A Dual-Polarized, Dual-Frequency, Corrugated Feed Horn for SMAP

Paolo Focardi & Paula Brown
Jet Propulsion Laboratory, California Institute of Technology

2012 IEEE International Symposium on Antennas and Propagation

Chicago, IL
July 10th, 2011

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Outline

– Overview of the Soil Moisture Active and Passive (SMAP) Mission & Instrument
– Basic Layout of SMAP “E” Configuration
– Feed Horn Components
– Major Design Drivers & Requirements
– Thermal and Alignment Tolerances
– OMT Split Design
– SMAP Scale Model
– RL & Pattern Measurements
– Conclusions
Mission Overview

• NASA’s Soil Moisture Active and Passive (SMAP) mission will measure Earth’s soil moisture and its freeze/thaw state over a 3 year period

• Applications:
 – More accurate and longer-term weather and climate predictions
 – Earlier drought warnings
 – Improved flood and landslide predictions
 – Improved agricultural production predictions
 – Better understanding of the global carbon cycle

• Near-polar, sun-synchronous orbit of 680 km
• Planned launch date of November 2014
Instrument Overview

- An L-band Synthetic Aperture Radar (SAR) and L-band radiometer (RAD) share an offset 6-m deployable mesh reflector and feed.
- The antenna boresight beam is pointed 35.5° off nadir.
- The instrument spins at approximately 14.6 RPM around the nadir axis.
- The result is a 1000-km swath on the ground.
- The radiometer data is more accurate than the SAR data, but has a spatial resolution of about 40-km; the SAR spatial resolution is 1 – 3 km.
SMAP “E” Configuration

35.5°

6m
Cut-away Isometric View

~1.2 m

~52 cm

Transition to Circular Waveguide
WCA Prototype Measurement

WCA Prototype being tested with WR650 Cal Kit
Major Design Drivers & Requirements

- Combined SAR & RAD RF bandwidth of 16%
- Radiometer beamwidth & main beam efficiency
 - RAD Beamwidth between 2.29° and 2.5°
 - RAD MBE > 87%
 - SAR Beamwidth < 2.8°
- Radiometer antenna pattern stability
 - RAD Earth Lobe power < 3%
 - RAD off-Earth Lobe power < 10%
- SAR gain and gain stability
 - SAR Gain > 35.55 dBi
 - SAR Gain stability < 0.07 dB
- SAR pointing stability
 - 50 m° ± 40 m° in Elevation
 - 0 m° ± 10 m° in Azimuth
Worst Case Thermal + Alignment Tolerances

![Graph showing return loss vs frequency for SAR and RAD bands with nominal and worst case H-Port and V-Port tolerances.](image-url)
SMAP Scale Model
SMAP Complete Scale Model
Scale Model Feed
2012 IEEE International Symposium on Antennas and Propagation

Return Loss Measurements
 Radiation Pattern Measurement
Close-up of the Scale Model Feed Horn

Scale Model Feed Horn on Antenna Range Positioner

Scale Model Feed Horn with Absorber in Place
SAR V-pol Scale Model Pattern

Directivity [dB]

Theta [deg]

Calculated E-Plane
Calculated H-Plane
Calculated X-Pol
Measured

Focardi, Brown - 21
Flight Feed Horn RL

Return Loss [dB]

Frequency [GHz]

SAR Band

RAD Band

V-Port

H-Port
Feed Horn RL into SM OMT
Conclusions

• A dual-polarized, dual-frequency, corrugated feed horn for SMAP was designed and meets all mission requirements

• A scaled model of the feed was fabricated and tested showing an excellent agreement with predicted performance

• These results along with the “tunability” built-in into the flight model make us feel confident that the flight model will meet all mission requirements
Thank you!
Back-Up
SMAP Instrument

Flight Model

Scale Model
RF Models

Flight RF Model

Scale Model RF Model
SMAP Scale Model Instrument