation Subsystem (SPS) - includes the portal, planning, scheduling (SSS), predicts generation 
and asset management)  

• Network Monitor and Control (NMC) – includes the link builder, link control, execution automation, 
monitor data, operator interfaces) 

• Globally assigned and link assigned subsystems e.g. Antenna and Microwave (AMW), uplink, downlink, 
and related equipment 

• Service Quality Assessment subsystem (SQA) providing accountability, reporting, situational awareness 
• The DSE architecture uses a pool of equipment at each NON that is allocated as needed to a specific user 

link, along with equipment that is locally connected to each antenna e.g. LNA, transmitter, antenna control.   
• Network control is distributed, with local operations staff at each NON/GSS and a central monitor and 

control function that coordinates among the NONs as needed. 
• Planning and scheduling services are provided centrally at JPL, with distributed, collaborative user 

interaction. 
• at JPL. 
• The DSE model has 1+ levels below that shown in Figure 3. 

 

 
Figure 3. DSE PoD Level 2 Software Architecture 
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The DSE deployment model has three primary sites that act simultaneously as Network Operations Nodes (NON) 
and each has an associated Ground Station Site (GSS) with several antennas.  Each NON runs schedule execution, 
and does signal processing and data delivery.   The central JPL site at PoD will perform planning and scheduling 
functions, but is not expected to do any data handling other than routing of data to users in a hub and spokes 
physical network routing topology. 
 
3. NEE PoD Architecture 
 The NEE PoD system architecture is modeled as having three major elements, as shown in Figure 4: 

• Wallops Orbital Tracking Information System (WOTIS)  is the planning and scheduling system, co-located 
at WSC with the EBRE planners.  

• Hardware Control - Dewitt HWCtrl™, automated schedule execution driven by the schedule and 
configuration codes 

• Link assigned subsystems – e.g. Antenna and microwave, uplink, downlink, and related signal processing 
and data delivery equipment 

• The NEE architecture uses equipment at each NON that is assigned to each antenna e.g. LNA, transmitter, 
antenna control.   

• Network control is distributed, with local operations staff at each NON/GSS. 
• NEE also makes use of commercial antennas that are contracted services. 
• The NEE model is only at the level shown in Figure 4. 

 

 
Figure 4. NEE PoD Level 2 Software Architecture 

•  
The NEE deployment model has four primary Ground Station Sites (GSS) that each have one or more antennas 

and are controlled by a single Network Operations Node (NON).  The NON drives schedule execution using a 
simple script and signal processing is done at each GSS.   Most high-rate science data delivery is done directly to 
User Local Equipment (ULE) that is co-located at the GSS, with data returns arranged by the missions.  Some data 
is returned to the users using simple port/socket interfaces or via the Standard Autonomous File Server (SAFS) 
located at each GSS and at GSFC. The WSC site at PoD performs planning and scheduling functions using the 
WOTIS software.  The NON at WFF at PoD is not expected to do any data handling other than routing of data to 
users in a hub and spokes physical network routing topology. 
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IV. Trade Study Modeling Results 
The NCS Trade Study resulted in the selection of the NCS-1 option that makes maximal use of the SGSS 

software being developed for the EBRE.  The following salient features characterize the recommended SCaN 
Integrated Network Architecture: 

• Common service execution capabilities deployed and operational at all Ground Station Sites (GSSs).   
• Common network monitor and control capabilities deployed and operational at all Ground Station Sites 

(GSSs) and at the NONs that control them.   
• An INOC or Service Portal providing a single access point for service planning, service requests, service 

accountability reporting, service dispatching, and network monitor & control interfaces with the user 
missions 

 
In addition, the study team recommended that the following path be taken: 
• Proceed with an NCS-1 prototype to evaluate functionality and viability of SGSS-provided Schedule 

Execution, FGM, and CTM implementations for meeting DSE & NEE requirements. 
• If NCS-1 is deemed too hard to achieve due to cost and/or other circumstances, fallback to NCS-3, asset 

specific network control systems, retain common ISE, service management, & user missions interfaces. 
 
The following subsections are intended to serve two purposes; 1) to introduce, at each level, views of the NCS-1 

trade study option that was selected; 2) to describe how the model was constructed at each level so that the method 
we used is also described.  Section V will provide some additional notes on the method. 

