Recent Advances in Ionospheric Specific Specifications and New Applications Using GNSS Measurements

Attila Komjathy, Mark Butala, Xiaoqing Pi, Byron Ijima, Brian Wilson, Vardan Akopian and Anthony J. Mannucci

Jet Propulsion Laboratory
California Institute of Technology
M/S 238-600
4800 Oak Grove Drive
Pasadena CA 91109
Email: Attila.Komjathy@jpl.nasa.gov

July 23-27, 2012 IGS Workshop, Olsztyn, Poland
Introduction

• Global Assimilative Ionosphere Model (GAIM)
• Regional study of the Republic of South Africa (RSA) on November 21st, 2008
• Data sources
 • Ground based GPS measurements
 • Space-based (COSMIC and C/NOFS)
• Comparison to ionosonde measurements in the RSA
• Other recent advances:
 • GAIM prediction accuracies
 • Nested grid capabilities
 • Real-time GAIM assimilations
 • Ionospheric TEC perturbation imaging
• Conclusions
Data Sources

- Ground-based GPS Data
 - High-precision TEC data from 200+ sites
 - 30-sec sampling
- Space-based ionospheric radio occultation data
 - COSMIC/FORMOSAT-3 data (10-sec cadence)
 - CNOFS data (10-sec cadence)
- First time assimilation of COSMIC and C/NOFS has been performed
Global Assimilative Ionospheric Model
Data Assimilation Process

- **4-Dimensional Variational Approach**
 - Minimization of cost function by estimating driving parameters
 - Non-linear least-square minimization
 - Adjoint method to efficiently compute the gradient of cost function
 - Parameterization of model “drivers”

- **Kalman Filter**
 - Recursive Filtering
 - Covariance estimation and state correction
 - Optimal interpolation
 - Band-Limited Kalman filter

4DVAR
Kalman Filter

July 23-27, 2012 IGS Workshop, Olsztyn, Poland
COSMIC Coverage on Nov 21, 2008

July 23-27, 2012
IGS Workshop, Olsztyn, Poland
CNOFS Coverage on Nov 21, 2008

: 2008/11/21,16:00:00 to 2008/11/21,18:00:00
Ionosonde Locations in RSA

Green – ground GPS
Red - ionosonde

MU12K
LV12P
HRAO
RBAY
SUTH
SIMO
HE13N
GR13L

Louisvale
(28.5°S, 21.2°E)
Hermanus
(34.4°S, 19.2°E)
Grahamstown
(33.3°S, 26.5°E)
Madimbo
(22.4°S, 30.9°E)

Courtesy of L. McNamara

July 23-27, 2012
IGS Worship, Olsztyn, Poland
Profile Examples – C/NOFS Impact

Climate @ HE13N : 191500

Ground

Ground + Cosmic

Ground + Cosmic + CNORS

July 23-27, 2012

IGS Worship, Olsztyn, Poland
Profile Examples – C/NOFS Impact

- Climate @ GR13L: 211500
- Ground
- Ground + Cosmic
- Ground + Cosmic + C/NOFS
Nmf2 (e/m³) Statistics for Nov 21, 2011

Slopes:
Climate: 0.565
Ground: 1.387
G+C: 1.352
G+C2: 1.349
Recent GAIM Prediction Accuracy for SELE on Feb 1, 2011

GAIM – ground-GPS only assimilation

Prediction Residuals at SELE on Feb 1, 2011

Predictions:
GIM RMS = 1.94 TECU
GAIM RMS = 1.71 TECU
Recent GAIM Prediction Accuracy for SELE on Feb 1, 2011

Prediction Residuals at SELE on Feb 1, 2011

Predictions:
Climate RMS = 3.41 TECU
GIM RMS = 1.94 TECU
GAIM RMS = 1.71 TECU
GAIM Prediction Accuracy Using Ground and COSMIC Assimilation on Feb 1, 2011

Station SELE
On Feb 1, 2011

Ground-only GAIM Predicts
Ground + COSMIC GAIM Predicts
Notice the Improvement!

