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Mission Overview

SURFACE MISSION
• Prime mission is one Mars year    
(669 Sols)

• Latitude‐independent and long‐lived 
power source

• Ability to drive out of landing ellipse

• 72 kg of science payload

• Direct (uplink) and relayed 
(downlink) communications

• Fast CPU and large data storage

ENTRY, DESCENT,  LANDING
• Guided entry and powered 
“sky crane” descent

• 20×25‐km landing ellipse

• Access to landing sites 
±30° latitude, <0 km 
elevation

• 900‐kg rover

CRUISE/APPROACH
• 8½‐month cruise

• Arrive August 5, 2012

• Launched 
Nov. 26, 
2011

• Atlas V (541)

3
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Rover Traverse Configuration

Remote Sensing
Mast (RSM)

Mobility System

Rover Chassis

RPFA and
Enclosure

Bridle Exit
Guide (3)

High Gain Antenna
System (HGAS)

• MMRTG
• Heat Exchangers
• RTG Windbreaker

SA-SPaH
• Robotic Arm
• Bit Box
• Inlet Covers
• Cal Targets

RLGA
Antenna

RUHF
Antenna
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Rover Side View
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Test Summary
• The 15-day MSL Rover System Thermal Test was conducted March 9-

24, 2011 in the B-150, 25-ft Space Simulator at JPL.

• All primary test objectives were successfully met.

• The rover thermal design performed extremely well during this test and 
no violations of Allowable Flight Temperatures were observed. 

Spacecraft Thermal Control Workshop 2012
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System Thermal Test Objectives Were Met

• Primary Objectives
– Gather sufficient data from multiple landed environments to permit 

analytical thermal math model correlation
• All thermal balance and transient environment cases completed

– Verify functionality of thermal hardware (heaters, thermostats, 
PRTs, SLI blanket, rover HRS system)

• Thermal system performance better than conservative model predicts
– Verify that the spacecraft functions properly within specified 

performance requirements in the simulated Mars surface 
environment

• No AFT limit violations during functional tests
– Extrapolate a correlated analytical model to flight environment to 

validate Rover thermal design post test
• Completed
• Worst-case flight predicts generated for Gale Crater landing site show 

plenty of temperature margin
– Hot case RAMP predict = 42C (8C margin to max AFT of 50C)
– Cold Case RAMP predict = -13C (27C margin to min AFT of -40C)

Spacecraft Thermal Control Workshop 2012
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Why Can’t We Validate 
the Rover Thermal Design in Test?

• This test was not a direct validation of the rover surface thermal design.  
There are many elements of the Mars thermal environment that we cannot 
simulate inside a thermal chamber on the Earth. 

– Mars acceleration due to gravity is 3/8G, 
• free convection coefficients in the chamber will be higher than those experienced on Mars

– Chamber backfilled with 10 Torr GN2, not 10 Torr CO2 (Mars atmosphere)
• GN2 (k = 0.026 W/m*K at 300K) has a 50% higher thermal conductivity than CO2 (k= 0.017 W/m*K at 

300 K) 
• gas conduction and free convection in the chamber will be greater than what is experienced on Mars 

– No dust coverage or degraded thermal paints on the outside of the vehicle
• white paint properties will be at their BOL values, 

– Solar simulator in the 25 foot chamber will not track (in elevation and azimuth) across the sky 
and it will not have a diffuse component

– No wind simulation
– No independent sky, ground and atmosphere temp control in chamber

• chamber wall and floor shrouds will be controlled to same temp
• atmosphere temperatures will be monitored but not controlled

2/15/2011
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Tests of Design Sensitivity

• Effect of GN2 versus vacuum
– Compare cases #5 (Cold Thermal Balance at -105C) and #7 (Cold 

Vacuum Test at -105C)

• Effect of RTG Power (Q = 1315 W to 1821 W)
– Compare case #5 (Cold Thermal Balance at -105C) to case #11A 

(Hot Thermal Balance at -80C)

