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Abstract—The Soil Moisture Active Passive (SMAP) 
mission proposes to deploy an Earth-orbiting satellite with 
the goal of obtaining global maps of soil moisture content at 
regular intervals. Launch is currently planned in 2014. The 
spacecraft bus would be built at the Jet Propulsion 
Laboratory (JPL), incorporating both new avionics as well 
as hardware and software heritage from other JPL projects. 
[4] provides a comprehensive overview of the proposed 
mission. 
Recently there has been increasing interest at JPL in using 
model-based techniques for systems and software 
engineering. In what is something of a departure from past 
practice in JPL flight projects, the flight software (FSW) is 
being engineered with a decidedly model-based approach, 
relying heavily on the Unified Modeling Language (UML) 
and System Modeling Language (SysML). In this paper, we 
will describe our applications of UML and SysML to most 
aspects of the flight software engineering effort. These 
include not only subsystem and software architecture 
expression and description, software design at all levels, 
requirements management and traceability, but also 
modeling of the hardware with which the software interacts, 
as well as the verification approach and implementation, the 
conceptualization and description of work processes and 
design constraints, and model checking. 

We will describe our usages of modeling techniques for all 
of these activities, as well as problems and difficulties 
involved in our approach. We believe that overall effect of 
this integrated modeling approach will be a more reliable, 
robust, and maintainable FSW product, as well as a 
predictable development schedule and cost. Early 
indications are positive, as we will describe.1 2 
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1. INTRODUCTION 

The UML is such a rich language that it can be used to 
describe anything that has structure or relationships or logic. 
This makes it apt for descriptions of anything from a long-
term, high-level human activity to a very detailed 
specification of behavior of some particular software 
routine.  

Our techniques encompass the use of capabilities provided 
by our SysML/UML tool (MagicDraw), which include code 
round tripping to and from C++, as well as extensions that 
we are developing using customization facilities, including 
document generation and model checking. We will also 
touch on capabilities that we have inherited and adapted to 
transform UML state machines expressed in UML into 
either scripts that drive system test scenarios, or into flight 
code. 

A brief list of applications of these tools and techniques 
follows:  

(2) Architecture expression and documentation 

(3) Management of traditional requirements: maintenance, 
traceability. 

(4) Description of work processes and tools 

(5) Modeling of hardware components 

(6) Sharing of models among teams 

(7) Expression of design constraints, use of model 
checking to enforce them 

(8) Software design expression, documentation 

(9) Expression of detailed software requirements 

(10) Code generation from classifier model elements 

(11) Code generation from state machines 

(12) Verification planning and organization 
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(13) Management and expression of verification scenarios 

(14) Definition of logic of test scenarios as behaviors 

(15) Generation of test scripts from state machines 

(16) Document generation from models 

(17) Profiling for all of the above 

In this paper we will describe all of these applications of 
SysML and UML. 

The profiling mechanism of UML allows the language to be 
extended and made more specific for a particular project or 
domain. We have created a profile to allow us to capture 
some of the concepts and information that are key to our 
task. Since our profile underlies much of our modeling 
work, we begin with a short description of the profile. As 
we discuss particular applications of the pofile throughout 
the paper, we describe more detail about particular 
stereotypes as needed. 

We continue into a description of architecture of the FSW 
subsystem, and how we describe it in UML and SysML. 
This leads into a discussion of the use of models to manage 
requirements and relationships among them. This leads to 
the topic of verification, and how we use modeling to plan 
and describe verification activities.  

This is followed by a discussion of software architecture 
and design and our use of modeling techniques to generate 
and document them. This will include a few special topics, 
e.g. code generation from UML state machines. 

We then briefly discuss the modeling of processes 
employed in the FSW engineering effort, followed by a 
discussion of document generation from the models. 

We conclude with a discussion of benefits of an integrated 
modeling approach, as well as problems and disadvantages. 
Problems include difficulties in efficiently meshing an 
integrated model-based approach with a prevalent 
document-based approach, or inheriting software that was 
not developed or documented with model-based techniques, 
as well as tool limitations, such as the difficulty of sharing 
data between MagicDraw and the requirements 
management tool that is used on the project. 

