
Software Cost Estimation

Sizing the System

Presented by:

Jairus Hihn
Erik Monson

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. © 2011 California Institute of Technology. Government sponsorship
acknowledged.

© 2011 California Institute of Technology 3-2

Scope the Job

-Estimate Effort
-Calculate Cost

Determine the Impact
of Risk

Track & Report
Estimates

Cost Metrics
Archive

- Requirements
- Architectural Design

- Mission/Project Sched.
- Implementation Appr.
- Mission/Project WBS
- SW Implementation
and Design ApproachSW

 C
os

t I
np

ut
s

Validation and
Reconciliation

Review & Approve
Estimates

Estimate Software
Size

Model-based Estimate

- Applicable Processes
& procedures

- Design principles
- Std WBS
- NASA & OMB ReqsC

on
st

ra
in

ts

Save History

Follow Through

When budget is too low
“Do not look for
a silver bullet”
- DESCOPE

Rescope

Bottom-Up
Cost Estimate

-Schedule Effort

Key
elements of
Basis of
Estimate
(BOE)

© 2011 California Institute of Technology 3-3

– Functional or Object
Decomposition

– Software size estimates that
distinguish
• New, Inherited, Modified

– Methods used for size
estimation

Estimate
Software

Size

Inputs Outputs

• The purpose of this step is to estimate the size of the software project
– Formal cost estimation techniques require software size as an input

[Parametric Estimation Handbook, 1999 and NASA Cost Estimation
Handbook, 2002]

– Can be used to generate a bottom-up estimate as shown in handbook

• Size can be estimated in various ways
– Source Lines of Code (SLOC) or Function Points
– Interfaces, objects, monitors & responses, widgets

• Size is one of the most difficult and challenging inputs to obtain

Estimate Software Size

Software Size Estimates

− Should be based on the measured sizes for analogous
historical software

− Include software reuse assumptions, clearly identifying
amount of code reused with no modifications and amount of
modified reused code

− Software can be sized using lines of code, work packages,
function points

• Lines of code sizing is institutionally supported
− Use Standard Tools (Some options are)

− SLiC: Counts 20 languages using multiple size metrics
− NCSL: counts C (primarily used on flight software)
− USC CodeCount
− Diff-SLiC: counts logical differences

− forthcoming this year

3-4© 2011 California Institute of Technology

© 2011 California Institute of Technology 3-5

Estimating Software Size Using
Source Lines of Code (SLOC)

Software ‘size’ is simply a measure of code ‘bigness’

The most common way to estimate size is through Source Lines of
Code (SLOC)

• Includes any code delivered as a software release
• Many definitions and standards:

– Raw physical
– Physical
– Logical

……and many others
• SLOC is easy to capture using common counting utilities

© 2011 California Institute of Technology 3-6

Types of SLOC
‘Raw Physical’ SLOC

Raw Physical* SLOC are the total number of lines in a file

‘Raw Physical’ SLOC can be easily
counted on UNIX systems using the
`wc –l` command

This is the easiest and quickest
means of counting code, but is of
limited use in cost estimation.

Use is not recommended

However, it is no longer the de-
facto measure for cost estimation
due to the advent of logical
counting standards.

Raw Physical SLOC = 20 lines
*A term I made up for the lack of a better description. There is no
accepted term for this type of SLOC, therefore we will use this for
the purposes of this class. SQI tools also use this terminology.

© 2011 California Institute of Technology 3-7

Types of SLOC
‘Physical’ SLOC

‘Physical’ SLOC are the total number of non-blank, non-comment lines

This is the most widely-accepted
approach to counting source lines
of code since it is a well-understood
standard that is easily
implemented.

Since certain languages are more
‘compact’ than others, it is often
difficult to compare Physical SLOC
counts of different languages. Most
cost estimation tools now use
‘Logical SLOC’ which helps to
normalize out these differences.

Physical SLOC = 9 lines

© 2011 California Institute of Technology 3-8

Types of SLOC
‘Logical’ SLOC / Logical Source Statements

‘Logical’ SLOC captures size using language-specific rules. Logical
SLOC are sometimes referred to as ‘Logical Source Statements’

For example, in C/C++ the
following items count as a
logical source statement1:
• Preprocessor Directives
• Terminal Semicolons
• Terminal close-braces

There are slight variations in the standard
to handle special cases. Some
definitions of logical source statements
are more complex (such as USC
CodeCount and earlier SLiC rules).

