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Single Cooper-Pair Box

     
n n

J
GC nnnnEnnnnEH 11

2
4 2

Charging energy

Josephson coupling 











O

JJ EE cosmax

Electrostatic gate charge
Island LeadCg

CJ

q=-2ne
S S ext

e
VCn GG

G 2





C
eEC 2

2



Energy levels, Coulomb Staircase
and Quantum Capacitance
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• In the absence of Josephson coupling, Energy is given by 
parabolas centered at integer values of Cooper Pair Charge 

• As the gate voltage is increased, Cooper Pairs tunnel to minimize
the energy and the charge on the island changes in a stepwise
fashion
• The capacitance of the island                                  spikes up at the
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degeneracy points where the charge in the island is changing fast

• The Josephson Coupling introduces splittings in the energy levels

• Eigenvectors are symmetrical and anti-symmetrical combinations of 

the charge states

• The larger Ej, the “rounder” the charge staircase and the smaller the

capacitance peaks

• In the absence of tunneling, only one parabola would exist (n=0) and

the capacitance would be constant as a function of the gate voltage

• The variable capacitance is due to the quantum nature of the system

and is called the quantum capacitance



Measurement Technique
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• Change in capacitance pulls the frequency of the oscillator 

• Resonant frequency (~600 MHz) is far below qubit level spacing (~5 GHz)

• Noise and RF probe isolated from qubit

• Overall circuit capacitance is determined by qubit state

• Enables elegant multiplexing of many qubits

• Phase shift is measured with quadrature mixer



Experimental Setup

• SCB qubits are coupled with fixed capacitor

• Weakly coupled qubits, can be considered independent away from mutual degeneracy point

• Multiplexed quantum capacitance readout scheme



Experimental measurements



Quasiparticle Poisoning
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• If there are quasiparticles present in the 
leads, they could tunnel in and out of the 
island

• When they tunnel, they shift the effective 
gate voltage by e/Cg (or ng=0.5)

• Coulomb staircase and quantum 
capacitance curve shifts by ng=0.5 each 
time a quasiparticle tunnels in or out.



Tunnel Rate Measurements

• Phase measured at degeneracy point in real time
• One quasiparticle tunnel event shifts phase by ~140 degrees
• Can study statistics and compare with existing theory



Dependence on Quasiparticle Density 

• Approximations valid at low temperature

• Simple relationship between rates and QP density is ideal for detector
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The Quantum Capacitance Detector
• Radiation coupled by an 
antenna breaks Cooper pairs in 
the reservoir (absorber)

• Quasiparticles tunnel onto the 
island with a rate eo
proportional to the quasiparticle 
density in the reservoir

• Quasiparticles tunnel out of 
the island with a rate oe 
independent of the number of 
quasiparticles in the reservoir

• At steady state the probability 
of a quasiparticle being present 
in the island is given by 
Po(Nqp)=eo/(eo+oe,)

• The resulting change in the 
average capacitance will be 
CQ= (4EC/EJ)(Cg2/C)Po(Nqp)

• This change in capacitance 
will produce a phase shift 
2CQ /(oZoCC

2)

• With the existing tank circuit 
parameters, phase shift per 
quasiparticle should be 138 
degrees, in very good 
agreement with experiments



Physical Noise Sources
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• Phase noise – from phase measurement 
histogram the rms phase noise is ~ 33 
degrees or 1.8x10-3 radian/Hz1/2 over the 
100kHz bandwidth

•Telegraph noise:the tunneling on and 
off the island is approximated as a 
Poisson process with rates Γeo and 
Γoe. At low frequencies the spectral 
density of noise associated with the 
process is 

•Fano noise: the number of quasiparticles 
generated by an incoming photon has an 
uncertainty given by (FNqp)1/2 where 
F~0.2 is the Fano factor for this system.  
The associated NEP is 

• Generation-recombination noise: 
quasiparticles can be thermally 
excited over the superconducting 
gap and recombine into Cooper 
pairs, introducing a fluctuation in the 
number of quasiparticles in the 
reservoir The associated NEP is  
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Neq is the number of equilibrium 
quasiparticles. 
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• The noise equivalent power at low 
frequencies will be given by



Theoretical Sensitivity
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Left: NEPs from various noise sources calculated for devices optimized for λ =100µm, optical loading 10-

19 W and R=1000 as a function of temperature.  Right: NEPs of various noise sources as a function of 
wavelength as compared to the requirements for a spectrometer with R=1000  and the expected optical 
loading at L2 for a cold (4.2K) telecope . The operating temperature was chosen to be 0.1K at which the 
GR noise contribution is negligible. 



Theoretical Sensitivity vs. Signal Power

• Detector is background  limited over a wide range of operation
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Theoretical Sensitivity vs. Absorber Volume

• Absorber volume is a key parameter

• Can be used to trade sensitivity for 
saturation power



Single Photon Detection
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Photon arrival rate for a cold (4K) telescope 
with an R=1000 spectrometer at L2 as a 
function of wavelength

• For photon count rate << 1/R will be a pulse

With amplitude proportional to the photon energy U. 
S(0) is the responsivity in radians/Watt

• The energy resolution will be RNEPU  )0(
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Experimental Confirmation
Quasiparticle Injection with SIS junctions



Experiemental demonstration
Response versus signal
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• Ran a current through SIS junction to inject quasiparticles on reservoir

• AC component of current simulates signal and DC optical loading

• D is the time for quasiparticles to diffuse through constriction

• Graph shows lock-in response as a function of number of quasiparticles present 
in the reservoir.

• The measured noise in number of quasiparticles in the reservoir was Npq~2.8 
qp/Hz1/2, which would  yield an NEP~ 8x10-19W/Hz

• From loading we expect NEP ~ 9x10-19W/Hz – very good agreement
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Experimental demonstration
Response x loading
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Multiplexing scheme

• Gates are swept with a low frequency f
signal of amplitude e/Cg

• A mixer demodulates the reflected RF 
signal to the modulation frequency f and a 
down converter translates the results to 
DC

• In the multi-pixel readout, A low 
frequency comb function (0-200MHz) 
containing several frequency components 
is produced digitally using a D/A converter 
and then block up-converted, resulting in a 
comb of RF carrier frequencies with each 
frequency corresponding to a particular 
detector.

• All of the SCB gates are tied together 
through a common bias line and 
modulated at the same frequency. 

• The reflected RF comb, containing the 
phase shift information for the entire array, 
is demodulated at the bias modulation 
frequency, down-converted to the 0-
200MHz band, then digitized and digitally 
demultiplexed. 



Applications in FIR-Submillimeter Astronomy

• Cold (4.2K) telescope at L2 with R=1000 
spectrometer



Detector Advantages

• SCB has extreme sensitivity to the presence of quasiparticles

• Sensitivity of QCD rivals MKID and TES

• Frequency-domain multiplexing allows scaling to large arrays

• Applicable to submillimeter wavelengths for far-infrared astrophysics

• Can be easily incorporated with existing technology for MKID arrays

• Detector (SCB) is separate from resonator – flexibility of design

• NEP and saturation power easily tailorable


