OCO-2 Absorption Cross sections

David R. Thompson Linda Brown Chris Benner Dave Crisp
Malathy Devi Yibo Jiang Charles E. Miller Fabiano Oyafuso
Keeyoon Sung ... and others

Jet Propulsion Laboratory, California Institute of Technology
Feb. 2012

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Agenda

1. Spectroscopy in OCO-2 retrievals
 • Parameter sources and computation
 • Validation and testing

2. Pending challenges
Why spectroscopy matters

- 0.25% OCO-2 Accuracy requirement requires 0.1% reference spectroscopic accuracy [Miller et al., 2005]
- This challenges measurement accuracy AND our understanding of the physics
- Many subtle physical effects come into play at this level [Miller et al., 2007]
 - Line Mixing (O_2, CO_2)
 - Speed Dependence (CO_2)
 - Dicke Narrowing (O_2)
- Getting it wrong can introduce airmass/regional biases

From Hartmann, J.-M., Tran, H., and Toon, G. C.: Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions, Atmos. Chem. Phys., 9, 7303-7312.
Table construction process

• Problem: Advanced spectroscopic models too slow for online use
• Solution: pre-computed lookup table for linear interpolation
• OCO-2 supercomputer computes cross sections at independent temperature and pressure levels (~1 month of CPU time)

Line and continuum parameters

OCO-2 cluster

HDF File: 71 pressure levels, 17 temperature levels
Parameter sources

<table>
<thead>
<tr>
<th>ABSCO Tables</th>
<th>v3.3</th>
<th>v4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4850cm(^{-1}) CO(_2)</td>
<td>Line shape</td>
<td>Voigt, Toth 2008</td>
</tr>
<tr>
<td>continuum</td>
<td></td>
<td>additional continuum</td>
</tr>
<tr>
<td>6200cm(^{-1}) CO(_2)</td>
<td>Line shape</td>
<td>SDV [Devi et al. 2007]</td>
</tr>
<tr>
<td>mixing</td>
<td>[Hartmann 2008]</td>
<td>Multi-spectrum [Devi et al. 2007]</td>
</tr>
<tr>
<td>13200cm(^{-1}) O(_2)</td>
<td>Line shape</td>
<td>Voigt [Tran 2006]</td>
</tr>
<tr>
<td>mixing</td>
<td>[Tran 2006]</td>
<td></td>
</tr>
<tr>
<td>rescaling</td>
<td></td>
<td>rescaled to match a priori surface pressure</td>
</tr>
</tbody>
</table>
ABSCO Evaluation

GOSAT soundings
- 1-3 bands, multiple absorbers
- Low spectral resolution
- Unconstrained atmosphere, aerosols, surface albedo

TCCON spectra
- 1-3 bands, multiple absorbers
- High spectral resolution
- Full atmospheric column
- Atmosphere conditions constrained at surface

Laboratory spectra
- 1 band, one absorber
- High spectral resolution
- Known laboratory conditions
- Mostly room temperature, low optical depth
Evaluation with lab spectra

1.6 μm band, path length 32.54m
optical path difference 75cm
Total cell pressure is 742 Torr
Sample is 9.03% air-broadened $^{16}\text{O}^{12}\text{C}^{16}\text{O}$

2 μm band, path length 29.3m
Optical path difference 112.5 cm
Total pressure 599.8 Torr
Sample: 4.95% air-broadened $^{16}\text{O}^{12}\text{C}^{16}\text{O}$
Evaluation with TCCON network data

TCCON retrieval for Park Falls 22 Dec. 2004
~12 airmasses

State of the art
First-order line mixing, Voigt shapes (HITRAN 2012?)

ABSCO v4.0
Nearest-neighbor line mixing
Speed dependent profile

10/23/2012 OCO-2 ABSCO Overview
Evaluation with GOSAT data

Mean of soundings over TCCON stations

<table>
<thead>
<tr>
<th># Converged</th>
<th>Scatter v. TCCON</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+LM</td>
<td>V4.0</td>
<td></td>
</tr>
<tr>
<td>279 (65.6%)</td>
<td>300 (70.6%)</td>
<td></td>
</tr>
<tr>
<td>V+LM</td>
<td>V4.0</td>
<td></td>
</tr>
<tr>
<td>1.50 ppm</td>
<td>1.39 ppm</td>
<td></td>
</tr>
<tr>
<td>V+LM</td>
<td>V4.0</td>
<td></td>
</tr>
<tr>
<td>0.767</td>
<td>0.781</td>
<td></td>
</tr>
</tbody>
</table>

Graphs showing residuals and radiances for different data sets.
Agenda

1. Spectroscopy in OCO-2 retrievals
 - Parameter sources and computation
 - Validation and testing

2. Pending challenges
Pending challenges

10hPa bias in surface pressure

Airmass bias in single-band CO$_2$ retrievals (especially in the 2.1 μm band)
The A Band surface pressure bias

- Errors currently addressed by rescaling cross sections to remove the empirical mean error
- Line mixing and Dicke narrowing may both play a role
- Future models will model these effects directly
Current challenges: H$_2$O broadening

Broadening by water (Sung 2009) appears significant

Change in SCO$_2$ cross sections

Worst-case fractional change in X$_{co2}$

Change due to H$_2$O broadening

Net effect

Single bands

Courtesy Fabiano Oyafuso, JPL
H$_2$O broadening of CO$_2$

Water broadening now implemented
- O$_2$ from Fanjoux
- CO$_2$ from [Sung 2009]

Single band results agree with an implementation in GFIT.

Changes X$_{CO2}$ by up to \sim0.4%, though residuals still dominated by other spectroscopic effects.

For L2, start with linear interpolation for the VMR interval from 0 to 5%?
Line-by-line residual inspections

Courtesy Yibo Jiang, Linda R. Brown
Improving H$_2$O intensities

Work in progress, courtesy Lorenzo Lodi and Jonathan Tennyson from UCL, Iouli Gordon from SAO, Yibo Jiang from JPL
Moving to v4.1

<table>
<thead>
<tr>
<th>ABSCO Tables</th>
<th>V4.0</th>
<th>V4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4850 cm⁻¹ H₂O</td>
<td>Line parameters</td>
<td>HITRAN 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4850 cm⁻¹ CO₂</td>
<td>Line shape</td>
<td>SDV [Benner/Devi]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor isotopes via Toth et al.</td>
</tr>
<tr>
<td></td>
<td>mixing</td>
<td>Multi-spectrum [Benner/Devi]</td>
</tr>
<tr>
<td>6200 cm⁻¹ CO₂</td>
<td>Line shape</td>
<td>SDV [Benner/Devi]</td>
</tr>
<tr>
<td></td>
<td>mixing</td>
<td>Multi-spectrum [Devi et al. 2007]</td>
</tr>
<tr>
<td>13200 cm⁻¹ O₂</td>
<td>Line shape</td>
<td>Voigt</td>
</tr>
<tr>
<td></td>
<td>mixing</td>
<td>First-order</td>
</tr>
<tr>
<td></td>
<td>rescaling</td>
<td>rescaled to match a priori surface pressure</td>
</tr>
</tbody>
</table>
Discussion

- Recent improvements are a step in the right direction
- Radiometric accuracies are not yet to the desired 0.1% level, and some systematic errors remain
- New measurements (CRDS) can better constrain line shapes
- Major priorities:
 - The A Band
 - H_2O broadening (for which we’ll need accurate H_2O retrievals)
Questions?