
Limits on achievable dimensional and photon efficiencies with
intensity-modulation and photon-counting due to non-ideal

photon-counter behavior

Bruce Moision, Baris I. Erkmen, William Farr, Samuel J. Dolinar, and Kevin M. Birnbaum

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Dr., Pasadena, CA 91109

ABSTRACT

An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies
(PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper,
we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson
channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information

efficiency goes as e−ePIE

beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this
illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a
finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction
ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We
illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of
blocking with spatial spreading and filtering. Finally, we illustrate the design of a high photon efficiency system
using state-of-the-art photo-detectors and taking all these effects into account.

Keywords: optical communications, quantum-limited communications, photon-counting detectors, photon in-
formation efficiency

1. INTRODUCTION

An optical communications channel may be characterized by its efficiency in utilizing available resources to
transmit information. The resources of interest are the transmitted power and the bandwidth occupancy, or,
more generally, the number of dimensions (temporal, spatial, or polarization) occupied by the signal. Let C
denote the channel capacity, the maximum rate of information transmission, in bits per unit time. The power,
or photon, efficiency is given by

cp =
C

n̄s
(bits/photon)

where n̄s is the mean photon cost per unit time. Similarly, the dimensional efficiency is given by

cd =
C

M
(bits/dimension)

where M is the number of dimensions required to span the collection of signals that may be transmitted per unit
time. The bound on achievable pairs (cp, cd) is given by the Holevo limit,

cHol
d = (1 + n̄s) log2(1 + n̄s)− n̄s log2(n̄s)

cHol
p = cHol

d /n̄s

The largest cp demonstrations to date have utilized on-off-keying (OOK) with a photon-counting receiver, see,
e.g., Ref. 1–5. The OOK channel may be modeled as follows. In a channel use, a slot of duration Ts seconds,
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either a pulse is transmitted, with probability p (transmitting a ‘1’), or no pulse is transmitted, with probability
(1− p) (transmitting a ‘0’). In a pulsed slot we receive a Poisson-distributed photon count with mean ns (in a
non-pulsed slot we receive no counts). The capacity of this OOK channel is given by

COOK(0) = h2
(
p(1− e−ns)

)
− ph2(e

−ns) (bits/slot) (1)

where h2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. The photon and dimensional
efficiencies are given by

cOOK

p =
COOK(0)

pns
, cOOK

d = COOK(0)

Let

c∗d(c
∗
p) = max

(ns,p)|cp=c∗p

cd (2)

and let COOK(0) denote the convex hull of the collection of points (c∗p, c
∗
d(c

∗
p)) for the ideal, noiseless OOK channel.

At large c∗p, we have6

c∗d ≈ 2

e ln(2)
2−c∗p (3)

Hence cp can grow no faster than logarithmically in cd.

In this paper we discuss non-ideal system components and operating conditions that bound one away from
the theoretical limit given by (1), (3). The paper is organized as follows. In Section 2 we consider the impact
of background or dark noise, and show that, while noise does not strictly bound cp for the Poisson channel, it
effectively bounds it, as cd goes as e−ecp at large cp. In Section 3 we show that a finite transmitter extinction
ratio bounds the achievable cp, and discuss a demonstration of a high extinction-ratio transmitter. In Section 4
we briefly discuss detector jitter and illustrate that it limits the ability to mitigate noise. In Section 5 we discuss
the impact of detector blocking, methods to model it for arrays of detectors, and methods to mitigate it with
spatial spreading and filtering. Finally, in Section 6 we provide an example design of a high photon efficiency
free-space channel, taking into account the physical limitations discussed in prior sections, and using parameters
of current state-of-the art photo-detectors.

We model the photon-counting channel as follows. In Sections 2, 3, 4 and 5, we implicitly assume a detection
efficiency of one, so that each incident photon produces a photo-electron. Only in Section 6 do we explicitly take
into account the detection efficiency. We assume throughout that the background noise coupling into the photo-
detector is either zero, or that the number of noise modes is sufficiently large that the photo-detector output
is well modeled as a Poisson point process.7 Hence the results on the noisy channel may more properly be
attributed to the intensity modulated Poisson channel. Care should be taken in applying these results generally
to the photon-counting channel outside the region of zero noise, or where the Poisson approximation holds.
We show, for example, that the Poisson channel efficiencies are unbounded in the presence of noise, whereas
the Holevo limit is bounded, hence the Poisson approximation must break down at large photon efficiencies,
regardless of the number of noise modes.

