Distributed Motor Controller (DMC) for Operation in Extreme Environments

Jet Propulsion Laboratory, California Institute of Technology
March 6, 2012
IEEE Aerospace Conference, Big Sky, MT
Agenda

• Background
 – Centralized motor control architecture
 – System resource trades of using distributed vs. centralized architecture

• Distributed Motor Controller (DMC)
 – DMC ASIC designs
 – Breadboard implementation

• Testing and Characterization

• Future Direction
Extreme environment missions

Mars
Temperature Range
[-125°C, 20°C]
Mars Exploration Rover [2003]
20-25 actuators

Mars Science Laboratory [2011]

Moon
Temperature Range
[-185°C, 120°C]
ATHLETE Lunar Rover [2010+]
60+ actuators

Vulnerable to radiation
• Thin atmosphere
• Lack of magnetic field

Jet Propulsion Laboratory
California Institute of Technology

NASA
Centralized Motor Control

MSL Warm Box top view
Distributed Motor Control

Reduction in Wiring
- Power Bus
- Network Bus

Localized Motor Controller

Hardware Specifications
- Wider Temperature
 -150°C, 85°C
- Radiation Tolerant

<table>
<thead>
<tr>
<th>Rover System</th>
<th>Pathfinder</th>
<th>MER</th>
<th>MSL</th>
<th>MSL w/DMC (Projected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Wiring Mass</td>
<td>1.4 Kg</td>
<td>10.4 Kg</td>
<td>52.7 Kg</td>
<td>37 Kg</td>
</tr>
<tr>
<td>Actuator Wiring Mass</td>
<td>0.35 Kg</td>
<td>3.0 Kg</td>
<td>17.4 Kg</td>
<td>1.8 Kg</td>
</tr>
<tr>
<td>Percentage of Actuator Harness Mass</td>
<td>25 %</td>
<td>29 %</td>
<td>33 %</td>
<td>5 %</td>
</tr>
</tbody>
</table>
DISTRIBUTED MOTOR CONTROLLER (DMC)

Electronics architecture, ASIC design and Breadboard implementation
DMC electronics module includes:
- Two custom mixed-signal ASICs in IBM SiGe 0.5um
 - Resolver-to-Digital Converter (RDC) chip
 - Analog Sense chip
- COTS FPGA
- 10A motor drive power FETs and gate drivers
- Brake drive
- Resolver excitation for position feedback
- Onboard power regulation from single +28V supply
IBM Silicon Germanium (SiGe) 0.5μm

IBM SiGe 5AM process technology is the key enabling feature

- Wide temperature (-150°C to +85°C) operation
- Radiation tolerant (> 100 kRad Total Integrated Dose)
- Excellent analog circuit performance
- Low cost
- Leveraging proven performance at temperature through past JPL (DMC-2 study) and NASA (Exploration Development Technology Program) efforts
RDC ASIC

- Operates on single 3.3V supply
- Two Resolver/LVDT-to-Digital Converter circuits
 - Digitizes resolver waveforms to deduce motor position to 0.1°
- Load Switch controller
 - Gate driver for power MOSFET enable/disable
- Power-On reset
 - Monitors system voltages and flags FPGA if out of tolerance
- Bus Transceiver
 - 50 Mb/s galvanically-isolated redundant digital bus for communicating with host computer and other DMC modules
Analog Sense ASIC

- Operates on single 3.3V supply
- Housekeeping chip to monitor system voltages/currents and motor telemetry
 - 16-input Differential and Single-ended MUXs with independent gain settings
 - Stimulus driver capable of providing 1.2V or 1mA to sensors external to chip
 - Serial digital communication to FPGA
Breadboard

DMC Breadboard 1 (DBB1)
- Single +28V power bus input
- Virtex-5 FPGA
- RS-232 port for PC interface/control
- Power FETs for motor drive and switched power bus
TEST RESULTS

Operation of motor at -135°C
Cold test results

RDC Angle vs Encoder Angle

- Resolver Angle (Deg)
- Linear (Resolver Angle (Deg))

\[y = 0.1795x + 15.256 \]

\[R^2 = 0.9994 \]

Note: R is the correlation coefficient. An R value of 1 would be a perfect line.

RDC Rate vs. Encoder Rate

- Resolver Rate (rpm)
- Linear (Resolver Rate (rpm))

\[y = 1.0057x + 19.034 \]

\[R^2 = 0.9994 \]

Jet Propulsion Laboratory
California Institute of Technology

NASA
Future work

• Next iteration of mixed-signal ASIC to include
 • Single chip solution
 • Four channel switch-mode power supply controller
 • Fully serial interface between ASICs and FPGA
 • Motor phase current sense
• Digital ASIC from finalized FPGA code
• Extreme environment enclosure
Contact

Colin McKinney
Jet Propulsion Laboratory, Pasadena, CA
Colin.McKinney@jpl.nasa.gov
Acknowledgments

We would like to thank the JPL Mars Focused Technology office and the Research and Technology Development office for their continued support of this task. We would also like to thank Zack Pannell, Ryan Diestelhorst, David Zhu, Michael Garret, Matthew Stein, Garen Der-Khachadourian, Robin Reil and Nazeeh Aranki for their considerable technical assistance.

The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.