In addition to the PoD models like the ones shown in Sec III, a number of other model artifacts and products 
were produced.  The NCS Trade Study required models for each of the four options, NCS-1 thru NCS-4, and each 
option set included an overview of the whole system, network element deployment views and 3 levels of system 
details.   

Each option included at least the following: 
1. Level 1 Integrated Overview 
2. Level 2 Deployment Model 
3. Level 2 Network Element (system) models 
4. Level 3 Subsystem Models 
5. Level 3 Component Specializations 

 
To enable easy and accurate development of these option specific models a library of model elements, subsystem 

specialization models, and models of the data objects and data structures composed from them was created.  These 
libraries of elements and data objects were essential to supporting the composability of the different options, i.e. one 
from column “A”, one from column “B”, and also for ensuring consistent use of components and data across all the 
models.  This approach has also proven extremely useful as a source of re-usable elements as we have moved into 
successive cycles of trade studies. 

A. Level 1 Integrated Overview 
 
The Level 1 integrated overview provides a high level view of how the system of systems is assembled from any 

central element, such as an Integrated Network Operations Center (INOC) and the re-engineered versions of the 
three network elements. 

Figure 5 shows the NCS-1  functional element decomposition of the SCaN integrated network control hierarchy 
at a very high level.  It shows the INOC for the INA that does planning and scheduling and connects to all three 
network elements using what is described as an INOC Protocol Interface, common to all three network elements.  
Only those SM system elements at each NON that do network control and directly connect using this protocol 
interface are shown on this view.  The relevant EBRE system element is Service Management, and it is modified to 
include this new protocol interface and also to offer the new services defined for the INA.  In this option each of the 
DSE and NEE also use a modified version of the EBRE INA SM system element to do network control at the NON, 
and these are specialized for those network elements and their particular services and user support requirements.   
This is similar to, but different from, the approach used in the EBRE PoD, and new services and interfaces will be 
added throughout the INA to meet future requirements.  
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Figure 5. NCS-1 Level 1 Integrated Overview 

 

B. Level 2 Deployment Model 
The next kind of model developed is the Level 2 deployment model for each of the network elements.  The 

deployment model is intended to describe the physical sites that perform the planning, scheduling, network control, 
and service execution functions allocated to them. 

Figure 6 shows the NCS-1 version of the DSE, showing the three DSE ground station sites, each of which 
include the NON functions (network control) and the GT functions (service execution and also local control).  The 
relationship between the INOC, assumed to be a single central site, and the distributed GSS is also shown.  In this 
option, for DSE, the assumption is that the network element is using a “follow the Sun” approach, where each of the 
NONs only has operations staff during the prime (daytime) shift for that site, and the control of the entire network 
element is handed-off from NON to NON during the course of the day.  The central NON, shown at JPL, only does 
coordination across the three GSS, performs high level monitoring and provides situational awareness of the whole 
network element.  It has no direct control over schedule execution. 

In Figure 6, the INOC, NON and GT each have a minimum level of internal structure shown, i.e. a parts list.  
Each NON has the same internal functional structure, though it is only shown for one instance.  The instances shown 
here are the EBRE developed system elements that are used commonly across the NCS-1. These elements are 
specialized, as needed, for the DSE and NEE and to add new services and interfaces.  Similarly, each GT has the 
same internal functional structure and includes the same sorts of network element specific specializations.  There are 
similar deployment models for all of the three network elements for each of the four NCS options. 

The internal structure of the parts shown in this diagram, and their derivation, is documented separately in lower 
level diagrams.  The NON includes the network control parts of the SM element and the central parts of the FM 
element.  The GTs each also have local network control derived from SM , the local FGM functions, and the adapted 
service execution functions derived from the SGL, DSP and USG. 

Other physical deployment views are also possible.  One example might be a view that shows the actual numbers 
of ground stations that are available at each GSS.  Another example might be to show the physical connectivity 
among the GS, GSS, NON, INOC, and the users.  These would use a different style of SysML™ diagram, such as an 
IBD, instead of the compositional BDD used for these deployment views. 
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Figure 6. NCS-1 DSE Level 2 Deployment Model 

C. Level 2 Network Element System Model 
Figure 2 showed a Level 2 view of the EBRE software architecture, representing all of the major elements of that 

software system, the high level control and data flows, and interactions with key elements that are outside the 
system and interface with it.   Often it is necessary to depict all of the functional elements in the system and how 
they are composed.  For this a different usage of a SysML™ BDD is used to show software composition. 