2. NOISE

The first degradation we consider is noise. Noise (non-signal) photo-electrons will be present due to incident
background light or photo-detector dark noise. Let nb be the mean noise photo-electrons per slot. Let p1(k), p0(k)
denote the probabilities of k counts in a pulsed slot and non-pulsed slot, respectively. We have

p1(k) =
e−(ns+nb)(ns + nb)

k

k!

p0(k) =
e−nb(nb)

k

k!



and the OOK channel capacity in noise is given by8

COOK(nb) = −pE
(
log2

(
p+ (1− p)L−1(Y1)

))
− (1− p)E (log2 (1− p+ pL(Y0))) (4)

where L(y) = p1(y)/p0(y), E(·) denotes the expected value, Y1 ∼ p1 and Y0 ∼ p0. The photon and dimensional
efficiencies of OOK in noise are cOOK

p = COOK(nb)/pns and cOOK

d = COOK(nb). Let COOK(nb) denote the convex
hull of achievable pairs (c∗p, c

∗
d) defined by (2) for the noisy channel. Figure 1 illustrates COOK(nb), evaluated

numerically for nb ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}.
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Figure 1. Achievable PIE, DIE of photon-counting OOK in the presence of noise. COOK(nb), nb > 0, labeled with log10(nb).

2.1 Poisson channel cp is unbounded in the presence of noise

Let M = 1/p. For M a power of two, the OOK capacity with duty cycle p is bounded by the PPM capacity
with order M :8

COOK(nb) ≥ CPPM(nb) =
1

M

D(p1||p0)− EY log2
1

M

M∑
j=1

L(Yj)

 (bits/slot) (5)

where D(u||v) is the Kullback-Leibler distance between distributions u and v, Y = (Y1, . . . , YM ) is a vector with
Yi, Yj , i ̸= j, independent, Y1 ∼ p1 and Yj ∼ p0 for j ̸= 1. From Jensen’s inequality, this may be further lower
bounded as

CPPM(nb) ≥
1

M

D(p1||p0)− log2
1

M

M∑
j=1

E(L(Yj))


Now

E(L(Yj)) =

{
exp(n2s/nb) , j = 1

1 , j ̸= 1

and

D(p1||p0) = (ns + nb) log2(1 + ns/nb)− ns/ ln(2)

Hence

cOOK

p (nb) ≥ (1 + nb/ns) log2(1 + ns/nb)− 1/ ln(2) +
1

ns
log2

(
M

M − 1 + en
2
s/nb

)



The first term grows as log2(ns/nb) for sufficiently large ns. By choosing M = en
2
s/nb − 1, the final term goes

to zero for large ns. Hence cp can be made arbitrarily large for any nb. The single-mode Holevo capacity in
background noise is given by9

CHol(nb) = g(n̄s + nb)− g(nb)

where g(x) = (1 + x) log2(1 + x)− x log2(x), and n̄s is the mean photon number. For n̄s ≪ nb, we have

CHol(nb) = n̄s log2(1 + 1/nb) + o(n̄s)

Let cHol
p (nb) = CHol(nb)/n̄s, the Holevo photon-information-efficiency. This increases with 1/n̄s at large cHol

p (nb)
to the limit

cHol
p (nb) −−−−→

n̄s→0
log2(1 + 1/nb)

Hence cHol
p (nb) is bounded. Since the Holevo limit bounds any intensity-modulated photon-counting receiver,

the Poisson approximation must break down at large cp, for any number of noise modes.

2.2 Poisson channel cp is effectively bounded in the presence of noise

For nb > 0, the noisy PPM capacity may be upper bounded by10

CPPM(nb) <
1

M
(D(p1||p0)−D(p1̄||p0̄)) (6)

where

p1̄(k) =
e−(ns+Mnb)(ns +Mnb)

k

k!

p0̄(k) =
e−Mnb(Mnb)

k

k!