2. RELATED WORK AT JPL  

We mentioned in the introduction that there is a great deal 
of interest in model-based engineering at JPL. The most 
important and comprehensive effort in this area within JPL 
is undoubtedly the Integrated Model-Centric Engineering 
initiative (see [11]). The IMCE initiative has taken on the 
ambitious task of examining all aspects of systems 
engineering as currently practiced at JPL, and 

systematically developing methods and techniques for 
replacing or improving current practice with a model-
centric approach. IMCE is also developing infrastructure to 
support projects in adopting these methods and techniques, 
including a set of ontologies and UML profiles. 

IMCE has also produced a general and powerful document 
generation capability for use on MagicDraw models. Had 
this capability been ready six months earlier, we would 
probably have used it on our project. 

In general, UML and SysML are becoming commonplace at 
JPL, particularly in software engineering. It is becoming 
more common too to see UML or SysML diagrams pop up 
in system engineering documentation. And some software 
projects are using UML extensively for software design. 
But we are not aware of any project at JPL that has 
consistently and comprehensively used model-based 
engineering techniques. 

3. THE SMAP FSW PROFILE  

A UML profile is a special kind of UML model whose 
purpose is to extend and/or constrain the UML language. 
This is useful to refine concepts in the UML language to 
better represent concepts in the problem domain at hand. 
The SysML language itself consists largely of a UML 
profile. Profiles consist of special model elements called 
stereotypes. Each stereotype refines one or more UML 
concepts (or more precisely, metaclasses). See [1] for a 
complete description of the UML profiling mechanism. 

The SMAP FSW UML profile allows us to express 
concepts and details about them that are specific to our 
project. As shown in Figure 1, the profile is organized in 
packages according to the types of concepts and activities 
for which we need to define stereotypes. 

Relationships to Common or Standard Profiles 

Our profile is largely “home grown”, but it does leverage 
the SysML profile by making several of our stereotypes 
derive from the SysML Requirement stereotype. This is 
particularly useful for stereotypes that need a text tag and an 
ID tag, both of which the derived stereotypes inherit from 
SysML Requirement. 

We used the OMG’s MARTE (Modeling and Analysis of 
Real-Time Embedded Systems) profile (see [10]) for a 
while, but we found scant tool support for MARTE’s 
analytical capabilities. Moreover, we found it an annoyance 
to have so many stereotypes that we never used 
complicating our modeling efforts (e.g. when selecting a 
stereotype from a pull-down, having to scroll through 
several dozens of stereotypes that we never used). So we 
discontinued using MARTE, and instead defined a half-
dozen or so stereotypes to cover the concepts we needed. 
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These are described below in the discussion of the Patterns 
package. 

SMAP Profile Descriptions 

This section, organized by profile package, provides a 
description of key stereotypes in our profile. We cannot 
discuss all of the stereotypes due to space. 

The Architecture package contains stereotypes used in our 
FSW Architectural Description Document (ADD), which 
discusses quality attributes, stakeholders, and their 
concerns. These concepts are typical in discussions of 
architecture, but we are not aware of a well-established 
standard UML profile for modeling them. 

So for example, the concept of a Stakeholder is a key one, 
and it typically represents a user of a system, or someone 
affected by the development or operation of the system in 
some way. As we began to analyze our stakeholders, we 
found that their concerns were characteristics of teams of 
people, rather than of individuals. Thus we decided to 
model stakeholders as teams rather than individual actors, 

which led us to define the Team stereotype. We similarly 
introduced stereotypes Concern and QualityAttribute as 
stereotypes that extend the metaclass Class (being derived 
from SysML Requirement). Using these three stereotypes, 
we can model a team caring about specific quality 
attributes. Examples of applications of these stereotypes are 

shown in Figure 5. 

