Future Missions to Study Signposts of Planets

interferometry, history

Wesley A. Traub
Jet Propulsion Laboratory
California Institute of Technology

Signposts of Planets Conference, GSFC
18-20 October 2011
This talk ...

- Will not address:
 - JWST (see Mark Clampin’s talk)
 - Herschel (see Brenda Matthews’ talk)
 - ALMA (see ...)
 - HST (see Glenn Schneider’s & Karl Stapelfeldt’s talk)
 - Sub-mm (see David Wilner’s & Meredith Hughes’ talks)

- Will focus on debris disks (easier), not exoplanets (harder).
- Will compare ground and space.
- Will discuss 2 proposed missions, EXCEDE & Zodiac II.
Contrast-bandwidth plot

- Current status of coronagraph experiments is shown.
- BLCC = band-limited complex coron.
- SP = shaped pupil
- VV/PC = vector vortex, photonic crystal
- VV/LC = vector vortex, liquid crystal
- PIAA = phase-induced amplitude apodization
- VNC = visible nuller coron.
- VNT = visible nuller testbed
- EO = external occulter
Ground-based contrast limit

\[\alpha = \text{local slope of wavefront} \]
\[n = \text{no. of electrons in Shack-Hartmann sub-pupil image} \]
\[\Delta \alpha = \frac{\lambda}{(r_0 \sqrt{n})} \text{ radian} = \text{ang. accuracy of image centroid} \]
\[h_{\text{rms}} = \Delta \alpha \times r_0 = \frac{\lambda}{\sqrt{n}} = \text{uncertainty in delay of wavefront patch} \]
\[h_{\text{rms}} = \frac{N_{DM} \lambda \sqrt{C}}{4\sqrt{\pi}} = \text{wavefront error corresp. to contrast } C \]
\[n = \frac{16\pi r_0^2}{CD^2} = \text{no. of electrons in } r_0 \text{ with contrast } C \text{ & tel. } D \]
\[n = 10^{a-0.4m} (0.2\lambda) \left(\frac{\pi}{4} \right) r_0^2 \left(0.31 \frac{r_0}{V} \right) \left(\frac{QE \times \lambda}{2 \times 10^{-12}} \right) = \text{no. elec. from star in wavefront patch} \]
\[r_0(\lambda) = r_0(\lambda_V) \left(\frac{\lambda}{\lambda_V} \right)^{6/5} = \text{ } r_0 \text{ as fn. of } \lambda \]
\[m = 2.5 \left[a + 10.69 + 3.2 \log(\lambda_{\mu m}) + \log(CD_m^2) \right] = 13.6 + 2.5\log C + 5\log D_m \text{ (mag, VRIJHK)} \]

So: \(D_m=8m \text{ & } C=10^{-7} \text{ requires } m=0.6 \text{ mag, ground-based,} \]
\& with \(m=5.6 \text{ can get } C=10^{-5} \text{ raw contrast.} \]

Ref.: Traub & Oppenheimer, in Exoplanets (p. 146).
EXECEDE
EXOPLANETARY CIRCUMSTELLAR ENVIRONMENTS and DISK EXPLORER

Studying the formation, evolution, and architectures of exoplanetary systems, and characterizing circumstellar environments in habitable zones.

Dr. Glenn Schneider
Steward Observatory
The University of Arizona

A Response to NASA’s 01 Nov 2010 Announcement of Opportunity
NNH11ZDA002O
EXPLORER 2011

Credit: G. Schneider
Using Disks to Discover the Diversity of Planetary Systems

- Scattered-light images provide the greatest insights because they trace dust at a wide range of stellocentric distances, but...

- No existing coronagraphs have sufficiently small inner working angles and disk-to-star image contrast sensitivity to probe CS disk systems in their habitable zones (where the Earth resides in our solar system).

- Dynamical interactions between planets and disks are predicted to play vital roles in generating the architectures of planetary systems, but the inner regions of such systems, today, remain obscured.

HST optical images of CS Disks. EXCEDE will image ~ 1000x fainter in contrast and at least 3x closer to their stars and at spatial resolutions comparable to the best JWST will deliver.
The Need for EXCEDE

EXCEDE fulfills the capability currently lacking in NASA’s mission portfolio to achieve the today’s key exoplanetary science goals.