The noiseless PPM capacity is given by CPPM(0) = log2(M)(1− e−ns)/M . Since the divergence is non-negative,
and the capacity is decreasing with nb, we have the bound

CPPM(nb) ≤
1

M
min{D(p1||p0), log2(M)(1− e−ns)}

Hence

cPPM

p (nb) ≤ min
{
D(p1||p0)/ns, log2(M)(1− e−ns)/ns

}
(7)

cPPM

d (nb) ≤ min
{
D(p1||p0)/M, log2(M)(1− e−ns)/M

}
(8)

Consider (7). D(p1||p0)/ns is increasing in ns and is zero at ns = 0 whereas log2(M)(1− e−ns)/ns in decreasing
in ns and goes to log2M as ns → 0. Hence the bound is maximized over ns for fixed M when the terms are
equal, that is,

c̃p
def
= max

ns

min
{
D(p1||p0)/ns, log2(M)(1− e−ns)/ns

}
=

log2(M
∗)(1− e−n∗

s )

n∗s
(9)

where (M∗, n∗s) satisfy

(n∗s + nb) ln(1 + n∗s/nb)− n∗s = ln(M∗)(1− e−n∗
s ). (10)



Consider (8), and let

c̃d
def
= max

ns

min
{
D(p1||p0)/M, log2(M)(1− e−ns)/M

}
We’ll show that c̃d = c̃pn

∗
s/M

∗. Note that

∂

∂ns

(
log2(M)(1− e−ns)

)
) = e−ns log2(M) −−−−→

ns→0
log2(M)

∂

∂ns
D(p1||p0) = log2(1 + ns/nb) −−−−→

ns→0
0

Since the slope ofD(p1||p0) is increasing in ns, is zero at zero, whereas the slope of log2(M)(1−e−ns) is decreasing
in ns, and is positive at zero, and both functions go to zero as ns → 0, it follows similarly that c̃d is achieved
when the terms in (9) are equal, that is, that

c̃d = c̃pn
∗
s/M

∗

Let CPPM(nb) denote the collection of dominating pairs (cPPM
p , cPPM

d ) defined by (2), with P = 1/M . The pairs
(c̃p, c̃d), parameterized by (n∗s,M

∗) bound CPPM(nb). We are interested in the behavior of CPPM(nb) for large cp.
One can show c̃p increases without bound in n∗s. Hence the large c̃p behavior corresponds to large n∗s. From (9),
we have

M∗ = exp

(
c̃p ln(2)n

∗
s

1− e−n∗
s

)
and, from (10), at large n∗s/nb we have

c̃p ≈ log2(n
∗
s/nb)− 1/ ln(2)

n∗s ≈ nb exp(1 + c̃p ln(2))

Hence,

c̃d ≈ nbc̃p exp(c̃p ln(2) + 1) exp

(
−nbc̃p ln(2) exp(c̃p ln(2) + 1)

1− exp(−nb exp(c̃p ln(2) + 1))

)
(11)

and, although c̃p is not strictly bounded, c̃d falls off as e−ec̃p at large c̃p, so that, for practical purposes, we may
think of c̃p as bounded due to noise. Since the large cp asymptotes of PPM and OOK agree, (11) approximates
COOK(nb) at large cp as well.

3. EXTINCTION RATIO

Let P1 denote the average power emitted from the laser transmitter in the on state. Certain laser transmitters
emit some power P0 = P1/α in the off state, where α is referred to as the extinction ratio. We show here that a
finite extinction ratio bounds the achievable cp.

Let lp be the peak received signal photon rate and ld the received photon rate from all non-signal sources,
assumed constant. Let ls denote the mean signal photon rate, and p the duty cycle. Some of the average power
bleeds into the ‘off’ positions, so the relationship between the average and peak rates is

lp =
αls

p(α− 1) + 1

This channel is equivalent to a channel with peak signal rate l′p = lp(1 − 1/α) received in noise with rate
l′n = ld + lp/α. In order to obtain a bound on performance attributed only to the extinction ratio, suppose the



only photons received in the ‘off’ state are due to non-extincted signal photons, i.e., that ld = 0. The equivalent
channel then has mean signal and noise rates

l′s =
α− 1

α− 1 + 1/p
ls

l′n =
1/p

α− 1 + 1/p
ls

Let

ψ =
l′s
l′n

= p(α− 1)

the signal-to-noise ratio.