Due to the inherent nature of these
logical counting standards, most counters
perform best with properly formatted
code.

Logical SLOC = 6 lines 1 In SLiC v4.0 simplified ruleset

© 2011 California Institute of Technology 3-9

SLOC Standards - A Review

Type Description Pros Cons

Raw Physical A count of all lines
in a source code
file

• Very easy to capture with
standard operating system
tools

• Code formatting can cause
SLOC counts to vary
significantly even for
functionally equivalent code

Physical A count of all non-
comment, non-
blank lines in
source code file

• Provides better accuracy
than Raw Physical

• Unambiguous definition of
‘comment’ and ‘blank’ lines

• Generally requires a code
counting utility

• Differences in code
formatting between
languages and development
teams can cause SLOC
counts to vary, to a lesser
extent than Raw Physical

Logical A count of
language specific
metrics (USC-SEI
conventions)

• Most accurate measure of
SLOC - normalizes out many
of the counting errors
inherent to other counting
conventions

• Input for many modern
software cost estimation
models

• Requires a code counter with
support for the language to
be counted, or the use of
conversion factors (less
accurate)

• Language-specific standards
can be difficult to understand

© 2011 California Institute of Technology 3-10

Language To Derive Logical SLOC

Assembly Assume Physical SLOC = Logical SLOC

C Reduce Physical SLOC by 25%

Perl, SQL Reduce Physical SLOC by 40%

C++ / Java Reduce Physical SLOC by 30%

Handling Special Cases
Physical to Logical Conversion “Rules of Thumb”

• When it is not possible to natively count logical statements
(such as when you only have a physical SLOC count) you can derive an
approximation of logical statements by using the following adjustment
levels to physical (non-comment, non-blank line) SLOC counts

• In some programming languages, physical lines and logical statements
are nearly the same (as in assembly), but in others significant
differences in size estimates (and thus more significant errors in
approximation) can result

© 2011 California Institute of Technology 3-11

Handling Special Cases
Autogenerated Code

Occasionally, you may run into code that was not hand-coded but rather
generated from another program

Unfortunately, since this autogenerated code was not ‘worked on’, you
cannot directly use this for an analogy size reference for cost estimation
purposes.

An example (from real life):

• A hand-written source file (source)is 438 lines
• The original source file (source) is translated into C source code by a

translation utility using its default options. The resulting generated file,
output.c, is 3,351 lines, over 7 times larger than the code that was
written.

• Running the translation utility with an optimization flag (results in more
bloated code but better performance) yields an output.c with 17,699
lines, over 40 times larger than the original source code!!!

What we really need is to count the file source. If you only have
access to output.c, you have no way of knowing the exact size of
source.

© 2011 California Institute of Technology 3-12

To Derive Logical SLOC, Multiply
Number of Autocode Lines By:

Language Least Likely Most
Second-Generation 1
Third-Generation 0.22 0.25 0.4
Fourth-Generation 0.04 0.06 0.13
Object-Oriented 0.09 0.17

Lowest Most Likely Highest

Handling Special Cases
Dealing with Autogenerated Code

There may be cases where you cannot access the hand-generated source.
Security or intellectual property considerations may restrict your access
to the code. In this case:

1. Ask the developer to count the code with the code counting utility
of your choosing (one that supports Logical SLOC)

2. If the developer cannot or will not use your specific code counter,
ask him/her to use the ‘wc -l’ command to count all lines in the
source files (Raw Physical SLOC). SQI can then assist you in
approximating Logical SLOC from this metric.

3. If all else fails*, you can use the table below to estimate the size
of the hand-generated source code:

* Don’t let it come
to this if you can
help it. It is
imprecise, but may
be your only choice
if you’ve been
backed into a corner

© 2011 California Institute of Technology 3-13

Sizing Considerations

• What you choose to count is important
– Implementation cost driven mainly by written code
– Maintenance cost driven by delivered code

Analogous size data typically provides delivered code

• Since relatively few software projects at NASA are written from scratch,
your project is likely to have:
– New Code
– Inherited or reused code

• This is code that is incorporated into a projected as-is, and must be re-
tested

• Projects tend to overestimate the amount of inherited code and the
degree to which modifications would be unnecessary

– Modified Inherited code
• Modifying code that is inherited/reused requires effort in addition to

testing and may not necessarily result in significant cost savings
• Each type of code requires work; nothing is free!