A large aperture telescope is not require to meet EXCEDE’s scientific objectives. Imaging CS dust at small IWA is a contrast, not photon, limited problem.

Imaging Sensitivity to ~ 10 zodi disks & mature EGPs

- Diffraction-limited polarimetric & total light imaging in 2-bands: 0.4 & 0.8 μm (spatial resolution 0.14” and 0.28”).
- 1.2 λ/D inner working angle (IWA) (IWA at the diffraction limit)
- < 10⁻⁸ resel⁻¹ speckle-subtracted image contrast @ 2 – ~30 λ/D
- (10⁻⁷ – 10⁻⁸ @ 1.2 – 2.0 λ/D)
- Photon-limited polarized flux contrast augmentation (x10 – 100)
• Image contrasts $< 10^{-7}$ and 10^{-8} are achieved within the DM WF control zone ($< 28 \lambda/D; \sim 7'' \times 7''$ FOV @ 0.4 μm in 360° (disk survey) and 180° (faint-disk follow-up and planet imaging) modes.
• PSFs shown with 1 mas target centering error and 10 inoperable DM actuators (worse than current GPI yield).
• ε Eri b @ 3.3 AU (9 λ/D) in single 3 hr simulated raw and calibrated images (90% speckle subtraction, photon, and 1.4% flat field noise).
Fig. D.1.10. Pushing far beyond the HST envelope, EXCEDE opens up new observational domains in disk surface brightness and inner working angle. HST debris disk images (far left) compared to models of those disks in EXCEDE image simulations based on anticipated instrument performance.
Zodiac II charts

<table>
<thead>
<tr>
<th>Science Goals</th>
<th>Science Objectives</th>
<th>Scientific Measurement Requirements</th>
<th>Instrument Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution of planetary systems</td>
<td>Measure brightness and shape of debris disks</td>
<td>Disk brightness in radial and azimuthal directions</td>
<td>Processed Image Contrast $\leq 3 \times 10^{-8}$</td>
</tr>
<tr>
<td>Debris disk origin, shaping, materials, dust production and lifetime</td>
<td>Measure dust size/color</td>
<td>Dust Color</td>
<td>Images in at least 2 wavebands</td>
</tr>
<tr>
<td>Hot, young exoplanets</td>
<td>Measure brightness and shape of debris disks</td>
<td>Disk brightness in radial and azimuthal directions</td>
<td></td>
</tr>
<tr>
<td>Resolve debris disk structure</td>
<td>Asymmetry in disk brightness</td>
<td>Debris disk structure</td>
<td>OWA $\geq 3^\circ$</td>
</tr>
<tr>
<td>Measure bright young planets</td>
<td>Visible-light image of the inner disk</td>
<td>Innermost location of detected dust; slope of radial profile</td>
<td>Angular Resolution 0.2°/resolution element</td>
</tr>
<tr>
<td>Observe 18–25 targets</td>
<td>SNR / hour ≥ 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pointing & Wavefront Control

- Image positioning to 0.02 arcsec RMS (requirement is 0.04 arcsec)
 - German/U.S. Sunrise balloon focal plane achieved 0.04 arcsec in 2009
- Wavefront control is 0.3 nm RMS (require 1 nm)
 - JPL High Contrast Imaging Testbed demonstrated 0.05 nm in 2006
Contrast vs angular separation for 89 targets.

SNR, contrast, & magnitude for 89 targets.
Telescope optical schematic.

Tip-tilt, LODM, HODM, LOWFS, coronagraph, & color filters.
Ref.: Trauger & Traub 2007
Time to achieve $C=10^{-7}$ contrast is \sim20 minutes on a $V=3$ mag star, calculated & lab-validated.

Speckles at balloon altitude expected to have $C<<10^{-7}$ at angles >0.1 arcsec, from Mir observations.
Low-noise bearings for elevation and cross-elevation axes.

Measured residual tip-tilt is 0.25 arcsec RMS, less than 0.4 arcsec reqm’t.
Summary

- At least 2 missions have been proposed for disk imaging.
- The technology is largely in hand today.
- A small mission would do excellent disk science, and would test technology for a future large mission for planets.