In the Requirements package, the L4Requirement 
stereotype, derived from SysML’s Requirement, is used to 
mark level 4 requirements imported into the model from 
IBM Rational DOORS [9] (used consistently for 
requirements at JPL, at least for level 4 and higher). Section 
4 discusses the meaning of requirement levels 4 and 5 in the 
context of SMAP FSW. The L5Requirement stereotype, 
applicable to any metaclass, is not derived from SysML’s 
Requirement as might be expected, to avoid some of the 
constraints on that stereotype that SysML imposes. 

The stereotypes of the Trades package mark parts of a 
tradeoff study: a tradeoff generally has a few or more 
Alternatives, have Criteria to guide the decision, 
PointsOfInfo, and a Resolution. We express these in the 
model as Comment elements, which we mark with the 
applicable stereotype from the Trades package. We 
summarize trade studies with a single diagram containing 
nothing but Comments. This results in a crisp and easily-
digestible summary of the trade. 

The Patterns package contains stereotypes that are key for 
describing software design patterns. For example, a crucial 
concept in embedded and real-time software engineering is 
the thread, which is an independently-schedulable unit of 
control in the software, owning their own memory 
resources. At runtime, threads are the scheduled and 

Figure 1 - The organization of the SMAP Profile 

Figure 2 - The cover page of the Architectural 
Description Document (ADD)
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executed by the operating system, based on priorities 
assigned each thread by the software architect. Thus, the 
modeling of threads is key in architecting FSW. Threads 
can run in response to sporadic events, or they can run 
periodically. 

We introduced stereotypes SporadicThread and 
PeriodicThread to mark classifiers in our model that 
represent threads. Both stereotypes are derived from 
ThreadProperties, and provide a useful way to identify, and 
search the model for, tasks in the design. ThreadProperties 
contains a priority tag, which represents a key property of a 
thread in embedded software design. The UML attribute 
IsActive on metaclass Class is not adequate because it 
doesn’t capture priority or release style (periodic, sporadic). 
Isr (interrupt service routine), is another key concept in 
embedded software, and it is important to have these 
operations clearly identified in the design. Thus we defined 
the Isr stereotype to mark functions in our model that are 
responsible for handling interrupts from the hardware. 

The Ipc package contains stereotypes that are applied to 
connectors: logical connections between software 
components, representing internal software communications 
channels in the implementation, in order to describe the 
style of communication over that connector. For example, a 

connector that is implemented as a synchronous method call 
through an object is marked with the SyncMethod 
stereotype, while one implemented asynchronously with a 
queue handle for a response passed is marked with the 
AsyncQHandleRsp stereotype. These stereotypes help a 
reader understand how the software communicates 
internally among its components. 

Our ADD describes various aspects of how we do our 
software engineering work, and the products of our work. 
This is the reason for the Artifacts package and the 
stereotypes contained therein. An example is the stereotype 
WebDocument, which we use in diagrams showing how our 
UML/SysML models are used to generate documents, the 
ADD being one example. Document generation is discussed 
in a subsequent chapter. 

The ADD and models also describe verification, which 
includes the description of verification techniques, as well 
as tests or other verification activities and mappings 
between tests and requirements. We use the stereotypes in 
the package Testing for these purposes. Examples of 
application of these are given in Chapter TBD. 

Our profile also includes the Programming package, which 
contains stereotypes that apply specifically to the 
implementation of the software (which is in C and C++). 

Our profile was used extensively in all of our models, and 
these were the basis of the ADD. The profile then, was an 
important contributor to the clarity of the ADD.  

4. SUB-SYSTEM ARCHITECTURE  

Just as there is increasing interest in model-based 
engineering at JPL, there is also a push to concentrate and 
focus more on system and software architecture in our 
work.  

Our project is probably the first at JPL to have held a 
specific review dedicated to FSW subsystem and software 
architecture, and this will likely be standard practice moving 
forward. 

Our architecture review, while guided with the use of 
viewgraphs, was focused on the ADD itself; the viewgraphs 
were full of hyperlinks into the on-line ADD, and a web 
browser was used heavily in the presentation.  

Thus, the reviewers spent the majority of their time 
examining and discussing diagrams in the ADD, rather than 
looking at viewgraphs. This seems to be a hallmark of 
model-based engineering: the engineering products 
themselves are reviewed more than viewgraphs about the 
products. 

