Testing High Precision Space Receivers versus LightSquared Interference

Session B2: Spectrum and Interference Issues

ION ITM
January 2012

Stephan Esterhuizen, Dmitry Turbiner, Dave Stowers, Lawrence Young

Jet Propulsion Lab
California Institute of Technology

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
The Spectrum as seen by a passive GPS antenna

- Expected interference effects
  - Intermodulation
  - Saturation
  - Raising in-band noise floor
- Consequences on GPS tracking performance
  - Decrease in SNR $\rightarrow$ Increased observables scatter
  - Decreased ability to acquire and track weak signals

[Diagram indicating GPS antenna + frontend, showing signal and noise powers collected. Conducted test needs to recreate the same levels to be realistic]
Conducted test: Let's recreate what the antenna sees

Overview of conducted test setup

Agilent E4438C [3GPP-LTE 1550-1555 MHz]

Rohde&Schwarz SMBV100A [carrier modulated with baseband I/O input 1526.2-1531.2 MHz]

Navlabs GPS Simulator

LSQ BPF RMC1550B10M01 S/N 11030004

LSQ BPF RMC1531B10M01 S/N 11030004

10dB Coupler

10dB Coupler

20dB Coupler

20dB attenuator

10dB Coupler

LNA

10dB Coupler

Spectrum Analyzer

IRIG GNSS Receiver

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Signal Generation

- Don't neglect the broadband noise floor of the signal generators → use Lightsquared filters [xxx dBc/Hz]
- Verify modulated LightSquared signal powers on a spectrum analyzer with the *channel power* function
- Verify output signal power of GPS simulator
Importance of controlling the input thermal noise floor

- Should be <300K to be realistic. Why: To report realistic interference susceptibility
- Noise floor: Set by 50 Ohm resistor at ~300K
- Use directional couplers
- Verify the GPS noise floor stays at 300K in the presence of high-powered Lightsquared signals (watch out for inter-mod effects in test equipment!)

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Results (Conducted and Radiated)

- 1-channel Test (Saturation),
- 2-channel Test (Intermodulation)
- [Table comparing the 3 tests]

[TriG] Test=5, 1552.7(+45), BW=5 MHz

[TriG] Test=18, 1552.7(+45), 1528.5(−45), BW=5 MHz

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Conducted test conclusions

- Intermodulation is real
  - Any mitigation techniques must take it into account
- Must get rid of LightSquared power before the first amplifier.
- For space-borne GPS instruments, we need 40dB of rejection at the LightSquared frequencies BEFORE the first amplifier (LNA).
Mitigation: pre-LNA Filter

- Requirements
  - Rejection of Lightsquared signals
  - Passband insertion loss
  - Group delay performance (Delay is the main observable of a GPS receiver)

- Implications (table)
  - Many stages: effect on

- Note: Difficult filter to build

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Essential filter property for precision GPS receivers: Group Delay

- Why does this matter?
- Group delay stability over environmental changes (temperature)
- Flat over passband
- Stable over temperature
- Flat over expected doppler space [show simulations]
- Stable delay between GPS L1/L2/L5 frequencies (needed for TEC measurement)
How to meet these group delay requirements

• **Low group delay: Why?**
  • Temperature effects on filter
  • In the past, precision GPS receivers used wideband filters [reference Ed Power's paper, diagrams]
  • Adding close in rejection requirements of the LSQ signals *complicates the filter implementation*
    • High rejection, temperature stability and low insertion loss seem to imply an exotic filter design.

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Conclusion: How to test any mitigation solution

- Measure susceptibility to interfering signals with a conducted test
- Measure new system temperature
- Measure delay performance (over temperature, over doppler, and between GPS L1/L2/L5 frequencies)