SP0L

Proof of Concept of the Quantum
Capacitance Detector

J. Bueno®, M. D. Shaw™, P. K. Day, and P. M. Echternach

Jet Propulsion Laboratory, California Institute of Technology

* present address: Center for Astrobiology (CSIC-INTA), Spain.
** present address: Applied Physics, California Institute of Technology

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration



SP0L

Single Cooper-Pair Box
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Energy levels, Coulomb Staircase
and Quantum Capacitance
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* In the absence of Josephson coupling, Energy is given by 4/ p
parabolas centered at integer values of Cooper Pair Charge 3l =0 o ™ 7/ e w0/
E=(Q-2ne)’ =(C,V, —2ne)’ <2 \\y/// \¢/ |
1+ ) P \ i
* As the gate voltage is increased, Cooper Pairs tunnel to minimize 0;/5\ m
the energy and the charge on the island changes in a stepwise p lo>+1> ”fo lo>+1>
fashion d <n -1 05 oo 05 1

spikes up at the
g 1.5
degeneracy points where the charge in the island is changing fast |

» The capacitance of the island CQ =2e

» The Josephson Coupling introduces splittings in the energy levels

<n>(2e)

* Eigenvectors are symmetrical and anti-symmetrical combinations of

the charge states 05}

* The larger Ej, the “rounder” the charge staircase and the smaller the A2

capacitance peaks

* In the absence of tunneling, only one parabola would exist (n=0) and 8
the capacitance would be constant as a function of the gate voltage
* The variable capacitance is due to the quantum nature of the system

and is called the quantum capacitance
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Measurement Technique
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» Change in capacitance pulls the frequency of the oscillator

* Resonant frequency (~600 MHz) is far below qubit level spacing (~5 GHz)
* Noise and RF probe isolated from qubit

 Overall circuit capacitance is determined by qubit state

* Enables elegant multiplexing of many qubits

» Phase shift is measured with quadrature mixer
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Experimental Setup
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» SCB qubits are coupled with fixed capacitor
» Weakly coupled qubits, can be considered independent away from mutual degeneracy point

* Multiplexed quantum capacitance readout scheme
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Experimental measurements
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Quasiparticle Poisoning

<n>(2e)
~

- If there are quasiparticles present in the

leads, they could tunnel in and out of the ] R — 7 i
island N | | | | | | |
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» When they tunnel, they shift the effective ng(2e)
gate voltage by e/Cg (or ng=0.5) 10

» Coulomb staircase and quantum
capacitance curve shifts by ng=0.5 each
time a quasiparticle tunnels in or out.

CQ(F)
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Tunnel Rate Measurements

100 ; . ; ; Log Number of Counts
3 0 A e = ——
g = T
o -100 1 ‘ A — =
_2000 1 OIOO _20I00 30IOO 4OI00 5000 $ :
Time (usec) 2
552 10° > —
o s < b{ e
O N\ \ / == 5
n -50 = 5 B g \
2 o = / \ /./ : : ,/ \
a E N = = I =
5 ‘ == i f &S 4 IE. =
8§ 157 5710 == MG E —
& = = 't =t = =
S 1l 8 -150 = e A % T = N —i——
O E !
E O Sh— =
£ = =
05 - _—
= S e
= 2 =

—_
4]

-800 -150 -100 -50 0 50 100 150 200 -1.5 -1 -0.5 0 05 1
Oscillator Phase (degrees) Gate Charge (electrons)

* Phase measured at degeneracy point in real time
» One quasiparticle tunnel event shifts phase by ~140 degrees
» Can study statistics and compare with existing theory
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Dependence on Quasiparticle Density
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» Approximations valid at low temperature

» Simple relationship between rates and QP density is ideal for detector
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The Quantum Capacitance Detector

* Radiation coupled by an
9 antenna breaks Cooper pairs in
the reservoir (absorber)

Ce » Quasiparticles tunnel onto the
island with a rate T’

Antenna J proportional to the quasiparticle

| density in the reservoir
Ce : l * Quasiparticles tunnel out of

Tunnel ‘ |
|

Junction

C the island with a rate I'
independent of the number of

Reservoir quasiparticles in the reservoir

A
L@ Tank =— - .