We consider two notions of the photon-information-efficiency for this channel. In the first, in computing the
photon cost we count all received signal photons (with rate ls), whether they fall in the signal slot or not. In
the second, in computing the photon cost, we count only those photons that fall in the signal slot–those that are
effectively received as signal photons (with rate l′s). Letting COOK denote the information rate, in bits/s, and
putting rates in units of photons/s, define

cp,0 =
COOK

ls
(bits/signal photon)

cp,1 =
COOK

l′s
(bits/effective signal photon)

For p < 1/e the information rate (the same for either units ) is bounded by10

COOK ≤ C̃
def
= l′s

((
1 +

p

ψ

)
log2(1 + ψ/p)−

(
1 +

1

ψ

)
log2(1 + ψ)

)
bits/s (12)

= ls

(
αp

p(α− 1) + 1
log2(α)− log2(1 + p(α− 1)

)
bits/s

We’ll consider the two cases separately.

3.1 Bits/Signal Photon

When all transmitted photons are included in the photon efficiency, we have

cp,0 ≤ c̃p,0
def
= C̃/ls

=

(
α

α− 1 + 1/p
log2(α)− log2(1 + p(α− 1))

)
Since

dc̃p,0
dp

=

(
α ln(α)− (α− 1)− p(α− 1)2

(p(α− 1) + 1)2

)
1

ln(2)

there is an optimum duty cycle,

p∗ =
α ln(α)− (α− 1)

(α− 1)2

with resulting maximum

max
p
c̃p,0 =

(
α lnα

α− 1
− ln

(
α lnα

α− 1

)
− 1

)
1

ln(2)

Hence cp,0 is bounded.



3.2 Bits/Effective Signal Photon

When only photons that effectively act as signal photons are included in the photon efficiency, we have

cp,1 ≤ c̃p,1
def
= C̃/l′s

=

(
α

α− 1
log2(α)−

(
1 +

1

p(α− 1)

)
log2(1 + p(α− 1))

)
and, since

dc̃p,1(p)

dp
= −

(
1

p
+

ln(1 + p(α− 1))

(α− 1)p2

)
1

ln(2)
≤ 0

we see that cp,1 is increasing with 1/p. It increases to the limit

lim
p→0

c̃p,1 =
α

α− 1
log2(α)− 1/ ln(2)

≈ log2(α)− 1/ ln(2)

Hence with either accounting of the photon cost, the bits/photon is bounded with a finite extinction ratio.

3.3 High Extinction Ratio Demonstration

We’ve shown that large extinction ratios are required to achieve large cp. For example, to achieve cp,1 = 10
bits/photon would require an extinction ratio greater than 34 dB. That assumes all other system components
are ideal and that one achieves the system capacity. If we factor in code inefficiency and any other practical
losses, the required extinction ratio becomes much larger.

We demonstrated a high extinction ratio modulator based upon a cascade of a semiconductor optical amplifier
(SOA) with conventional Mach-Zender electrooptic modulator (EOM). The SOA is operated to provide approx-
imately 40 dB of isolation in the “off” state, and 10 dB of gain in the “on” state, followed by approximately 25
dB of isolation in the “off” state from the EOM. Unlike cascaded EOM’s, the extinction ratios from the SOA
EOM cascade directly add.

The high extinction ratio of the SOA EOM cascade was validated by making time-resolved extinction ratio
measurements using a multi-channel analyzer with 1 ns bins. A block diagram of the experimental setup is
illustrated in Figure 2. The detector for this measurement was a NbTiN superconducting nanowire detector
fabricated at JPL’s Microdevices Laboratory and operated at a bias current that provided approximately 40%
detection efficiency with a 0.1 Hz dark rate. Figure 3 illustrates histograms collected over 108 frames: one with
only dark counts, one with pulsed frames, and a closer look at the pulsed region of the pulsed frame. The
peaks 30 dB and more down from the main peak are the results of electrical reflections in the modulator drive
electronics. Analysis based on this data confirms a greater than 76 dB extinction ratio between the “on” and
“off” modulator states.

4. JITTER

With an ideal photo-detector, the intensity function of photo-electrons is proportional to the energy of the incident
field. Hence an ideal signal pulse that is uniform over the duration of a slot would give rise to photo-electrons
distributed uniformly over the slot. However, in non-ideal photo-detectors, there is a random delay between the
arrival of a photon on the photo-sensitive surface and the generation of a corresponding photo-electron or current
pulse. We refer to this random delay as detector jitter.

In the context of signaling with PPM, if detector jitter yields non-orthogonal PPM symbols, it produces a
loss relative to the non-jittered case. The capacity loss was treated in Ref. 11, 12, and an approximation to the
loss in Ref. 13. Here we restate the approximation.

