Improving Weather and Climate Prediction

- Atmospheric Infrared Sounder (AIRS)
- Advanced Microwave Sounding Unit (AMSU)
- Humidity Sounder from Brazil (HSB)
- Aqua Spacecraft

The 7th International Workshop on Greenhouse Gas Measurements from Space

AIRS multilevel retrieval of Atmospheric CO2

Moustafa T. Chahine, Edward T. Olsen, Thomas S. Pagano
California Institute of Technology / JPL
Pasadena, CA 91109
tpagano@jpl.nasa.gov
The Atmospheric Infrared Sounder on NASA’s EOS Aqua Spacecraft

- **AIRS Characteristics**
- **Launch Date:** May 4, 2002, Aqua S/C
- **Orbit:** 705 km, 1:30pm, Sun Synch
- **IFOV:** 1.1° x 0.6°
 (13.5 km x 7.4 km)
- **Scan Range:** ±49.5°
- **Full Aperture OBC Blackbody, ε>0.998**
- **Full Aperture Space View**
- **Solid State Grating Spectrometer**
 - **IR Spectral Range:** 3.74-4.61 μm, 6.2-8.22 μm, 8.8-15.4 μm
 - **IR Spectral Resolution:** ≈ 1200 (λ/Δλ)
 - **# IR Channels:** 2378 IR
- **VIS Channels:** 4
- **Mass:** 177Kg
- **Power:** 256 Watts
- **Life:** 5 years (7 years goal)

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
ECMWF Finds High Infrared Sounder Impact

- Microwave satellite measurements (AMSU-A) are responsible for 18% of the forecast error reduction
- Infrared measurements (AIRS and IASI) for 12% each
- 10% of error reduction is due to radio occultation

3 Layers of CO₂ Derived from AIRS by Dr. Chahine, and Colleagues, 2011
Images for July 2003

Stratosphere

Mid-Troposphere

Lower Trop

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
M. Chahine et. al. (JPL)
Global Yield of AIRS Level 2
Mid-Tropospheric CO$_2$

AIRS Daily CO$_2$ Yield
1°x1° Spatial Resolution

AIRS Monthly CO$_2$ Yield
1°x1° Spatial Resolution

AIRS Retrieved Mid-Tropospheric CO2 (ppm,2-sigma) JUL 15 2010

Day/Night, Pole-to-Pole, Land/Ocean/Ice, Cloudy/Clear

AIRS CO2 Data Products Released (2002 to present)
http://airs.jpl.nasa.gov/AIRS_CO2_Data

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
How we retrieve CO2…

1. Pick Channels Most Sensitive to CO2 and Least Sensitive to Other Variables

2. Employ Radiative Transfer Algorithm

\[R(\nu) = S_x(\nu, \varepsilon_\nu, \ldots) + \int_{p_s}^{0} B[\nu, T(p)] \left(\frac{\partial \tau(\nu, p, \langle \ldots \rangle)}{\partial p} \right) dp \]

3. Define Cost Function: Obs - Calc

\[G^{(n)} = \sum_{\nu} \left[F^{(n)}(\nu) \right]^2 = \sum_{\nu} \left[\Theta_M(\nu) - \Theta_C^{(n)}(\nu) \right]^2 \]

4. Employ Gauss Minimization Method

 \[X_1 \text{'s are } T, H_2O, O_3 \text{ and CO}_2 \]

 \[dG = \frac{\partial G}{\partial X_1} dX_1 + \frac{\partial G}{\partial X_2} dX_2 + \ldots + \frac{\partial G}{\partial X_i} dX_i + \varepsilon. \]

5. Partial Derivatives Vanish when Minimized

 \[\frac{\partial G}{\partial X_1}, \frac{\partial G}{\partial X_2}, \frac{\partial G}{\partial X_3}, \ldots, \frac{\partial G}{\partial X_i} = 0 \]

CONTRAIL Measurements provide long timeline and good latitude coverage near peak of AIRS averaging Kernel.

- CONTRAIL flights over ocean between Sidney and Tokyo:
 - Cruising Altitude: 10.5 – 12.5 km
 - Pressure Range: 240 to 180 hPa
 - Latitude Range: 30°S to 30°N
 - Longitude Range: 135°W to 153°W

CO2 Trend
- AIRS: 1.96 ± 0.08 ppm
- CONTRAIL: 1.96 ± 0.14 ppm

CO2 Trend
- AIRS: 2.07 ± 0.03 ppm
- CONTRAIL: 1.98 ± 0.05 ppm

CONTRAIL Data courtesy of T. Machida, via World Data Centre for Greenhouse Gases http://gaw.kishou.go.jp

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
First Major Discovery: CO$_2$ is not well mixed in Mid-Troposphere. CO$_2$ Belt.

