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This paper presents a dynamic model of deployable mesh reflectors, in which 
geometric and material nonlinearities of such a space structure are fully described. 
Then, by linearization around an equilibrium configuration of the reflector structure, a 
linearized model is obtained. With this linearized model, the natural frequencies and 
mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable 
mesh reflectors is verified by using commercial finite element software in numerical 
simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) 
control of deployable mesh reflectors under thermal loads.   

I. Introduction 
ARGE deployable mesh reflectors are of continued R&D interest for space applications. Examples include 
many renowned projects such as ETS VIII for satellite communication, MBSAT for global broadcasting, 

“NEXRAD in Space (NIS)” mission for remote sensing and climate forecasting and GEO-mobile satellites by 
Boeing for mobile communications [1-4]. Due to the stringent requirements on surface performance of a 
reflector to serve signal with high accuracy, high resolution and wide frequency bandwidth, of a large-sized 
deployable reflectors with small surface RMS errors are in urgent demand, the development of which, however, 
has already been a challenge for years [5]. Considering the performance limitation in passive structure and the 
manufacturing tolerance [6, 7], it has been suggested that active surface (shape) control must be introduced on 
the deployable space reflectors [8].  

To develop an active surface control technique, a control-orientated dynamic model of deployable mesh 
reflectors is necessary. Following the authors’ previous effort on the design of initial profile of mesh reflectors 
[9, 10], this paper presents a method to build up a control-orientated dynamic model. The model is based on the 
structural dynamic theories [11 - 14], and should be ready for the design of feedback surface control laws in 
future research. The structure of the mesh reflector is shown in Fig. 1. The reflector is modeled as a nonlinear 
truss structure, whose elements can only sustain axial tension stress. The structure is fixed on the boundary and 
the working surface is formed by the truss elements. The tension ties are connected to the nodes, which provide 
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the vertical external loads. 
The remainder of the paper is arranged as follows. In Section II, a 3-D nonlinear dynamic model of the 

reflector is presented. In Section III, linearization based on a nonlinear static equilibrium of the reflector leads to 
a linearized dynamic model of the reflector. The models are validated in numerical simulation in Section IV, and 
conclusions are made in Section V. 
 

 
Figure 1. The deployable mesh reflector in consideration 

II. Nonlinear Dynamic Model 
 As it mentioned previously, the deployable mesh reflector in consideration is viewed as a 3-D truss 
structure, with each element only sustaining axial (tension) stress. For the kth element of the truss of initial 
length kL (given undeformed length), let the nodes (ends) of the element after deformation be described by 

, , ,( , , )i d i d i dx y z  and , , ,( , , )j d j d j dx y z , where ,i j are the indexes of the ends of the kth element. The vector of 

nodal coordinates of the element can be written as 
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By Eq. (1), the strain of the element is of the form  
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where kL is the elongation of the element and kl is the deformed element length. Here it is assumed that the 

truss structure is only deformed under external loads without any thermal distortion. Since the deployable mesh 
reflectors are used in space with negligible gravity, the potential energy of an element is purely the elastic energy. 
The potential energy of the element due to elastic deformation is then 

0 0 0 0

, ,
k kL L
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where ,A s is the area of cross section at axis-location, and a nonlinear stress-strain relation E  has 



been adopted. The kinematic energy is  

t rT T T           (4) 
where tT  is the kinetic energy due to translation, and rT  due to rotation about the longitudinal axis of the 
element. Because the moment of inertia of the element about the longitudinal axis is small, 0rT . The center 

of mass of the element is  

0
, ,

L

k

c k c k
k

m s sds
s L

M
         (5) 

where kM  is the total mass of the element. Then the velocity of the center of mass is obtained as 
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which in a matrix format is 
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Therefore, the kinematic energy of the element is 
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Under the virtual work of external nodal forces at the kth element is 

,
T

nc k d kk
W y F     (11) 

For the entire structure, we have 
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where m is the number of elements of the truss, defy is the global coordinate vector of all nodes (after 

deformation), and Q is the vector of the external forces applied at the nodes. By the extended Hamilton 



principle 
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It follows that the nonlinear equations of motion of the deployable mesh reflector are in the matrix form  
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From Eq. (8) and (9), it can be concluded that c k
yc k
y is a linear function of defy ,  
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and it is a constant matrix. Thus, Eq. (17) can be rewritten as 
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III. Linearized Model and Vibration Analysis 
One common way of designing shape controller for a deployable mesh reflector is to derive a linearized 

model based on the nonlinear equation (19) of motion. Let defy represent a static equilibrium configuration of 

the reflector. Here defy is the solution of the equilibrium equation 
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where is obtained from E. (19) by dropping time-dependent quantities. Equation (20) can be solved by using the 

nonlinear solver developed in the authors’ previous work [9]. Now, consider a small perturbation defy  from 

the equilibrium configuration 

def def defy y y      (21) 

By Taylor’s expansion, Eq. (19) is reduced to the linear equation of motion  

def defM y K y Pydefy Kydef      (22) 

where
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For the linearized model described by Eq. (22), the eigenvalue problem is  

2 0i i
M K     (24) 

where i  is the ith natural frequency of the deployable mesh reflector, and i is the corresponding mode 

shape. The natural frequencies (eigenvalues) of the structure are the roots of the characteristic equation 

2det 0i M K     (25) 

IV. Numerical Simulation and Discussion 

The proposed nonlinear dynamic model and linearized model are applied to two examples in numerical 
simulation: a six-element truss and a 90-element spherical reflector structure. 