• Effect of Solar Flux (Q” = 0 W/m^2 to 700 W/m^2)
– Compare case #10 (Functional Test #4 Env’t at -80C) and Case 

#11A (Hot Thermal Balance at -80C)

• Effect of Shroud Temp  (+20C to -105C)
– Multiple cases
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Test Article Description

• Rover consists of the following flight 
hardware: 

1. All Rover structures, and mechanisms:  
chassis, RAMP, mobility, actuators

2. Entire Surface HRS thermal system:  RIPA, 
HX Plates, RAMP

3. Avionics components:  flight computer, 
power boxes, battery, telecom

4. All engineering cameras:  HazCams, 
NavCams

5. Science instruments:  MAHLI, MastCams, 
ChemCam, APXS, REMS, RAD, CheMin, 
SAM, DAN

6. Sample Acquisition/Sample Processing and 
Handling (SA-SPaH) hardware:  Robotic 
Arm, Drill, CHIMRA, 3 Inlet Covers, 2 
Contact Sensors, 2 Bit Boxes

7. RTG simulator

MastCams

Mobility

Antennas

Turret

HX Plates

Front 
HazCams

NavCams

RAMP (chassis internal)

Chassis

SAM
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Rover Thermal Hardware

• 58 Flight Heater Circuits Controlled by Rover
– Custom designed Kapton film heaters from Tayco
– FSW commandable or mechanical thermostat controlled
– Primary and secondary heater circuits

• 22 Flight Mechanical Thermostats
– Internal to RAMP:  RBAU (8), CCBU (2), RIPA fault protection (4)
– External:  CCMU (4), RPFA (4)
– Honeywell TS 700 Series

• 219 Honeywell 1000-ohm 2-wire PRTs
– Data was piped from GDS to TDAS for thermal use
– Nearby thermocouple measurements used to validate PRT measurements 
– Primary and backup PRTs

• Rover Heat Rejection System (HRS)
– RAMP, Hot & Cold Plates, RIPAS, bypass valves

02/15/2011
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Test Instrumentation

• Thermal Data Acquisition System (TDAS) - LabView
– 5 TDAS computers (2 for TCs and GSE power supplies, 1 for computed 

channels, 2 as view-only systems)
– Scan and record intervals set at 1 minute
– Connected to UPS & back-up generator

• Heaters powered & controlled by GSE Power Supplies
– 2 shunt (FLT), 3 CCBU decontamination (FLT), 2 near RAMP too-hot 

thermostats (TEST)
• 386 Type E, 26-gage Thermocouples

– 357 on Rover, 11 for chamber atmosphere, 18 on GSE
– Used for AFT limit and PRT flight sensor verification, near flight thermostat 

and heater locations, to determine temperature gradient across interfaces, 
to aid in model correlation

• Additional 150 Thermocouples for Chamber Facility Measurements

02/15/2011
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Test Setup – Rover in Chamber

Rover Surface Configuration
Mounted on I-beam support 

frame 6 in. above  
chamber floor

Powered by Umbilical GSE 
Power Supply

9 Pyro firings during STT
– HGA, 3x HazCam Covers, 

RSM, Mobility Bogie 
Pose, Robotic Arm turret 
and elbow, Bit Box

– Other pyros fired in B-144 
& B-150 prior to chamber 
installation

• Deployments
– Hazcam covers, HGA, RA, 

RSM
• Solar simulator lens to 

create a hexagonal spot –
15 feet, flat to flat

02/15/2011
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DTM Rover Touchdown Testing

Surface System Environmental Test

Spacecraft Thermal Control Workshop 2012
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As-Planned STT Thermal Profile Plot
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MSL Rover STT Timeline
Shroud temp (°C) RAMP Avg. Temp (°C) MMRTG (W)

