Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a Systems Model

Bjorn Cole, Ph.D.
Seung Chung, Ph.D.
Jet Propulsion Laboratory,
California Institute of Technology

Bjorn.cole@jpl.nasa.gov
The Problem
What QVTo looks like

A simple transformation example (from The Art of Model Transformation with Operational QVT - Sergey Boyko, Radomil Dvorak, Alexander Igdalov; March 2009)

From Publically Available Eclipse 2009 presentation

```
modeltype ECORE uses 'http://www.eclipse.org/emf/2002/Ecore';
modeltype UML uses 'http://www.eclipse.org/uml2/2.0.0/UML';

transformation Ecore2Uml(
in inModel : ECORE, out outModel : UML);

main() {
inModel.rootObjects()[EPackage]->map
ePackage2Model();
}

mapping EPackage::ePackage2Model() : Model {
  name := self.name;
}
```
JEO: SysML-Simulink Power Simulation

Represents hardware in its entirety, including its parameters values, and its specified behavior, such as states.

Represents a broadcast trigger to cause the hardware to change state and thus consume a different amount of power.

Image Similar to Fig 2 from cleared paper URS # 225576
JEO: SysML-Simulink Power Simulation

The triggers from the last page are mapped to *transitions* between *states*. Each state contains a reference to what the *component* should be doing at this time, e.g., cooldown.

Image Similar to Fig 1 from cleared paper URS # 225576
JEO: SysML-Simulink Power Simulation

The component definition is the key to orchestrating all of these views.

The functions performed appear here and are the same as those from the State Diagram.

Finally, the power consumed while performing each function is given here, completing the map.

Image Similar to Fig 3 from cleared paper URS # 225576
JEO: SysML-Simulink Power Simulation

Individual Contributions

Power From Aggregate Loads
Simulink Generation chain automatically identifies variables given values in the SysML model (treated as “givens”)...

...as well as those without values, that the user is encouraged to modify
Composition MEL Rollup moves from top to bottom.

Work MEL Rollup looks for leaves and then gets count by looking up composition tree (e.g., 6 PDUs in this case).
What Does Transformation Buy?

• “Strong” transformation, where new models automatically spring entirely from older ones based only on definitions

• But “weak” transformation is still very useful, because it bootstraps information from old models into new ones
 – Synchronized by construction
 – Leverages redundancies for efficiency rather than getting bogged down in continuous synchronization and consistency efforts
Lessons Learned

- Good systems model is inherently multidisciplinary
 - Strong generalist with analytic skills
 - Specialist with discipline knowledge
- Requiring the systems engineer to provide data for execution by subsystem led to higher quality technical interactions than “give me your document”
- Computational sophistication runs into difficulties with human verification (how to “prove” that it is working) and validation
- It takes a lot of work to get a good system model – but much of this work is in *really* understanding the interfaces and approach (real systems engineering, not document shuffling)
- Be VERY careful to get your scope understood and locked in early or the model will run away from you!
Important Steps Forward

• Need to enlarge the QVTo community of practice if we intend to go forward with it as a technology

• Need to adapt transformation from a computer science “dark art” into systems-compatible thinking

• Start to categorize general classes of analyses to help with reusable transformation patterns
 – E.g., Geometric Finite-Element, Time Marching (ODE, Discrete Event), Parametric Web