 

Figure 3 - The system of models making up the FSW 
architecture and design 
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The concept of “Architecture” which we’ve employed 
includes not only the structural and behavioral principles 
and patterns of the software itself, but also an analysis of the 
context of the FSW as a subsystem in the larger flight 
system, from both operational and programmatic 
viewpoints. We used MagicDraw to generate our ADD in 
the form a web document with a navigation tree in one 
frame, and the content in another (document generation is 
discussed below). The outline of the document, shown in 
Figure 2, gives a good overview of the scope and content of 
our architecture, and of our uses of modeling. 

One of the difficulties associated with this emphasis on 
modeling is that models can become large and unwieldy. 
Fortunately MagicDraw allows one model to “use” another, 
in the sense of importing another model as a read-only 
library model. We exploited this capability to partition our 

architectural model into a collection of sub-models 
addressing particular aspects of the architecture, as shown 
in Figure 3. In that diagram, we use composition to model 
the inclusion by one model of another, as the 
FswArchitecture model does the FswRuntime model.  

The FswSubsystemArchitectureModel is the root model 
from which the ADD is generated. It contains modeling of 
FSW context, quality attributes and stakeholders. The 
FswArchitectureModel contains the software high-level 
design (also via inclusion): the FswRuntimeModel contains 
the structural decomposition of the FSW at runtime, the 
InfrastructureModel describes a set of software support 
classes used throughout the rest of the FSW. The 
ComponentSpecModel specifies the interfaces among all of 
the components. FooComponentModel stands for any of 
several models of the design of individual components. We 
have twenty-some individual component models. 

Architectural Drivers 

Our ADD includes an exposition of key and driving 
requirements. This is organized with a set of Use Cases, 
which serve to tie a related set of higher-level requirements 
together, and then to elaborate the behavior, at a conceptual 
level, showing the FSW subsystem achieving that Use Case. 
We say higher-level to emphasize that we used level 3 
requirements – which are requirements on the entire 
spacecraft, not just the FSW – for this exposition of driving 
requirements, in part because the higher level of abstraction 
was appropriate for this document, but also because the 
FSW subsystem requirements (at level 4) were not yet 
ready. 

An example of one of these use cases is shown in Figure 4: 
the use case groups and refines a pair of requirements that 
have implications on FSW design. The state machine 
OperatingContinuously (show only as a classifier box) 
specifies characteristics of FSW operation that enable it to 
run reliably for indefinite periods of time. 

Architectural Tradeoffs and Decisions 

In exploring and documenting tradeoffs that led to key 
decisions, we sometimes used modeling, but more often 
used simple text, depending on the type of decision. A 
lower-level tradeoff between two software design 
alternatives would inevitably depend heavily on UML, 
whereas a higher-level issue with programmatic 
implications would be expressed in English, usually as the 
documentation attribute of a UML package. 

But for any type of trade, we found it useful to have a 
compact and indivisible summary of the trade and decision, 
in a way that was easily shared. For this we used a UML 
diagram containing only Comment objects, tagged with one 
of the special stereotypes Description, Alternative, 
Discussion, Action, PointOfInfo, or Resolution, and color-
coded. Using diagrams as containers for comments only 
struck some of the reviewers of the ADD as odd, but 
nonetheless useful. 

No ADD is complete without a discussion of stakeholders, 
concerns, and quality attributes. As shown in Figure 5, an 
excerpt of a diagram showing a few of these concepts, we 
modeled stakeholders as teams (rather than as individuals), 
tagging Class instances with the Team stereotype. 
QualityAttribute and Concern are both derived from the 
SysML Requirement stereotype, which gives them the text 
field tag. 

Quality Attributes, Stakeholders, and their Concerns 

We displayed quality attribute priorities by simply 
displaying the QA’s, color-coding (red meaning high, 
yellow medium, and green, low) on a diagram. 

 

Figure 4 - A use case, elaborated by a state machine, 
refining requirements 
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Another piece of the quality analysis in the ADD is a 
subsection called Realization, and this has the goal of 
presenting an argument that our architecture achieves the 
QA’s and meets the concerns of the stakeholders. 