10:45 to 11:00

UT: 10:45-11:00

60°E

2011/02/01, 10:45:

July 23-27, 2012
IGS Workshop, Olsztyn, Poland
GIM, GAIM, Predictions for KIT3 on Feb 1, 2011

Included

Removed

Prediction Residuals at KIT3 on Feb 1, 2011

Predictions:
GIM RMS = 2.53 TECU
GAIM RMS = 2.71 TECU

July 23-27, 2012 IGS Workshop, Olsztyn, Poland
Climate, GIM, GAIM Predicts for KIT3 on Feb 1, 2011

Predictions:
- Climate RMS = 4.25 TECU
- GIM RMS = 2.53 TECU
- GAIM RMS = 2.71 TECU

July 23-27, 2012 IGS Workshop, Olsztyn, Poland
Nested Grid (NGAIM)

- NGAIM grid resolutions:
 - Global grid resolution: 2.5 x 10 degrees lat/lon, 40 km altitude
 - Nested grid resolution: 1 x 2 degrees lat/lon, 20 km altitude
- Forward physics models are coupled at boundary of nested region
 - Global grid provides density and flux on nested boundary using ghost cells
 - Two forward physics models, two Kalman filter runs
 - Both density grids used to properly model TEC links
- Show results from two periods:
 - Halloween storm (Oct 29-31, 2003)
 - ~300 CORS stations in US
 - Florida feature on Oct 31, 2003
 - 200 GPS stations globally, plus ~40 CORS stations near/in Florida
- Advantages:
 - Near real-time execution
 - Can run multiple nested regions at one time (on separate CPUs)
GAIM and Nested GAIM Grids

Inner region

Slant TEC

Outer region

GAIM Nested Grid

Regular GAIM Grid

Intersections of:
- magnetic field lines,
- magnetic geopotential lines
- and magnetic longitudes

Eccentric tilted dipole

Magnetic equator
Nested Grid Capability (NGAIM)
Storm Day: Oct 29, 2003, NGAIM and Truth Storm Features at NLIB
Nested GAIM Validation Near Eglin Radar

- NGAIM run with TAEM only, Jan 16, 2010
- Predict observed slant TEC for surrounding CORS GPS sites
- Prediction RMS error of 3 – 4 TECU
Real-Time GAIM: Assimilating Ground TEC and COSMIC

Global ground network data: 5-minute and 1-hour latency
COSMIC data: 20 - 120 minutes latency

Time
0
150 min

Start of orbit
End of orbit: data downloaded
Data received at CDAAC
CDAAC: COSMIC Data Analysis and Archiving Center at UCAR

Profiles (Abel) available
Limb TEC available

GAIM Thread

GAIM Real Time Daemon

Two way exchange of states (15 min)

100-minute cadence

3-D global electron density grids
15-minute cadence
Stations Used for Real-Time GAIM

All Processed Streaming Versus Delivered Site Locations on May 11, 2011 DOY = 131

July 23-27, 2012 IGS Workshop, Olsztyn, Poland
GAIM Real-Time System:
Multipath Weighting

G04 <-> COSM1 arc # 1

- Ionosphere (LI/PI)
- Iono-free (LC/PC)
- Multipath
- Elevation
- Azimuth
- Latitude

July 23-27, 2012
IGS Workshop, Olsztyn, Poland
Real-Time GAIM: Web Interface
Real-Time GAIM TEC Residuals for Tohoku Earthquake on March 11, 2011

Acoustic wave generated TEC perturbations at USUD
GIM residuals (a) and band-pass filtered slant TEC measurements. Panel (b) indicates an example for filtered TEC observations.
Acoustic and Gravity Waves Detected in Ionosphere

Song Model overlaid on TEC observations
Japan Tsunami 2011/3/11, Song Model

At a given distance from epicenter
Ionosphere signature appears about 24 minutes after ocean wave.

Note main model tsunami wavefront parallel to strongest ionosphere wavefront.

July 23-27, 2012
IGS Workshop, Olsztyn, Poland
Conclusions

- Assimilation of Ground + COSMIC + C/NOFS shows improved agreement with ionosonde measurements of Nmf2 and Hmf2.
- Though limited in quantity, C/NOFS does make improvements to vertical structure.
- Future plans: extend analysis to a global scope to better gauge the improvements made by C/NOFS.
- We would like to acknowledge Leo McNamara (AFRL) for his ionosonde data from the Republic of South Africa.
Acknowledgement

- This research was performed at the Jet Propulsion Laboratory/California Institute of Technology under contract to the National Aeronautics and Space Administration
October 31, 2003 NGAIM VTEC Map, the Florida Feature

~800 miles North of MIA3

MIA3