 

 
Figure 7. NCS-1 EBRE Level 2 System Composition Model 

 
The Level 2 system model in Figure 7 shows the composition of the EBRE software system, its system elements, 

and also the next level de-composition of those elements down to subsystems.  There are comparable model views 
for the DSE and NEE as well.  Successive diagrams in this same functional BDD composition style have been 
developed as needed to decompose the subsystems to lower level objects. 

Other Level 2 and 3 IBD diagrams, not shown here, provide representations of control and data flows within and 
among the system elements.  These diagrams look like Figure 2 in style, but are at the System Element level (Level 
3 in the model) and show the internal interfaces among the system modules in each element and the flows into and 
out of each system element from other modules external to the system element. 

Level 3 Sub-System Model 
In order to understand in sufficient detail how the INA Network Control Software is to operate a series of Level 

3 sub-system models were developed.  Network control essentially touches on all of the lower level subsystems that 
must be controlled in order to produce services.  This study assumed that there was a planning and scheduling 
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function in the INOC that produced an executable schedule and that a common set of service execution equipment 
was used to actually perform the services.   

In Figure 8 the Level 2 network control elements allocated to the NEE NON are decomposed down to Level 3  
network control functions .  These are derived from the SM network control and FGM central parts, and also include 
EI support elements.  There are similar views for the DSE and EBRE in the model. This particular view also uses a 
BDD compositional style, but other views (not provided here) show control and data flows in an IBD style.  There 
are three things of note here: 

1. The decomposition of the Level 3 elements described in Figure 7 is taken down to the next level of detail 
in Figure 8. 

2. Only those system elements deployed at a NON are shown.  This is a further elaboration of the 
deployment diagram in Figure 6.  There is a comparable GT diagram as well. 

3. The color-coding is used to indicate the components that require change (orange instead of golden 
yellow) in order to adapt the EBRE developed elements for use in the NEE context.  Many of these next 
level software modules are themselves described on specialization diagrams that provide more detail on 
the magnitude of the required changes. 

 

 
Figure 8. NCS-1 NEE Level 3 NON Network Control Composition Model 
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D. Component Specializations 
From a modeling perspective, one of the key aspects of this trade space model was to capture just what was re-

used, what was modified, what the extent of those modifications were, and how these modified elements would be 
combined to create the various trade space option configurations.  
The element libraries, described in Sec III.C were a key part of 
managing this part of the process.  Each of the system 
elements, the subsystems that compose them, the SW modules 
that compose them, and any lower level decompositions were 
created in the Element Library part of the model.  An example 
of this, showing the various elements modeled for the INA and 
the PoD is shown in Figure 9.  In reality the model was 
developed from the bottom up, by creating elements that were 
then composed to make higher level elements.  This is exactly 
the reverse of the description in this paper that starts at the top 
and then shows how the model is decomposed to lower layers.  
This top-down presentation of system composition is a very 
familiar way to explain system architectures, but the model is 
best constructed from the bottom up so that “atomic” building 
blocks may be used to compose higher-level components. 

Figure 9. Element Library Model Structures 
Figure 10 shows an example of a specialization diagram for the Service Management system element, which is 

the key element in the network control part of the system.  It was essential to be able to describe just which parts of 
this system element were to be allocated to the INOC, the NON, and the GT.  Further, it was essential to understand 
which parts of this system element needed to be modified in order to accommodate the different needs of the DSE 
and NEE . 

The yellow/green component at the top is the original EBRE SM element. The left yellow/green component is 
the subset of SM functions that are to reside at the INOC. The central group of golden elements are those sub-sets of 
the SM functions that are to be deployed at the DSE and NEE NONs (along with the NCS-2 specializations) and the 
right hand group is the sub-set to be deployed at the DSE and NEE GTs.  All of the variants for this SM system 
element are shown on one diagram, making it easier to understand the changes from one use to another. Similar 
specialization BDDs were produced in the Element Library for all of the components that needed to be decomposed 
or re-engineered in some way.  These modified components were then used to compose the option models. 

 

 
  Figure 10. Service Management (SM) Specialization 
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V. Some Thoughts About Trade Study Modeling  

A. Summary of the Modeling Approach 
The previous sections have described the approach used for this particular trade study using examples, along 

with some of the sorts of products and results that were produced.  This section provides some guidance on how to 
apply a generalization of this method to other trade studies.   