Case 3  Funct
#1 at ‐55C

Case 5  
Cold 
Thermal 
Balance 
at ‐105C

Case 7
Cold  Vac 
at ‐105C

Case 6A
Funct #2
at ‐105C

Case 10 
Funct #4
at ‐80C
Actuator 
Heat‐to‐
Use

Case 12 
Accel 

Warmup 
to 0C & 
Camera 
Funct #6

Case 13 
Funct #7
at 0C

Case 16 
Hot Diurnal

Case 17 
Backfill & 
Open 
Chamber

Vacuum Vacuum10 torr GN2 10 torr GN2

Case 1A  
Pumpdown

Case 6B  
Warm up Htr 
Char & High 
Avionics Pwr

Case 8 
Funct
#3 Cold 
Vac at ‐
105C

Case 11A
Hot 
Thermal 
Balance 
at ‐80C

Case 11B
Funct #5 
‐SAM 

SOLAR SIM:
700 W/m2 SOLAR SIM:Varies 0‐500  W/m2

Case 1B  
CQCM

760torr

SOLAR SIM: OFF SOLAR SIM: OFF

Spacecraft Thermal Control Workshop 2012
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Steady State Thermal Environments

• Steady State Thermal Balance Cases
– Case 1A – Pumpdown & Rover Outgas 

• hot case with shrouds at +20C, vacuum environment, low RTG power 
(500W) and high RAMP power (363W)

– Case 5 – Cold Thermal Balance at -105C
• cold case with shrouds at -105C, moderate RTG power (1315W) and 

low RAMP power (30W)
– Case 7 – Cold Vacuum Test at -105C

• cold case with shrouds at -105C, moderate RTG power (1315W) and 
low RAMP power (30W)

– Case 11A – Hot Thermal Balance at -80C 
• Hot case with shrouds at -80C, solar sim on at 700W/m^2, high RTG 

power (1600W) and high RAMP power (230W)

– Additional Functional cases that went to steady state due to long 
duration (Case 3 – Functional #1 went for 23 hours)

Spacecraft Thermal Control Workshop 2012
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Transient Thermal Environments

• Transient Cases:
– Case 2 – Accelerated Cooldown to -55C: 

• Global cooldown with shrouds ramping from 0C to -110C
– Case 4 – Accelerated Cooldown to -105C: 

• Global cooldown with shrouds ramping from -55C to -125C
– Case 6B – Warmup Htr Thermal Char. & Step Change in RAMP 

Avionics Power: 
• Actuator & Camera Warmup with shrouds held at -105C; RAMP 

response to step change in power from 30W to 200W
– Case 9 – Accelerated Warmup to -80C: 

• Global warmup with shrouds ramping from -105C to -60C
– Case 10 – Actuator & Camera Heat–to-Use:

• Actuator & camera warmups with shrouds held at -80C
– Case 11A – Hot Thermal Balance –

• External rover hardware exposure to step change in solar load from     
0 W/m^2 to 700 W/m^2

– Case 12 – Accelerated Warmup to 0C: 
• Global warmup with shrouds ramping from -80C to +20C

17
Spacecraft Thermal Control Workshop 2012
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HRS performance in Rover STT
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• In the worst case cold tested conditions, the RAMP 
component interfaces were ~3-10 C warmer than 
predicted

• In the hot thermal balance test conditions, the 
hottest RAMP component interfaces were ~0.2 C 
cooler than predicted

• The temperature difference between HRS fluid inlet 
& outlet (in RAMP) during test was smaller than 
predicted

• RAMP was very uniform in temps. during STT (~ 2 C 
gradient in STT vs. ~7 C predicted)

Spacecraft Thermal Control Workshop 2012
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Overview of RAMP Temperatures

Spacecraft Thermal Control Workshop 2012
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Health of RHRS during STT
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No leaks observed
No evidence of accumulator bellows sticking
Operating pressures in system were maintained within the 

nominal expected range throughout the test
– Min pressure during STT = 67 psia (Min Yellow Alarm = 55 psia)
– Max pressure during STT = 153 psia (Max Yellow Alarm = 180 psia)

Note: Gaps in data 
occur when Rover is 
sleeping

Spacecraft Thermal Control Workshop 2012
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Thermal Interface Check

• All Electronics well 
coupled to RAMP

• Largest ∆T to RAMP is 
7.4°C (UHF-A)