HIPPO Campaign -2009
Steve Wofsy (Harvard)

Hövmoller Diagram of AIRS Observed Mid-Tropospheric CO$_2$

Belt of CO$_2$ in SH (Nov, 2009)

Belt of CO$_2$ in SH

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
UofH/JPL Study Finds Influences of El Niño in Mid-Trop CO2 Levels observed by AIRS

- Analysis suggests that the influences of El Niño events and polar vortex on the CO2 concentration are apparent in the AIRS data.

- During El Niño, mid-tropospheric CO2 is enhanced in central Pacific Ocean and diminished in the western Pacific Ocean.

- In the polar region, mid-tropospheric CO2 is diminished if the polar vortex is strong. Polar mid-tropospheric CO2 is enhanced if the polar vortex is weak.

Factors Affecting the CO₂ Retrievals

<table>
<thead>
<tr>
<th>ν range:</th>
<th>Mid-Troposphere -10km</th>
<th>Stratosphere – 30km</th>
<th>Lower Trop – 2.2km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 CO₂ channels:</td>
<td>17 CO₂ channels:</td>
<td>10 CO₂ channels:</td>
</tr>
<tr>
<td></td>
<td>700 cm⁻¹ – 722 cm⁻¹</td>
<td>650 cm⁻¹ – 680 cm⁻¹</td>
<td>730 cm⁻¹ – 745 cm⁻¹</td>
</tr>
<tr>
<td>T(p)</td>
<td>Strong</td>
<td>Very strong</td>
<td>Strong</td>
</tr>
<tr>
<td>O₃</td>
<td>Strong</td>
<td>Weak</td>
<td>Medium</td>
</tr>
<tr>
<td>H₂O</td>
<td>Medium</td>
<td>No impact</td>
<td>Medium</td>
</tr>
<tr>
<td>Surface emission, E_s (T_s, ε_s)</td>
<td>Very weak</td>
<td>No impact</td>
<td>Medium</td>
</tr>
</tbody>
</table>

(ΔG/ΔCO₂) describes the sensitivity of observed spectra to changes in CO₂. It is a function of the lapse rate of atmospheric temperature profiles which is 7 K/km in the mid-troposphere, 1.5K/km in the stratosphere and 10K/km near surface.

- Mid-troposphere: Operational and Released to the Public (Sept 2002 – Present)
- Stratosphere: Algorithm Completed, QA and Validation Underway
- Lower troposphere: Algorithm Nearly Complete, Preliminary Retrievals Underway

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
Jan 2003 Stratospheric CO₂ Retrieval Compared to Models
(AIRS Stratospheric Contribution Function Applied to Models)

AIRS Retrieved CO₂
January 2003 Strat CO₂ (T,CO₂) Clim plus PolyLat Init CO₂ smoothed, all crngd clust, iter=2 thru 4

3-D IMATCH CO₂

Model profile weighted by AIRS sensitivity function

Preliminary

Both AIRS and models show presence of tropical pipe
- AIRS shows greater variation with latitude (~15 ppm vs ~4 ppm)
- AIRS shows additional troposphere intrusion at high latitude

T. Pagano, International Workshop on GHG Measurements from Space, May 15, 2011
AIRS Stratospheric CO2
(tropospheric CO2 intrusion/vertical wind)

AIRS CO2 for January, 2003

Vertical velocity (dP/dt) at 120°W in January 2003 (NCEP2 Reanalysis)
Negative (positive) value represents upward (downward) motion. Units are Pa/s.

Omega = dP/dt at 30 hPa (NCEP2 Reanalysis)
Negative Omega --- Upward motion;
Positive Omega --- Downward motion

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011
AIRS Lower-Tropospheric (2.2km) CO₂
(preliminary results – channel set not yet optimized and surface emission module not yet implemented)

January 2003
AIRS Lower Tropospheric CO₂ Retrievals

July 2003
AIRS Lower Tropospheric CO₂ Retrievals

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011

PRELIMINARY
Space Observations of CO2 are a Key Part of an Integrated Global Observational Strategy
Summary and Conclusions

- Atmospheric Infrared Sounder
 - Aqua Spacecraft, Launched May 4, 2002
 - Temperature, Water Vapor, Cloud and GHG’s
 - Weather, Climate and Composition
- AIRS Mid- Trop CO₂ Validated to be Accurate to Better than 2ppm
- Science Findings
 - Seasonally-Variable Belt of Enhanced CO₂ in the SH
 - Signature of El Nino Seen in CO₂ Product
 - Stratospheric/Tropospheric Exchange of CO₂ as well as O3
 - CO₂ can be used by Modelers as a Tracer for Vertical Transport
- 8 Years of Mid-Trop CO₂ now available
- AIRS Stratospheric and Lower-Tropospheric Products Under Development
- IR Sounders are a key component in the global GHG observing system
- See http://airs.jpl.nasa.gov
Dr. Mous Chahine
(1935-2011)

A Brilliant Scientist
A Great Visionary
A Caring Mentor
A Good Friend

Please leave your comments at …

T. Pagano, International Workshop on GHG Measurements from Space, May 16, 2011