Radiation Effects in Commercial GaN HEMT Devices

Richard Harris, James Hoffman, Leif Scheick, and James Skinner

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA

This work was supported by the NASA Electronic Parts and Packaging Program (NEPP),
the DESDynI Mission and the JEO Mission

This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology
under contract with the National Aeronautics and Space Administration (NASA)

© California Institute of Technology 2011
GaN-Based Devices

• GaN is a wide bandgap material that has received considerable interest in recent years

• Many potential applications:
 – High Temperature - >500C
 – High Power
 – RF frequencies

• Previous materials studies have suggested that GaN has a high radiation tolerance

• In this presentation, we take an initial look at the sensitivity of commercially available GaN devices to determine their radiation tolerance
Radiation Effects in Newly Available GaN MOSFETs and HEMTs - FY10 (New)

Description:
- Available power devices to NASA missions have decreased due to fabrication challenges at the manufacturer, but new technologies are coming onto the available market. Very little radiation test data applicable to NASA mission is available on these devices. Upcoming NASA missions have driven interest in a better catalogue of parts available to NASA designers and contractors with adequate mission assurance data.

- Device types for an emerging manufacture (EPC and Cree) will be procured pro bono to test to NASA standards (Testing Guideline for Single Event Gate Rupture (SEGR) of Power MOSFETs) for SEE and MIL-STD-883 1019. Applicability to NASA mission will be assess with any derating guidelines.

FY10 Plans:
- Acquire parts
 - Devices from EPC, Cree
- Perform radiation testing
 - SEGR/B and TID/DDD
- Analyzed data
 - Side by side comparison with power MOSFETs
 - FIT and SER estimates
 - Any circuit application anomalies
- Report

Schedule/Costs:
Total Full-Cost = $100K

<table>
<thead>
<tr>
<th>GaN MOSFETs and HEMTs - Radiation</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>procured devices</td>
<td>ON</td>
<td>J</td>
</tr>
<tr>
<td>plan radiation tests</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>perform radiation testing</td>
<td>M</td>
<td>AM</td>
</tr>
<tr>
<td>report on test results</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>final report delivery</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>propose follow-on tests</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deliverables:
- Report on the radiation results for new device types (FY11)

NASA and Non-NASA Organizations/Procurements:

Lead Center/PI: JPL/Harris
Co-Is: JPL/Scheick
Contributors: None
Center Funding Split: 100%
HEMT Device Structure

- Typical Structure of a GaN HEMT (High Electron Mobility Transistor) structure

![Diagram of HEMT structure]

- Quantum well formed at the AlGaN/GaN heterojunction
- Results in conduction via a 2 dimension electron gas in this well
- Structure produces depletion mode devices (normally on)
- Negative gate voltage required to turn device off
Bandgap at Heterojunction Interface
Initial Studies

• SEB/SEGR
 • Tested at Texas A&M
 • Ions used:
 • Krypton – 953 MeV
 • Xenon – 2530, 738, 522, 391 MeV

• Proton Irradiation
 • Tested at UC Davis
 • 55 MeV protons
 • 1.6×10^{12} p/cm2
 • Produces ~ 250 krad of TID
 • DC characteristics, only, measured in initial test
Parts Tested

<table>
<thead>
<tr>
<th>Supplier</th>
<th>P/N</th>
<th>Power Level (W)</th>
<th>Max V_{DS} (V)</th>
<th>Date Code</th>
<th>Tests Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cree</td>
<td>CGH40010FE</td>
<td>10</td>
<td>84</td>
<td>14609; 22209</td>
<td>Proton, SEB/SEGR</td>
</tr>
<tr>
<td></td>
<td>CGH40025FE</td>
<td>25</td>
<td>84</td>
<td>16509</td>
<td>Proton</td>
</tr>
<tr>
<td></td>
<td>CGH40120FE</td>
<td>120</td>
<td>84</td>
<td>02310</td>
<td>Proton, SEB/SEGR</td>
</tr>
<tr>
<td>Sumitomo</td>
<td>EGNB045MK</td>
<td>125</td>
<td>120</td>
<td>30RY; 30SM</td>
<td>Proton, SEB/SEGR</td>
</tr>
<tr>
<td></td>
<td>EGNB010MK</td>
<td>45</td>
<td>120</td>
<td></td>
<td>SEB/SEGR</td>
</tr>
<tr>
<td>RFMD</td>
<td>RF3934200</td>
<td>120</td>
<td>48</td>
<td></td>
<td>SEB/SEGR</td>
</tr>
</tbody>
</table>
• No deleterious effects were observed

• Parts were delidded prior to test
• Tested through angles up to 45 degrees
• Parts showed high leakage current pre-irradiation
 • > 1 µA
• Injected current observed to be small compared to leakage current
Proton Irradiation (DDD+TID)

• Threshold Voltage
 • Threshold determined from transfer characteristic

Typical transfer characteristic for a Sumitomo part with $V_{DS} = 10V$
• Several fluences included

Transition from off-state to on-state is very abrupt
• Threshold voltage taken to be the voltage of the last point in the off-state
Proton Irradiation (DDD+TID)

- Threshold Voltage (2)
 - 4 different Sumitomo parts

Threshold Voltage (V)
EGNB045MK
$V_{DS} = 10$V

- Appears to be a small decrease in the threshold voltage for the lower fluence levels
- But at higher fluences no change for 2 parts and an increase for the other 2 parts
- Conclude that there is at most a small change in V_{TH} with fluence and likely no real change
- The Cree parts showed similar behavior with the values moving around some, but again with no unambiguous trend
Proton Irradiation (DDD+TID)

- Output Characteristics
 - Typical result for a Cree part
 - No trend apparent for the different proton fluences
 - Conclude that there is at most a small change in VTH with fluence and likely no real change
 - The Cree parts showed similar behavior with the values moving around some, but again with no unambiguous trend
Discussion of Radiation Results

• SEB/SEGR
 • In HEMT device, the gate is a Schottky junction not an MOS-like structure
 • Nothing to rupture, so no SEGR
 • Leakage at gate is very high and injected current is small, so no SEB induced

• TID
 • No oxide in gate or other places, so no TID expected

• DDD
 • Expect DD degradation at sufficiently high fluences
 • These levels are moderate for a radiation hard material
Follow-Up Plans

• Proton Irradiation
 • Another irradiation planned – last week of June
 • Measure additional parameters
 • DC
 • Output Characteristics
 • Saturated Drain Current
 • Threshold Voltage
 • Gate Quiescent Voltage
 • RF
 • Power Output
 • Small Signal Gain
 • Drain Efficiency
 • S-Parameters
Reliability Concerns

- Construction analysis performed including cross-sections, SEM, and FIB
 - Suppliers: Cree, Sumitomo, and RFMD
 - Most significant concern is voids in the metallization step coverage in Cree and RFMD parts

Cree

RFMD
Conclusion of Radiation Tests

• No significant degradation in DC parameters observed following the radiations used

• Includes
 • SEGR/SEB
 • TID (DC parameters only)
 • DDD (DC parameters only)

• Additional studies planned
 • Additional parameters
 • Other suppliers
 • In particular EPC (FY12?)
 • makes an enhancement mode (normally off) GaN device