Let the jitter be Gaussian distributed with standard deviation σ. Suppose we are signaling with order M
PPM, error-control-code rate R, slot-width Ts, and that the signal is received in noise with rate nb photons/slot.
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Figure 2. Experimental setup demonstrating a high extinction ratio modulator
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Figure 3. Photon counts from a demonstration of a 76 dB extinction ratio modulator

The exact loss is a function of the quintuple (M,R, Ts, σ, nb). Let ls denote the average signal photon rate,
in photons/s, required to achieve a capacity equal to the target data rate in the absence of jitter and l′s the
corresponding rate required in the presence of jitter. It was shown in Ref. 13 that the signal power loss may be
approximated as (

ls
l′s

)
≈ 5.0Ψ2 + 2.0Ψ + 1

where

Ψ =

(
σ

Ts

)
(1 + tanh(R− 1/2))

(1.25)log2(M)

For Ψ = 0.1, the loss is ≈ 1 dB. For a device with a specified σ, losses due to jitter may be mitigated by increasing



Ts or increasing M . Both decrease the data rate. Moreover, increasing Ts increases nb for fixed background or
dark rate (in counts/s). Hence there is an optimum slotwidth that minimizes losses due to jitter and noise.

5. BLOCKING

After the production of a photo-electron, a photo-detector is incapable of producing another photo-electron for
some τ seconds, a phenomenon referred to as blocking. Blocking results in attenuation of the mean detected
photo-electron rates and alters the statistics of the observed point process. The degradation for a single detector
was treated in Ref. 14. In practice, arrays of detectors are commonly used to increase the active collecting area
and facilitate tracking algorithms and spatial filtering. A collection of the detector outputs are summed to form
an aggregate point process. Although weighted combining is ideal, on-off combining suffers only a small loss,15

and does not require estimation of the individual signal and noise rates. If the number of detectors is large, the
aggregate process may be modeled as Poisson.16 In this case, the loss due to blocking may be accurately modeled
as an attenuation of the rate functions. In this section, we treat that case, and discuss mitigating blocking by
spreading the signal spatially and using a spatial filter.

5.1 Rate Attenuation

The rate attenuation may be modeled via a Markov chain analysis, as described in Ref. 14. When τ ≥ Ts, the
analysis may be simplified, as we describe here. For notational convenience we assume Ts divides τ . We also
assume that slots are modulated independently (that is, as generalized OOK rather than PPM). This is a good
approximation to PPM for moderate blocking.17 Let L = τ/Ts, and model the detector state with the L + 1
state Markov chain illustrated in Figure 4. Let ls denote the mean incident signal photon rate and ln denote
the mean background photon rate. The detector is unblocked in state 0, and otherwise blocked. The transition
probability to remain in the unblocked state is

q0 = (1− p)e−lnTs + pe−Ts(ls/p+ln) (13)

and the steady-state probability of being in the unblocked state is

µ0 =
1

1 + L(1− q0)

Since τ ≥ Ts, the mean detected photons in an un-pulsed slot, denoted nb, is the probability of a count in that
slot

nb = P (count|slot is not pulsed) = P (unblocked, detected arrival|slot is not pulsed)
= P (unblocked)P (detected arrival|slot is not pulsed)
= µ0(1− e−lnTs) (14)

Similarly, the mean detected photons in a pulsed slot, ns + nb, is given by

ns + nb = P (count|slot is pulsed) = µ0(1− e−Ts(ls/p+ln)) (15)

where ns denotes the portion of the mean count attributed to signal photo-electrons.

Blocking may be mitigated by decreasing the peak rate per detector. This can be accomplished by making
the signal more diffuse in either space or time. However, spreading the signal also forces the receiver to integrate
more noise when capturing the signal. Hence there is an optimum operating point that trades off reducing
blocking for increasing noise.
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Figure 4. Markov model of detector state

5.2 Spatial Filtering

Suppose the signal is incident on an array of detectors. Let (ns,i, nb,i) denote the mean signal and noise photons
per slot at the output (the post-blocking rate) of the ith detector. The receiver sums the outputs of a collection
S of the detectors, so that, under the Poisson approximation, the signal and noise counts per slot are Poisson
random variables, with means

ns =
∑
i∈S

ns,i

nb =
∑
i∈S

nb,i

The choice of S implements a spatial filter, discarding all but the most informative outputs. We consider two
methods to select S. Each is a greedy search algorithm, one based on the flux rate of each detector, the other
on the distance from the center of the point spread function. We first describe the rate-based-selection. Place
the signal contributions in increasing order ns,1 ≥ ns,2 ≥ · · · . Let

ns(K) =
K∑
i=1

ns,i

nb(K) =
K∑
i=1

nb,i

and let C(K) be the capacity of channel with rates (ns(K), nb(K)). We conjecture that choosing K to maximize
C(K) maximizes the capacity.