 

We defined a viewpoint consisting of a custom diagram 
called a Success Tree Diagram. Inspired by the concept of a 
fault tree, in which the possible paths to the fault are 
analyzed, the success tree shows the QA at the root, and 
shows all of the things that must be done, or must be true, in 
order for that QA to be achieved. As shown in Figure 6, the 
QA is shown being supported by design principles defined 
in the architecture (in other Success Trees, other 

architectural elemnents are also shown supporting the 
attainment of QAs, including designConstriants, 
testRequirements, patterns, or other architectural features). 

We also defined a stereotype to identify Figures of Merit – 
criteria to measure how well the FSW meets the QA. An 
example is the AssessibilityOfImpact figure of merit, shown 
in yellow in Figure 6. We plan to take benchmarks of these 
figures at major milestones. 

The Environment Section 

The concept of the Environment appears in [3], and this 
section of our ADD describes the FSW subsystem’s context 
in the rest of the flight system, using a series of context 

 

Figure 5 - Part of a diagram depicting stakeholders, their concerns, and quality attributes  

 

 

Figure 6 - A Success Tree Diagram excerpt
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diagrams. 

An example that is similar to one of these context diagrams, 
shown in Figure 7, in which SysML blocks represent 
hardware components. In SMAP we maintain a separate 
model of the hardware components of the spacecraft. This 
hardware model is used by the software models as needed to 
represent the hardware and the interrupts and data flows 
between it and the software. The hardware models are also 
used to represent many of the details of the hardware 
components themselves and their connections to each other 
– a topic for another paper. 

5. REQUIREMENTS AND VERIFICATION 

The use of DOORS is pervasive and embodied in 
institutional procedures at JPL. DOORS enables the 
expression of textual requirements and the linking of 
requirements from parent to child and vice versa. It also 
supports enumerating test cases and other verification 
activities, and linking requirements to them. 

SysML and UML provide a much richer environment for 
developing, managing, describing, and tracing 
requirements. They provide all of the capabilities of 
DOORS, as well as the capability to elaborate and refine 
requirements with various behavioral and structural 
diagrams, to map requirements to design elements, and to 
specify the behavior of verification scenarios (rather than 
just name and summarize them). 

Perhaps most importantly, UML can be used to express 

expectations on system interfaces and behavior (i.e. 
requirements) in more concise and precise ways than with 
English statements, especially in the case of detailed 
software requirements. Our detailed software requirements, 
which we call level 5, are generally expressed as UML 
model elements, not necessarily as text. The level 5 
requirements reside only in our models, and not in DOORS. 
The models are maintained in the same configuration 
management system as our source code. 

The authoritative repository for the requirements on the 
FSW subsystem (level 4) is necessarily DOORS. We 
replicate the requirements in SysML, using MagicDraw; 
DOORS can export requirements in spreadsheet form, and 
MagicDraw can import them in that form. The level 4 FSW 
requirements are in the model in the form of Class instances 
tagged with our L4Requirement stereotype. This is derived 
from the SysML Requirement stereotype but contains an 
additional attribute that identifies the subsection to which 
the requirement belongs in DOORS. 

Level 5 Requirements 

Level 5 detailed software requirements are levied on parts 
of the FSW subsystem. They can be at the level of a 
component (which is the first level of decomposition of the 
software; something like the level of an application), or at 
the level of an individual class or function. 

These requirements tend to fall into two types: interface 
requirements and behavioral requirements. A typical 
interface requirement is for a software component to 
provide some interface for use by other components. 

 

Figure 7 - A sample flight software context diagram 
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Another typical interface requirement is that the 
implementation of a given interface operation enforce 
constraints on the arguments to the function. Examples of 
these are shown in Figure 16. The requirements are 
expressed by the “providing” relation in the component 
diagram; for example, the component SomeComponent is 
required to provide an implementation of the interface 
AnInterface1. The providing relation (the connector from 
the component to the “lollipop”) is tagged with the 
L5Requirement stereotype. 