Electronics

Electronics to 
RAMP ΔT(°C)

Case 8: 
Vacuum

Case 6B: 
GN2

CCBU 5.2 5.6*
CheMin 3.4 -1.7

DEA 2.0 2.0
RIMU-A 7.0 7.0
RIMU-B 6.4 -0.3*

RAD 1.1 0.8
RCE-A 5.8 5.9
RCE-B 6.3 0.1*
REMS 1.1 1.5
RIPA 1.4 -0.6

RMCA 4.2 2.7
RPA 2.8 1.3

RPAM-A 5.5 6.8
RPAM-B 4.7 5.9

SAM -0.9 3.4
SDST 2.0 -0.6*
SSPA 5.1 -0.1*
UHF-A 7.4 6.8
APXS 1.1 -0.3*
UHF-B 6.2 -0.8*

* Box was not on during Case 6B

Spacecraft Thermal Control Workshop 2012
21
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Rover Survival and Warm-up Heater Performance

All tested rover heater duty cycles are well under the 80% design requirement

Two Warm-up heaters were able to warm the battery from -20oC to 0oC using 
224 W-hrs of energy

The battery can be maintained at 0oC with one warm-up heater on

The maximum gradient observed across the battery with primary survival, 
primary warm-up, and back-up warm-up heaters on was less than 3oC 
meeting the spatial gradient temperature requirement of ≤ 5oC

Heater Location Heater Type % Duty Cycle @ 29.5V Est. % Duty Cycle @ 22V
Battery ‐ Primary Survival 32.7 58.7
Battery ‐ Back‐up Survival TBD via model correlation
Battery ‐ Primary Warm‐up 57.0 N/A
Battery ‐ Back‐up Warm‐up 45.1 N/A
RPFA ‐ Primary Survival 15.8 28.4
RPFA ‐ Back‐up Survival 15.8 28.4

CCMU O‐Box ‐ Primary Survival 33.3 59.9
CCMU E‐Box ‐ Primary Survival 33.3 59.9

Extrapolated Values

22
Spacecraft Thermal Control Workshop 2012
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Actuator/Camera Results

• Actuator and camera warmup heaters have been adequately sized:
– Capable of warming up actuators and cameras above AFT in cold environment (-105C 

shroud, no solar) within expected time duration;
– Capable of maintaining at temperatures with proper duty cycle.

• Verified Rover’s capability of warmup heater control:
– Verified heater switches controlled by both RPAM-A and RPAM-B;
– Verified FSW heater control in auto mode with selected control PRT’s and setpoints;
– Pre-heat durations were consistent with pre-STT predicts.

• Actuators and cameras operated within allowable temperatures:
– Target temperatures and pre-heat duration followed pre-STT model predicts;
– Actuators and cameras were warmed up above the min op temperatures (min op Qual, 

FA, or AFT limits) before the functional (motion or imaging) tests were conducted.

• Obtained thermal data for thermal model correlation:
– Actuators: Mobility, HGA, and Inlet Covers.
– Cameras: MAHLI and MastCams.

• Obtained thermal data for checking previously correlated models:
– Actuators: RSM, CHIMRA, Drill, and RA.
– Cameras: HazCams and NavCam (MER).

Spacecraft Thermal Control Workshop 2012
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Overview of External Temperatures

24
Spacecraft Thermal Control Workshop 2012
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Major Conclusions

• It was a very successful test

• All primary test objectives were met.

• Rover thermal design performed well 
during this test and no violations of 
Allowable Flight Temperatures were 
observed. 