To implement the rate-selection search requires one to measure the signal and noise rates at the output of each
detector. This may be problematic in practice. We also consider the following distance-selection search. Similar
to the rate-selection search, the detectors are placed in order of increasing distance from center of the point-
spread-function, and the collection of the K closest detectors whose sum has the largest maximum capacity is
chosen. With a radially symmetric pattern, such as in the diffraction-limited case, the two searches are essentially
identical. Testing a fixed collection of masks corresponding to a discrete set of distances, e.g., a 2× 2 square, a
3× 3 cross, a 3× 3 square, etc., is near optimum in these cases, and represents a practical solution to a spatial
filter.

6. EXAMPLE: A HIGH PHOTON-EFFICIENCY FREE-SPACE OPTICAL LINK

In this section, we combine the prior results, using parameters that reflect current state-of-the-art photon-
detector technology, to design a high photon-efficiency free-space optical link. Suppose we have an optical
terminal receiving a free-space intensity-modulated PPM signal in the far-field, transmitted with an extinction
ratio of 75 dB, and slot-widths of Ts = 1.0 ns. The receive aperture has a diameter of D = 1.0 m, and the
focal plane is populated with an array of photon-counting photo detectors of width 2δ (we model these as square
pixels, perfectly tiling the focal plane). The photo-detectors have a detection efficiency of η, a dead time of



τ seconds, a jitter of σ seconds, and a dark rate proportional to their active area of ld. We assume noise is
dominated by dark counts and non-extincted signal photons, and set background noise to zero.

We consider three candidate photon counters, with parameters listed in Table 1∗. These represent current
leading candidates for high photon-efficiency photon-counting communication links. In all numerical results, we
assume the point-spread-function (PSF) is a diffraction limited Airy pattern, and that a pointing and tracking
system has centered the spot at the intersection of four detectors†. In all numerical results, we select, for each
operating point, an optimum PPM order M , and a collection of detectors from the greedy-rate-search ‡.

Device Detection Efficiency Dark Rate Diameter Dead-Time Jitter
η ld (e/s/mm2) 2δ (µm) τ(ns) σ(ps)

Si GM-APD 0.40 106 15.0 50 240
InGaAs(P) GM-APD 0.55 108 15.0 104 300
Nb(Ti)N Nanowire 0.5 102 5.0 20 30

Table 1. Representative parameters for photon-counting devices

We are free to choose the focal length F to spread the signal spatially. A smaller focal length produces a
smaller spot, with a higher signal intensity in the focal plane. This leads to larger losses due to blocking, but,
since a smaller integrated area is required, a smaller dark noise contribution. In the limit of no blocking (τ = 0),
the performance improves with decreasing F (up to the limits of the quantization of the focal plane due to the
finite pixel area), as one filters out dark noise. Conversely, in the limit of no dark noise (ld = 0), the performance
improves with increasing F , as the signal and background noise become more diffuse, and blocking losses become
negligible. In the general case there is an optimum focal length.

In order to illustrate the range of achievable photon and dimensional efficiencies, we varied the incident signal
radiance, and determined the optimum F -number, optimum PPM order, and subsequent capacity at each point.
Jitter is modeled as in Ref. 12 (we do not use the approximation from Section 4). Blocking is modeled as a rate
attenuation, as described in Section 5. The resulting (cp, cd) pairs are illustrated in Figure 5. Also illustrated is
the (noiseless) Holevo bound and the ideal OOK capacity (η = 1.0, τ = 0, ld = 0), which bounds the performance
of the practical detectors. This illustrates the degradation due to a finite detection efficiency, dark noise, and
blocking for the three detectors. In order to isolate the degradation due only to blocking, jitter, extinction ratio,
and dark noise, Figure 6 illustrates (cp/η, cd), factoring out the loss in photon efficiency due to the detection
efficiency. Here we see that the sub-unity detection efficiency is the primary impediment for the Si GM and NbN
nanowire detectors.
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