The interfaces themselves, as well as the component 
diagram showing the component providing it, are marked as 
L5Requirements: the existence of the interfaces, 
independent of providers, is also an interface requirement. 

We couldn’t use the SysML Requirement stereotype for 
this, because that can only be applied to classifiers. This is 
one reason we needed to define an L5Requirement 
stereotype: we apply it to associations, diagrams, interfaces, 
UML constraints, connectors, and other model elements. 

Behavioral requirements express a constraint on logic, 
calculations, transformations (of inputs to outputs), or 
timing. A few examples of computational requirements are 
shown in Figure 8, which contains three requirements One 
requirement states a relation between input myCmd and 
output xyzReq, the second a requirement to wait (at the join 
node stereotyped L5Requirement) for a response before 
proceeding. The third requirement is a constraint on the 
minimum value of the output myData.result (which is the 
response to the input myCmd). 

The actual requirements in these three cases are the two 
control flows (including the UML Constraints applied to 
them) and the join node that are tagged with the 
L5Requirement stereotype. There is no UML Constraint on 
the join node, but its existence at that position in the 
diagram constrains the logic of the activity: the logic must 
wait for a control flow from HandleMyCmd, and for a data 
flow of type XyzResponse, before proceeding.  

The Comment elements associated with the two flows are 
also constrained by the Constraint on the respective control 
flow. The Comment associated with the join node 
requirement has no UML Constraint on it, but it is 
annotating an L5Requirement. These tagged comments can 
be displayed in other diagrams, and in fact they appear in 
diagrams depicting the logic of the test programs that test 
the requirements. 

It’s important to note that the requirement in each case is 
not the text body of the comment; the text in the comments 
is analogous to an informational paragraph accompanying a 
“shall” statement in a traditional requirements document. 

Performance requirements are an important type of 
behavioral requirement. Examples of these are shown in 
Figure 9. The timing requirements are expressed as a UML 
DurationConstraint, also tagged as a level 5 requirement. 
Other examples of UML model elements tagged as level 5 
requirements appear in Figure 12. 

 

 

Figure 8 - Two examples of UML constraints as level 5 requirements 
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Verification Scenarios 

Verification takes place at the FSW subsystem level 
(verifying level 4 requirements), and at component or sub-
component level. Component or sub-component level 
testing is done both for level 5 requirement verification, and 
to satisfy a self-imposed requirement that every element of 
the software design be mapped to a test, as a way of 
achieving high code coverage in testing. 

Subsystem (Level 4) Verification 

At level 4, verification scenarios are of three types: tests, 
analyses, and inspections. We model tests as UML 
behaviors, primarily as state machines. We use state 
machines because we have the capability to generate an 
implementation of the state machine in Python (more on this 
below), which allows us to use a test environment Python 
API that provides the capabilities of sending commands to 
the FSW and receiving telemetry from it. An example of 
one of these state machine scenarios is shown in Figure 10. 
The function calls in the entry actions, e.g. sendCmd(), are 
utility Python functions that interface with the ground 
system software to send commands or retrieve and parse 
telemetry. These functions are used by all scenarios. 

Analyses and inspections are human activities, and we 
model them as UML Activities. Having them in the model 
allows tracing them to level 4 requirements. 

Our Analysis stereotype is derived from the SysML Test 
Case stereotype. We tag our level 4 test cases, whether 
defined as state machines or other behaviors, with that 
SysML stereotype. 

Component and Sub-Component Level Testing 

Verification at this level is almost completely done by 
testing (as opposed to analysis or other methods). These 
tests are white-box tests, designed and implemented just as 
flight software is, and run as applications (under Unix) or 
functions (under VxWorks). 

The logic of white-box tests is specified using UML 
behaviors – state machines, activities, or interactions in 
sequence diagrams. State machines are preferred, since we 
can use them to generate C++ code to execute the test. 
White-box tests, then, can appear in the model as classes 
(that own behaviors), or as behaviors (state machines, 
sequences, etc). They are not tagged with stereotypes to 
identify them: our source tree is split at the top between  

 

Figure 9 - Two level 5 performance requirements 



 

 10

flight and test, so the package membership of a classifier in 
the test tree identifies it as a test.  

