Impact of Water Broadening on Atmospheric CO$_2$ Retrievals for the OCO-2 Mission

F. Oyafuso & Absco team*

* David R. Thompson$^{(1)}$, Linda L. Brown$^{(1)}$, David Crisp$^{(1)}$, Yibo Jiang$^{(1)}$, Keeyoon Sung$^{(1)}$, Charles Miller$^{(1)}$, Vivienne Payne$^{(1)}$, Chris Benner$^{(2)}$, Malathy Devi$^{(2)}$

(1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109
(2) The College of William and Mary, Williamsburgh, VA, 23681
OCO-2 Spectroscopy

OCO precision requirements:
- Goal: 1 ppm (~0.3%)
- Necessitates extreme precision in spectroscopy

Spectroscopy Model:
- 3 bands: WCO$_2$ (1.6μm), SCO$_2$ (2.06μm), O$_2$A (0.76μm)
OCO-2 Spectroscopy: Updates

<table>
<thead>
<tr>
<th></th>
<th>0.76μm O₂</th>
<th>1.61μm CO₂</th>
<th>2.06μm CO₂</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range</td>
<td>12745-13245 cm⁻¹</td>
<td>4700-6500cm⁻¹</td>
<td>4700-6500cm⁻¹</td>
<td>12745-13245 cm⁻¹</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>0.01 cm⁻¹ or 0.002 cm⁻¹</td>
</tr>
<tr>
<td>Intensities</td>
<td>“</td>
<td>“</td>
<td>“</td>
<td>“</td>
</tr>
<tr>
<td>Line shapes</td>
<td>Voigt / Galatry</td>
<td>Speed-dependent Voigt</td>
<td>Speed-dependent Voigt</td>
<td>Voigt</td>
</tr>
<tr>
<td>“ Temp. dep.</td>
<td>Tran (2008)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Speed dep.</td>
<td>-</td>
<td>Devi (2007)¹</td>
<td>Benner/Devi (2011)¹</td>
<td>-</td>
</tr>
</tbody>
</table>
Why worry about H_2O?

- Water vapor varies greatly both spatially and temporally.
- Spectroscopic errors associated with water vapor can potentially introduce unphysical biases in retrieved X_{CO_2}.
- Effect of water on spectroscopy:
 - Direct absorption
 - Enhanced broadening of CO_2 and O_2.

Two recent publications:
- Sung @ 4.3μm
- Wallace @ 1.6μm (3 lines)

Weak dependence on vibrational quantum number extends applicability to WCO$_2$ and SCO$_2$ bands.

Use a rational function fit to measured water-broadened CO$_2$ lines, $\gamma_{\text{CO}_2\text{--H}_2\text{O}}(J'')$. *

$$\gamma = \gamma_{\text{air}} + (\gamma_{\text{self}} - \gamma_{\text{air}})x_{\text{CO}_2}$$

Water turns out to be a much more effective broadener for CO$_2$ than air (~1.8x).

Until recently, there had been only one publication on H₂O broadening of O₂ (Fanjoux et al, J. Phys Chem, 101, 1061 (1994)). BUT measurements were at high temps 446<T<990K.

This year another result has been published showing a much greater difference from air (Vess et al, J. Phys Chem, 116, 4069 (2012)), but only six transitions were measured.

Enhancements differ considerably: ~8% (Fanjoux), ~80% (Vess)
Effect on single band retrievals

Previously:

- WCO_2 and low optical thicknesses \rightarrow core reduction increases retrieved X_{CO_2}.
- $\text{SCO}_2 \rightarrow$ lines are too saturated for cores to matter, enhance of wings decreases retrieved X_{CO_2}.
- Addition of water continuum in SCO_2 changes things.
- WCO_2, SCO_2 now largely cancel.
Residuals are not improved for single band XCO2 retrievals – they worsen slightly.
3 band retrieval complicates analysis:

- Previous slides show W_{CO_2}, SCO_2 may cancel.
- Fanjoux O_2-H_2O broadening enhancement is small \rightarrow little dependence on H_2O column
- If 1.8x approximation (Vess) is valid, XCO_2 spectroscopic error can exceed 1ppm.
Apart from isotopic abundances, no additional scaling used:

- Retrieved surface pressure agrees well with ECMWF:
 - 1.8x enhancement of dry air broadening reduces bias in retrieved surface pressure.
- However, ~2.5ppm bias exists in XCO2
- Dependence on water column: -0.09 ppm/(g/cm²) → +0.22 ppm/(g/cm²)
Summary

- Capability of modeling water dependent cross sections has been included in the L2 algorithm for OCO-2
- Characterization of H2O-broadened O2 is very uncertain, ...
- … but, if not accounted for, could introduce spatial or temporal biases exceeding the OCO-2 error budget.
- Further lab measurement may be needed to settle the issue.

Acknowledgements

Research described in this talk was performed at Jet Propulsion Laboratory, California Institute of Technology, and was supported by the OCO-2 mission under the National Aeronautics and Space Administration.

Copyright 2012. All rights reserved.