Example 1. A six-element truss 
Before the nonlinear dynamic model is applied to a mesh reflector, it is necessary to verify its correctness 

and accuracy. For this reason, we first consider a simple truss structure of six nodes and six elements, which is 
under external forces in the vertical (z) direction (see Fig. 2). For simplicity, it is assumed that truss elements 
have linear stress-strain relation and uniform geometry. As shown in the figure, nodes 1, 2 and 3 are fixed, and 
nodes 4, 5 and 6 are movable. The truss is subject to unity external loads at movable nodes 4, 5, 6 in the vertical 
down direction (negative z direction). The coordinates of the nodes are given in Table 1. All the elements have 
the same longitudinal rigidity EA = 10000 N/m^2.  
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Figure 2 Initial (undeformed) shape of the example structure 

 



Table 1. Nodal coordinates  
 

Node 
Number 

Initial configuration (m)  Deformed configuration (m) 

,i inix  ,i iniy  ,i iniz  ,i defx  ,i defy  ,i defz  

1 0 4 0 0 4 0 

2 -2.8284 -2.8284 0 -2.8284 -2.8284 0 
3 3.8730 -1 0 3.8730 -1 0 
4 -2 2 -2.1231 -0.05586 2.5944 -2.9210 
5 -1 -3 -1.8729 -1.9808 -2.1293 -2.7113 
6 2 0.5 -2.5552 2.4379 -0.8577 -3.4695 

 
The forced response of the truss is computed, to compare the proposed method with the finite element method 
(FEM). Three unity external loads are applied to the undeformed truss (Fig. 2) at the movable nodes 4, 5, 6 in 
the negative z direction. To compute the transient response by the proposed model, Eq. (19) is cast into a state 
equation, which is then solved by numerical integration with Runge-Kutta method. Shown in Fig. 3 is the forced 
response of the truss at node 4, where the solid lines are the results by the proposed method, the dashed ones by 
the finite element code ANSYS. Fairly good agreement between the proposed method and FEM is observed.  
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Figure 3. Forced response of the six-element truss at node 4 
 

With the linearized model described by Eq. (23) (based on the unity loads described previously), the 
eigenvalue problem (24) of the truss is solved. The first nine natural frequencies are listed in Table 2, and first 
four mode shapes of the truss are plotted in Figs. 4. 
 
 



Table 2. Natural frequencies of linearized model 
 

Mode 
Number 

i  (rad/s) Mode 
Number 

i  (rad/s) Mode 
Number 

i  (rad/s) 

1 0.2987 4 21.0312 7 45.3164 
2 0.3536 5 32.5099 8 52.5608 

3 0.6261 6 34.9730 9 67.3926 
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Figure 4. The first four mode shapes of the truss  

B. A model of deployable mesh reflector 
A deployable mesh reflector is shown in Fig. 5, which is modeled as a truss structure with 37 nodes and 90 

members. The reflector is deployed into a spherical surface of diameter D = 30 m and height H = 11.18 m, 
which is deployed by properly determined external loads that are applied in vertical (negative z) direction. The 
truss elements of the structure have the nonlinear strain-stress relation ( )E  with 

 0 0
( )

0 0
E

E  (26) 

For the numerical simulation, the Young’s modules is 0E A  = 1.1121e+005 N/m^2. 
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Figure 5.  A deployed mesh reflector  

 
The the natural frequencies of linearized model at the equilibrium configuration are calculated. The range 

of i is from 13.6346 rad/s to 195.6108 rad/s, with the first four being 1 2 13.6346 rad/s , 

3 414.7368 rad/s, 16.0460 rad/s . Due to the axis symmetry of the reflector, repeated natural frequencies 

appear in pairs (for instance, the first two) . The first four mode shapes of the reflector are plotted in Figure 6, 
where the solid lines portray mode shapes and dotted lines represent the equilibrium configuration of the truss. 
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Figure 6. The first four mode shapes of the mesh reflector. 



V. Conclusion 
A nonlinear dynamic model and a corresponding linearized model for deployable mesh reflectors have 

been obtained. The numerical predictions by the proposed nonlinear model are in good agreement with the 
results obtained by commercial finite element software. The linearized model enables free vibration analysis of 
deployable mesh reflectors, which provides important information on the dynamic properties of the reflector 
structure. The nonlinear and linearized models will play an important role in shape control of deployable mesh 
reflectors under thermal loads, which will be addressed in a follow-up investigation. 
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