To ensure complete verification at this level, our 
architecture model specifies a set of testing methodology 
requirements expressed using the testRequirement 

stereotype from the profile. A few examples: “Every 
Interface must have a test program that can verify that any 
given implementation of the interface conforms to the 
ProtocolStateMachine for that interface”, or “Every flight 
classifier must be mapped to at least one test class via the 
Verifies relationship. Classifiers include Class, Interface, 
and Component”, or “For every method of every Interface 
implementation, there must be an adaption of a required test 
that verifies complete and correct parameter checking.” 

To help achieve these requirements, we define design 
patterns for testing. An example is shown in Figure 11, 
which shows a pattern for designing reusable tests. In the 
figure, SomeReusableTest, defines an interface 
SubjectAdapter that allows it to communicate with the 
subject. To be able to run the test for a given flight class, the 
programmer has only to implement the SubjectAdapter 
interface for that particular class.  

A specific example of a reusable test is the 
ResourceUsageTest, designed to ensure that if a resource 
becomes unavailable (full), the software should behave 

predictably. The SubjectAdapter interface in that case, has a 
exhaustResource() operation, which the test will invoke. 

If the test is adapted for, say, a class that implements a 
container, then exhaustResource() will mean filling up the 
container, where as implementing exhaustResource() for a 
communication channel might mean causing the channel to 
go offline. 

Traceability 

Institutional standards require the tracing of requirements to 
the parents from which they’re derived, and to some sort of 
verification activity (a test or analysis, for example). For 
detailed software requirements, an additional mapping from 
requirements to the design element(s) that satisfy them is 
required. 

The trace of level 4 FSW requirements to parent level 3’s 
(and to other types of parents, such as Interface Control 
Documents), is managed in DOORS. The other traces are 
done with UML and SysML relationships in the models. 
Level 4 requirements are traced to level 5’s using our 
profile’s derivedFrom stereotype. 

Because the SysML derivedFrom stereotype requires that 
both participants in the relation be SysML Requirements, 
and our level 5 requirements are not, we cannot use the 
SysML relationship. This mapping technique is shown in 
Figure 13. 

 

Figure 10 - a FSW subsystem-level state machine test 
scenario 

 

Figure 11 - a pattern for the design of reusable tests 
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The trace of test cases and analyses to level 4 requirements 
is done similarly, as shown in Figure 14. For this mapping, 
we use the SysML verify relationship. 

The mapping of white-box, component- and subcomponent-
level tests to level 5 requirements is done using our Verifies 
stereotype, as shown in Figure 12. Again, we could not use 
the SysML verify relationship because of constraints on the 
related elements. 

All of these traces done in MagicDraw can be compactly 
represented in a matrix. The example shown in Figure 15 
embodies the relations depicted in the mappings of Figure 
14. MagicDraw can export these matrices as comma-
separated value files. This allows a relatively simple export 
of the list of level 4 verification scenarios, along with lists 
of linked requirements, back to DOORS. 

Tracing Level 5 Requirements to Design 

Since level 5 requirements are expressed as constraints on 
elements of the design, such as Component interfaces, 
diagrams depicting the behaviors of Components and other 
elements of the FSW implementation, the association of 
these level 5 requirements to the design is clear. We haven’t 
seen a need or benefit in extracting some more explicit trace 
of level 5 requirements to design. 

 

Figure 13 - Mapping of level 5 requirements to level 4's 

 

Figure 14 - The mapping of level 4 requirements to 
scenarios 

 

Figure 12 - The trace of white-box tests to level 5 
requirements 
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6. SOFTWARE ARCHITECTURE AND DESIGN 

We distinguish software architecture from subsystem 
architecture as being solely concerned with the structure and 
behavior of the software. This is a narrower concept of 
architecture than subsystem architecture, encompassing as it 
does programmatic context, stakeholders, etc. Software 
architecture does include guiding principles, design and test 
constraints and requirements, patterns, and detailed software 
requirements. We’ve discussed two of these concepts 
(testRequirements, and detailed software requirements, 
already). 