 
The fundamental steps are: 
1) Define the problem space and scope, per stakeholder concerns 
2) Clarify the set of designs and artifacts for be produced at a high level 
3) Define the overall modeling framework approach to be used 
4) Identify the kinds of design artifacts needed to answer the questions being posed by the key stakeholders 
5) Select the set of viewpoints to be used – e.g. functional, physical, logical, information, organizational, 

deployment, etc, and the set of views to be produced  
6) Define the trade space and element library model hierarchy and at least the top two levels of decomposition 

of the hierarchy 
7) Develop any necessary stereotypes, element types, color codes to mark model elements and for visual 

indication of element properties 
8) Define the major types of elements to be used in the views and create the necessary libraries of composable 

objects  
9) Define and refine the major elements that will be used to produce the trade space models  
10) Compose the trade space models 
11) Analyze the trade space models 
12) Do not be afraid to go back to earlier steps, even step 2 or 3, and refine the framework and the models until 

they are adequate to the task 

All of these steps were utilized in this trade study effort, including the last.  To paraphrase Frederick L. Brooks 
“Models are like waffles.  Be prepared to throw the first one away.”  Or, as George Edward Pelham Box stated, 
architects and modelers should remember that “all models are wrong, but some are useful.” 

B. Observations on Trade Space Modeling 
The initial impulse to adopt a formal modeling approach has paid off, and it has provided significant added 

benefits in the Cycle 4-5 trade studies that are now in progress.  The SysML™ methods can be very powerful and 
permit a lot of flexibility in how models can be constructed, if they are used resourcefully.  This flexibility is both a 
blessing and a curse.  As we have learned, casual uses of modeling methods may allow quick production of various 
artifacts (once the learning curve has been climbed), but these facile approaches do not necessarily lend themselves 
to easy re-use.  Quickly produced diagrams do not necessarily produce a good model.  Taking a more rigorous 
approach to developing the modeling framework takes more time, but better supports model composition, 
development of complex trade spaces, and re-use and refinement of model elements. 

There is an important distinction to be understood between the SysML™ models that were developed for this 
study and the Cycle 1 presentation style “architecture models” developed in PowerPoint™, Visio™, or other 
drawing tools.  On the surface both provide graphical views of the system being modeled and any of these tools can 
quickly produce drawings that represent systems elements, but these are just drawings. The boxes, lines, and 
connections have no intrinsic meaning in the tool.  In SysML™, however, the tool is actually producing a complex, 
multi-level, model, where each of the elements is formally defined, and where associated properties, composition, 
connections, and even behavior may be clearly articulated.  The real benefits are in the model; the drawings are just 
convenient representations or views of the model to aid understanding.  

The processes of system architecture modeling, and the tools that support it, have a significant learning curve.  
Training in SysML™ and a modeling tool that implements it, of at least a few days duration, is a great help in 
getting started with the methods.  Even with that there is a lot of “on the job training” that is required.  At JPL we 
are fortunate to have a growing cadre of experienced and beginning modelers, the Modeling Early Adopters (MEA) 
that forms a support community.  JPL has also invested institutionally in tools and some modeling infrastructure 
called Integrated Model Centered Engineering (IMCE)8,9. All of these provide a lot of support and a knowledge base 
to draw upon. 
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Formal models take some getting used to, for those who develop them and for those who are asked to review 
them.  We developed some simple guides and tutorial material, and used “Start Here” landing pages, overview 
pages, copies of the simple PPT graphics (using Content Diagrams), and hyper-linked icons within the model, and 
these have enabled easier model navigation.  A tutorial “Guide for the Perplexed” was also developed to gently 
guide reviewers through the HTML browser-readable version of the model that was periodically made available. 

In getting started with any architecture models, whether of single system designs or complicated, multi-
dimensional trade space modeling, attention to viewpoints and views is essential to produce readable and useful 
models.  This effort drew on the set of viewpoint specifications described in the RASDS, but other sets of 
viewpoints and views may be useful for different modeling efforts.  Operational activity models, in particular, may 
benefit from some of the DoDAF views.  Arriving at a common understanding of the INA terminology was also 
important, and there is a set of information views in the model.  To help the team grasp all of the concepts and their 
relationships a Mind Map was also produced and then translated into the formal model in SysML. 