Software Size Estimates

1. Define Functions 2. Identify
Analogies

3. Estimate Function
Delivered Size

4a. New 4b. Reused 4c.
Reengineered/Modifi

ed

5. Calculate Equivalent/Effective SLOC

For Flight Software:
Equivalent SLOC = New Code + (0.25)(Reused code) + (0.80)(Modified Code)

For Ground Software:
Equivalent SLOC = New Code + (0.15)(Reused code) + (0.65)(Modified Code)

Notional Numbers

3-14© 2011 California Institute of Technology

© 2011 California Institute of Technology 3-15

Cost of Inherited Code
(And you thought it was free!)

Cost of Reuse

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percent Modification of Inherited Code

C
os

t R
el

at
iv

e
to

 N
ew

 C
od

e
Selby StudyCOCOMO II Code

Not Written for reuse

COCOMO II Code
Written for reuse

It has been shown that even minor modifications can cost more than
half of the cost of developing an application from scratch!

© 2011 California Institute of Technology 3-16

C&DH SW Historical Mission
Module Actuals New Modified Reused
CMD 3292 4000
TLM 1406 400 1000
DM 1845 1000 1000
CMD IF 1373 1373
CMD/TLM BD 1442 1000
TLM IF 656 656
App 419 500
MM 2221 2300
TS 1864 1100 900
Time 97 97
TM 649 649
FS 59 59
SCU RM 387 400
Time Sync 344 400

New Mission

Size Estimation Example

© 2011 California Institute of Technology 3-17

Equivalent Lines of Code

To simplify the process of cost estimation, we need a way of
accounting for the increased scope of incorporating inherited
and modified code into a project.

• Standard of practice is that written code is measured by what is
called Equivalent (Effective) lines of code
– Equivalent SLOC takes into account the differences in effort

required to incorporate new vs. inherited code into a
delivered system

– Equivalent lines of code takes into account the additional
effort required to modify reused/adapted code for inclusion
into the software product

– Estimated equivalent size <= Delivered equivalent size
• Example

– EqSLOC = New + 0.25*Reused + 0.6*Modified_Inherited

© 2011 California Institute of Technology 3-18

Computing Equivalent Lines of Code

The first step is to identify code heritage:
– Inherited code without modifications
– Modified code
– New code

Any major modifications (>= 50%) to inherited code
should be treated as new code

© 2011 California Institute of Technology 3-19

Computing Equivalent Lines of Code Methods

• Method #1 (Quick)
(a) Treat inherited code with 50% or greater

modifications as new code
(b) Compute Equivalent SLOC:

For Flight Software:
Equivalent SLOC = New Code + (0.25)(Reused code) + (0.80)(Modified Code)

For Ground Software:
Equivalent SLOC = New Code + (0.15)(Reused code) + (0.65)(Modified Code)

© 2011 California Institute of Technology 3-20

Computing Equivalent Lines of Code Methods

• Method #2
– Use full algorithm as provided in COCOMO II tool
– We will explore this option in detail during the

model-based estimates lecture

© 2011 California Institute of Technology 3-21

Computing Equivalent Lines of Code –
Example

• You are inheriting three modules of 5 KSLOC each for a ground
software project
– Module 1 is 5 KSLOC with no modifications
– Module 2 is 5 KSLOC requiring 30-40% modifications
– Module 3 is 5 KSLOC requiring 50-60% modifications

• Compute equivalent lines of code
– Module 1 is pure reuse
– Module 2 is treated as modified code
– Module 3 requires extensive modifications and is treated as

new code
– EKSLOC = 5(.15) + 5(0.65) + 5
– Equivalent Size = 9 KSLOC

© 2011 California Institute of Technology 3-22

What to Count

• Want to count EqSloc for software that gets delivered
as part of the system

• Includes
– System code
– Adaptation of standard multi-mission software
– Simulators
– Delivered regression test suites
– Test bed support software (input-output & analysis)

• Excludes
– Non-delivered items

• E.g. Non-delivered unit test scripts

© 2011 California Institute of Technology 3-23

Size Estimation Steps

• Decompose SW taking into account heritage, functionality, and
complexity

• Estimate Size Distribution parameters
– Derive Most Likely (ML) based on analogous functions from completed

software systems
– Adjust estimate for differences between current fn and analogous fn
– Adjust estimate for heritage and auto-generated code
– Provide low and high size estimates based on best and worst case

scenarios
• Convert to logical lines if needed

– COCOMO and SEER use logical lines
– Handbook tables are based on logical lines

• Compute Total SLOC based on
– PERT Mean computation

• Mean = (Low + 4ML + High)/6
– Monte Carlo Simulation (preferred)