• Model correlation work has been done 
for rover thermal system, actuator & 
camera thermal models

Spacecraft Thermal Control Workshop 2012

• Flight predicts have been done
– Thermal performance predicts for Gale Crater Landing Site (4.5 degrees South 

latitude) are excellent

• Looking forward to an exciting and successful surface mission –
Starting on Aug. 5, 2012
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Backup

Spacecraft Thermal Control Workshop 2012
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As-Run Test Timeline
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MSL Rover STT  Test Description Estimated Actual From: To:

Duration (hrs) Duration (hrs) m/d/11 h:mm AM m/d/11 h:mm AM

Late Start - Planned time was 8:00am 0.0 0.4 3/9/11 8:00 AM 3/9/11 8:23 AM

Test Case 1A Pumpdown, Rover Outgas & Backup Pump Fault Protection 
Checkout

21.0 29.1 3/9/11 8:23 AM 3/10/11 1:30 PM

Test Case 1B CQCM Measurement 5.0 6.0 3/10/11 1:30 PM 3/10/11 7:30 PM

Test Case 2 Accelerated Cooldown to -55C 24.0 23.3 3/10/11 7:30 PM 3/11/11 6:45 PM

Test Case 3 Functional #1: Deployment Verification at -55C 12.0 22.7 3/11/11 6:45 PM 3/12/11 5:30 PM

Test Case 4 Accelerated Cooldown to  -105C Environment 24.0 23.5 3/12/11 5:30 PM 3/13/11 5:00 PM

Test Case 5 Cold Thermal Balance at -105C  Survival Heater/T'stat 
Checkout, HGA Warmup Htr Char Test

12.0 13.1 3/13/11 5:00 PM 3/14/11 6:07 AM

Test Case 6A Functional Test #2 Environment @ -105oC [Cold Case] 29.0 39.2 3/14/11 6:07 AM 3/15/11 9:18 PM

Test Case 6B Warmup Heater Thermal Characterization & Cold Thermal 
Balance with High RAMP Avionics Power 26.0 26.7 3/15/11 9:18 PM 3/17/11 12:00 AM

Test Case 7 Cold Vacuum Test at -105C 16.0 13.0 3/17/11 12:00 AM 3/17/11 1:00 PM

Test Case 8 Functional #3 - Cold Vacuum Test at -105C 6.0 8.5 3/17/11 1:00 PM 3/17/11 9:30 PM

Test Case 9 Accelerated Warmup to -80C 24.0 15.0 3/17/11 9:30 PM 3/18/11 12:30 PM

Test Case 10 Functional Test #4: Environment @ -80C Actuator Heat-to-
Use & Articulate

8.0 21.5 3/18/11 12:30 PM 3/19/11 10:00 AM

Test Case 11A Hot Thermal Balance Test at -80C 12.0 13.5 3/19/11 10:00 AM 3/19/11 11:30 PM

Test Case 11B Functional #5 - SAM on 20C RAMP 19.0 32.0 3/19/11 11:30 PM 3/21/11 7:30 AM

Test Case 12 Accelerated Warmup to 0C & Camera Functional #6 at -40C 
during Transition

24.0 16.5 3/21/11 7:30 AM 3/22/11 12:00 AM

Test Case 13 Functional Test #7: Environment @ 0oC [Hot Case] 10.0 13.0 3/22/11 12:00 AM 3/22/11 1:00 PM

Test Case 14 deleted 0.0 0.0 3/22/11 1:00 PM 3/22/11 1:00 PM

Test Case 15 deleted 0.0 0.0 3/22/11 1:00 PM 3/22/11 1:00 PM

Test Case 16 Hot Diurnal Test 29.0 29.0 3/22/11 1:00 PM 3/23/11 6:00 PM

Test Case 16B deleted 0.0 0.0 3/23/11 6:00 PM 3/23/11 6:00 PM

Test Case 17 Backfill and Open Chamber 14.0 17.5 3/23/11 6:00 PM 3/24/11 11:30 AM

Initial Estimated Total Test Duration (days): 13.1 15.1 :Current Total Test Duration (days)

(hours): 315.0 363.5 : (hours)
-48.5 Delta in Hours (negative is behind)

MSL Rover STT Status

Spacecraft Thermal Control Workshop 2012
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GDS Fixed Pages

28
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GDS Fixed Pages
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Landing 
Ellipse

Spacecraft Thermal Control Workshop 2012
30

Gale Crater
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landing site

notional
traverse

Gale Crater
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System Test Bed Drills
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