While developing models for single systems is becoming a common practice, doing the sorts of trade space and 
System of Systems modeling that was required for this task appears to be less well understood.  There is little 
support for it or literature on how to implement it and very few worked examples have been published.  It requires a 
different approach to modeling than monolith system models, and we are still learning how to do it.  There is a 
challenge in finding an effective way to structure the model to effectively create the trade space models, and there is 
a challenge in identifying the right depth to drill down so that the model adequately discriminates among the 
options. What is clear is that these models appear to have a real value in helping distributed architecting and 
modeling teams document and understand complex system interactions and to explore a multi-dimensional trade 
space.  It appears that these models, while they are complex, can be used with some success to communicate the 
technical details of a complex trade space effectively, even to stakeholders untutored in modeling, if sufficient care 
is taken to explain the modeling concepts and to produce technically correct and visually accessible model that 
resonates for the users.. 

An area where more work can be done is in developing more comprehensive metrics from the model itself.  We 
did some experiments in applying the Operational Query, View Transform (QVTO) language10 to the models.  
QTVO scripts can assist in model analysis and developing size and complexity metrics, even if the model is not 
fully formed.  We applied QVTO and developed some completeness and connectivity measures, and also identified 
some initial assessments of complexity that allowed inter-option comparisons.  However, one of the things that 
hampered full utilization of this capability was the fact that the PoD models for DSE and NEE were at a different 
level of decomposition detail than those developed for EBRE.  As a result, quantitative comparisons across the 
NCS-2, -3 and -4 options that included large segments of the PoD DSE and NEE could not with certainty be 
compared with those that were more derivative of the EBRE systems.  This could have been rectified, given time, 
but since modeling, analysis, costing and scoring work that was done allowed NCS-1 to be selected (subject to 
verification through prototyping) the added investment was not made. 

Doing this type of MBSE trade study with a distributed team brings an added level of complexity.  Even with 
frequent use of teleconferences, email, and periodic face-to-face meetings this sort of effort is tough to organize.  
What helped a lot was partitioning the problem into systems and software parts and operational parts and allocating 
responsibility along these obvious lines.  This worked quite well once some of the fundamental differences in how 
the involved organizations worked had been resolved.  An early lesson was the need to adopt a single common 
modeling approach.  As noted earlier, one group had experience with DoDAF, the other with SysML™.  We tried a 
hybrid approach at first, but this proved un-workable because of limitations in the ability of UPDM to deal with the 
SoS trade space and also the model depth that was needed.  It is not clear if this is a limitation in DoDAF itself or in 
the MagicDraw™ implementation of the UPDM profile.  Even though the study was done completely within 
NASA, across NASA centers, we also discovered that institutional security policies may make shared modeling 
complicated, requiring firewalls to be traversed, using full tunnel VPNs and needing special user credentials.  Due to 
these remote access constraints, working on the models while on travel became an even more challenging problem 
for several of us. 

VI. Conclusions 
SCaN has a very challenging problem in trying to integrate three quite diverse networks that have operated as 

independent entities for decades.  There are technical, operational, functional, cultural and political issues to be 
resolved.  The adopted method of doing several cycles of trade studies, accompanied with the concomitant pruning 
of the trade space, has allowed the technical parts of the problem to be worked while also providing the 
organizations with an opportunity to come to terms with the proposed changes.  The modeling methods described 
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here have become an important part of analyzing the technical options and of driving the analysis of alternatives and 
the costing of the resulting designs.  While the designs are hardly at a level where they can be implemented they are 
at a sufficient level of detail to permit the salient features to be discriminated and to permit comparative cost 
analyses. 

Developing these complicated trade space models has been a learning exercise.  There is little in the published 
literature describing how to approach this sort of modeling effort.  But is it clear that there is a significant benefit, 
both to the technical team doing the studies and to the reviewers of the resulting design and analysis materials, in 
having clearly articulated models of these systems and of the possible options.  And as the next cycles have 
proceeded it is also clear that using modeling tools, with all the possibility of consistency checking, successive 
refinement, composability, and re-use has brought significant advantages. 
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Appendix A 
Acronym List 

 
 