& Circuit | - 2 * At steady state the probability
L of a quasiparticle being present

l%légher SCB (v in the island is given by
Po(Nqgp)=Teo/(Teo+I0e,)
contacts Island

* The resulting change in the
average capacitance will be
CQ= (4EC/EJ)(Cg2/C2)Po(Nqgp)

* This change in capacitance
will produce a phase shift

» With the existing tank circuit
parameters, phase shift per
quasiparticle should be 138
degrees, in very good
agreement with experiments
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Physical Noise Sources

* Phase noise — from phase measurement

histogram the rms phase noise is ~ 33
degrees or 1.8x10-3 radian/Hz"2 over the
100kHz bandwidth

*Telegraph noise:the tunneling on and
off the island is approximated as a
Poisson process with rates ['eo and
oe. At low frequencies the spectral
density of noise associated with the
process is

*Fano noise: the number of quasiparticles
generated by an incoming photon has an
uncertainty given by (FNqgp)1/2 where
F~0.2 is the Fano factor for this system.
The associated NEP is

» Generation-recombination noise:
quasiparticles can be thermally
excited over the superconducting
gap and recombine into Cooper
pairs, introducing a fluctuation in the
number of quasiparticles in the
reservoir The associated NEP is

* The noise equivalent power at low
frequencies will be given by
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Theoretical Sensitivity
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Left: NEPs from various noise sources calculated for devices optimized for A =100um, optical loading 10-
9W and R=1000 as a function of temperature. Right: NEPs of various noise sources as a function of
wavelength as compared to the requirements for a spectrometer with R=1000 and the expected optical
loading at L2 for a cold (4.2K) telecope . The operating temperature was chosen to be 0.1K at which the
GR noise contribution is negligible.
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Theoretical Sensitivity vs. Signal Power
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* Detector is background limited over a wide range of operation
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heoretical Sensitivity vs. Absorber Volume
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» Absorber volume is a key parameter

» Can be used to trade sensitivity for

saturation power
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Single Photon Detection

* For photon count rate << 1/t will be a pulse

#o="

TR
Ph{ﬁton ;r_ri;/gggate fo: a COItd (4Pt<{t2elescope With amplitude proportional to the photon energy U.
with an R= spectrometer a asa S(0) is the responsivity in radians/Watt

function of wavelength
* The energy resolution will be SU = NEP(()) /TR

10° : : U/BU as a function of wavelength for photon rate
] shown on left
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Experimental Confirmation
Quasiparticle Injection with SIS junctions
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Experiemental demonstration
Response versus signal
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+ Ran a current through SIS junction to inject quasiparticles on reservoir N = I( 1 N 1 I .
. . . . w ~ T~
+ AC component of current simulates signal and DC optical loading e\7, 7Tp e

* 1p is the time for quasiparticles to diffuse through constriction

* Graph shows lock-in response as a function of number of quasiparticles present

in the reservoir. NEP = A &qu

* The measured noise in number of quasiparticles in the reservoir was Npq~2.8 T
qp/Hz"2, which would yield an NEP~ 8x10-1°W/Hz R

* From loading we expect NEP ~ 9x10-1°W/Hz — very good agreement



Experimental demonstration
Response x loading
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Multiplexing scheme

_________________________________________ @  Gates are swept with a low frequency f
Frequency Custom board 10 Mixers:  Commercial product signal of amplitude e/Cg
synthesizers ey .
i « A mixer demodulates the reflected RF
@' '@L —{ADH>" signal to the modulation frequency fand a
@, _g) ~ADH op down converter translates the results to
il DISK | : DC
- ARRAY| : o
B * In the multi-pixel readout, A low
. - frequency comb function (0-200MHz)
@. .@) 3 Q’g IDsp containing several frequency components
T = is produced digitally using a D/A converter

O SOOI OSSN and then block up-converted, resulting in a
comb of RF carrier frequencies with each
frequency corresponding to a particular
detector.

Mixer

Circulator
7T @

Bias sweep
fs

* All of the SCB gates are tied together
through a common bias line and
modulated at the same frequency.

* The reflected RF comb, containing the

phase shift information for the entire array,

is demodulated at the bias modulation

frequency, down-converted to the 0-

Cryostat p— 200MHz band, then digitized and digitally
— demultiplexed.

RF Bias

Detector

RF Bias
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Applications in FIR-Submillimeter Astronomy
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Detector Advantages

» SCB has extreme sensitivity to the presence of quasiparticles

« Sensitivity of QCD rivals MKID and TES

» Frequency-domain multiplexing allows scaling to large arrays

» Applicable to submillimeter wavelengths for far-infrared astrophysics
» Can be easily incorporated with existing technology for MKID arrays
» Detector (SCB) is separate from resonator — flexibility of design

* NEP and saturation power easily tailorable