© 2011 California Institute of Technology 3-24

Size Estimation Example
Assumptions

Reused
Low Likely High Low High

Fn1 12 1 2 5 10 5% 15%
Fn2 8 2 3 4 5 0% 0%
Fn3 2 2 4 8
Fn4 12 8 10 20 2 50% 60%

BOE
New % ModifiedAnalogy

Reference

• Basis of Estimate (BOE) should include
– Analogies supporting Likely and reuse numbers

• e.g. Fn1 similar to Fn x on DS-1
– Conditions that drive Low and High estimates and modification

ranges
• e.g. Fn2 Low assumes that the driver sw that comes with the

actuator can be used as is, High assumes drivers require extensive
high level driver code

© 2011 California Institute of Technology 3-25

Size Estimate Histogram

0%

2%

4%

6%

8%

10%

12%

14%

20
.9

22
.7

24
.6

26
.5

28
.4

30
.2

32
.1

34
.0

35
.9

37
.7

39
.6

Mean Size = 28.6

Size Estimation Example
Distributions

© 2011 California Institute of Technology 3-26

Alternate Sizing Methods (1)

• Commonly used methods not covered in class but we can provide
assistance in using
– Paired Comparison Matrices is a way to more rigorously capture expert

judgment
• Method based on rank ordering modules and providing relative size ratios

(eg Mod1 is 1.5 times bigger the Mod 2)
• Can be easily implemented in Excel (e.g MONTE)
• SEER-SEM is an available commercial tool

– Function Points counts inputs, outputs, files
• Method based on counting input, outputs, data items, based on a user-

oriented high-level software design
• IFPUG provides standards and training (http://www.ifpug.org)
• Approach can be adapted around counting inputs and outputs from design

documents or detailed requirements documents
• Difficulty here is consistency

– The JPL Flight Software Cost model used in Team X contains a sizing
tool for flight systems based on mission & system characteristics

© 2011 California Institute of Technology 3-27

JPL Code Counter

Source Lines Counter (SLiC)

SQI has written a code counter to measure Logical SLOC metrics (and more) for the most common
languages in use on lab. This tool is freely available to anyone on lab and has several
advantages:

• Counts source lines written in nearly two dozen different languages (and counting) in widespread
use at JPL

• Supports the three most common counting standards
– Raw Physical SLOC
– Physical SLOC
– Logical Source Statements (a.k.a. Logical SLOC)

• Easy to use - just tell it where your code resides and it will search for and count supported source code.
– Searches are highly customizable; you can create powerful search rules or simply specify specific files/folders

to count.
• Flexible output formats allow SLiC to fit into automated scripts.
• If you participate in SQI data collection activities, SLiC can automatically upload SLOC metrics to

the SQI repository if you so specify, eliminating the need to manually enter these data in the
repository.

• Runs on Linux, Mac OS X and Windows (through the Cygwin toolkit)
– Solaris versions available on request

• Coming soon to v5.0: Compare two file trees and report source lines added, deleted, or
modified

© 2011 California Institute of Technology 3-28

Where to get SLiC

• SLiC v4.0 (new as of 9/2009) is
currently being distributed in binary
executable format

– Linux, Mac OSX, and Windows
versions are currently supported

– Full documentation included

• Users outside JPL can obtain SLiC from
the SW PAL on the NEN

• We provide limited support for external
users
If you have any questions or
comments regarding SLiC, please
call Kevin Smith at:

Extension (818)354-9437 or
kevin.a.smith@jpl.nasa.govExample SLiC session showing code totals by

language

© 2011 California Institute of Technology 3-29

Wrap Up

• The main output of this step is
– a matrix of size estimates by software module
– supporting assumptions as a BOE
– size distribution and summary statistics

Reused BOE
Low Likely High Low High

Fn1 1 2 5 10 5% 15%
Fn2 2 3 4 5 0% 0%
Fn3 2 4 8
Fn4 8 10 20 2 50% 60%

New % Modified

Eq SLOC New SLOC Reuse

Mean Mean Mean

Fn1 5.1 2.7 2.4

Fn2 4.2 3.0 1.2

Fn3 4.7 4.7 0

Fn4 14.7 12.7 2

Total 28.6 23 5.6