AMW Antenna Microwave 
AoA Analysis of Alternatives 
BDD Block Definition Diagram 
CCSDS Consultative Committee for Space Data Systems 
COOP Continuity of Operations 
CSTS Cross Support Transfer Service 
CTM Control, Test, and Monitor 
DoDAF Department of Defense Architecture Framework 
DSE Deep Space Element 
DSN Deep Space network 
DSP Digital Signal Processor 
EBRE Earth Based Relay Element 
EI Enterprise Infrastructure 
FGM Fleet Ground Management 
FPGA Field Programmable Gate Array 
GRC Glenn Research Center 
GSFC Goddard Space Flight Center 
GSS Ground Station Site 
GW Gateway 
HW Hardware 
I/F Interface 
IBD Internal Block Diagram 
IMCE Integrated Model Centric Engineering 
INA Integrated Network Architecture 
INOC Integrated Network Operation Center 
ISE Integrated Service Execution 
JPL Jet Propulsion Laboratory 
LNA Low Noise Amplifier 
MBSE Model-Based System Engineering 
MEA Modeling Early Adopters 
MOC Mission Operation Center 
MODAF Ministry of Defence Architecture Framework (British) 
NASA National Aeronautics and Space Administration 
NCS Network Control Software 
NEE Near Earth Element 
NEN Near Earth Network 
NMC Network Monitor and Control 
NON Network Operations Node 
PoD Point of Departure 
QVTO Query, View, Transform, Operational 
RASDS Reference Architecture for Space Data Systems 
SAFS Standard Autonomous File System 
SCaN Space Communication and Navigation 
SDR Software Defined Radio 
SGL Space Ground Link 
SGSS SN Ground Segment Sustainment 
SLE Space Link Extension 
SM Service Management 
SME Subject Matter Expert 
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SN Space Network 
SoS System-of-Systems 
SPS Service Planning Subsystem 
SSS Service Scheduling Subsystem 
SW Software 
SysML™ Systems Modeling Language 
TDRS Tracking and Data Relay Satellite 
ULE User Local Equipment 
UML Unified Modeling Language 
UPDM Unified Profile for DoDAF/MODAF 
USG User Service Gateway 
WFF Wallops Flight Facility 
WOTIS Wallops Orbital Tracking Information System 
WSC White Sands Complex 
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 Appendix B 
Glossary 

 
Cross Support Transfer 
Service (CSTS) 

The CSTS standards define a generic framework for defining and implementing 
future SLE-style Transfer Services.  The toolkit will be a single 
recommendation specifying the common aspects of SLE Services, with Service 
Specific recommendations being defined as deltas to the common 
recommendation. 

Ground Station (GS) A ground-based station or terminal that performs space communications. 

Ground Station Site 
(GSS) 

A collection of one or more ground-based stations or terminals that performs 
some Service Execution functions local to the communication assets it is 
affiliated with, and some Network Control functions local to communication 
assets it is affiliated with. 

Integrated Network 
Architecture (INA) 

A unified space communications and navigation network infrastructure capable 
of meeting both robotic and human exploration mission needs. 

Integrated Network 
Operations Center 
(INOC) 

A centrally located operations center that performs some Network Control 
and/or Service Management functions for the entire Integrated Network, plus, 
in some options, some Service Execution functions. 

Network Control 
functions 

The INA functions for Network Scheduling, Network Asset Configuration & 
Control, Network Asset Monitoring, and Space Internetworking Management. 

Network Control 
Software (NCS) 

The INA software systems that perform network control functions. 

Network Operations 
Node (NON) 

An operation control center that performs some Network Control and/or 
Service Management functions dedicated to a network element (i.e., EBRE, 
NEE, or DSE). 

Service Execution 
functions 

The INA functions for Forward Data Delivery, Return Data Delivery, 
Radiometric Data Delivery, and Position & Timing. 

Service Management 
functions 

The INA functions for Service Planning, Service Request Scheduling, and 
Service Accountability Reporting. 

Space Link Extension 
(SLE) 

The SLE standards define a range of services that are required to configure, 
operate, and supervise the ground data systems used for space communications.  
They apply to data systems that are able 1) to receive CCSDS Space Link data 
structures from a spacecraft, or 2) to send CCSDS Space Link data structures to 
a spacecraft, or 3) to transfer such CCSDS Space Link data structures between 
ground-based entities. 

System Modeling 
Language (SysML™) 

The OMG systems Modeling Language (OMG SysML™) is a general-purpose 
graphical modeling language for specifying, analyzing, designing, and 
verifying complex systems that may include hardware, software, information, 
personnel, procedures, and facilities.  
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