Guiding Principles 

Our software design is guided by a set of principles, 
expressed in the architecture model as classes tagged with 
the stereotype Principle, which is derived from SysML 
Requirement, which lends them name and text properties. 
Here are a few examples: 

Least Visibility: An object should be visible only in the 
scopes where it is needed 

Follow Patterns: Common logic or tasks must follow a 
consistent pattern throughout the architecture 

Minimize Dependencies: Keep dependencies among 
packages to a minimum. Dependencies should be 
avoided unless necessary. 

The advantage of having them in the model rather than a 
text document is that they can be placed in various 

diagrams, e.g. in support of a design decision. A few of 
these appeared in the Success Tree diagrams shown above. 

Design Constraints 

Design constraints are similar to principles, but they are 
more specific, and intended to be specific enough to be 
expressible in UML’s Object Constraint Language (OCL), 
though we haven’t done that. We handle constraints 
similarly, marking them in the model with the SysML 
Requirement-derived stereotype designConstraint. 

Here are a few examples: 

Interface Protocols: Every interface must have an 
associated ProtocolStateMachine that specifies how that 
interface may be used.  

Interface Ops Virtual: Every operation of an interface 
must have the virtual property set to true.  

Circular Dependencies 1: The source package 
CompileTime::Flt may not depend on source package 
CompileTime::Test (dependencies considered 
recursively). 

No Multiple Inheritance: A classifier may be the source 
of at most one Generalization relationship 

These constraints are intended to prevent programming 
errors, or to preserve important architectural properties 
(such as the capability to build and load components 
individually – impossible if certain circular dependencies 
arise). The last item forbidding multiple inheritance is 
directly derived from a C++ sub-setting coding standard.  

These design constraints (there are approximately 30 of 
them), are amenable to automatic checking by analyzing the 
model of the software design.  

Design Patterns 

Our architecture model contains several packages of design 
patterns. Among the most important ones are: Component 
definition and specification, initialization, inter-task 
communication, thread management, sharing data between 
threads, state machine implementation, handling ground 
commands, and white-box testing.  

Our usage of UML for software design patterns is not 
unusual. We use the stereotype PatternElement to clearly 
mark model elements that are not part of the actual design, 
but exist only to illustrate a pattern or principle. We use 
several of the types of UML diagrams available, and many 
of these diagrams are too complex to fit in a paper format 
very well. But we can show a few meaningful examples. 

 

Figure 15 - Trace matrix of level 4 requirements to 
tests 
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The first of these is the pattern for defining the interface 
specification, or role, of a Component in the system. The 
top-level depiction of the pattern for this is shown in Figure 
16. The Component is the top-level decomposition concept 
of the FSW subsystem, both at compile time (source level), 
and run time. Components are independently compilable 
and loadable.  

The diagram defines the role of AComponent as providing 
the interfaces Interface1 through InterfaceN. The provider 
relationship is tagged as an L5Requirement, since it is an 
important interface requirement on the component. We do 
not treat a Component’s usage of an Interface as a 
requirement at the interface specification level. 
Requirements for a Component to use an interface appear 
first in specifying the behavioral requirements for a 
Component. 

We use the term Interface to mean what UML means by 
Interface: a Classifier that has no Properties and only 
abstract Operations. Our understanding of the provider and 
user relationships between Components and Interfaces is 
also the UML specification’s version of these concepts. In 
our implementation, Interfaces are mapped to abstract C++ 
classes, but this doesn’t affect our usage of Interfaces in the 
model. 

Yet another key pattern is the management of threads that 
need to run at a regular period. Figure 17 shows how the 
logic of arranging to wake up periodically is handled in an 
abstract base class, Periodic, and the application for a 
specific context is accomplished by making a derived class 
(SomePeriodic in the diagram), and providing an 
implementation of the abstract doCycle() operation. 

The classifiers shown in Figure 17, except for 
OverrunHandler, are Classes, not Interfaces. These classes

 

Figure 16 - the pattern for specifying the role of a Component 

 

Figure 17 - The classes involved in managing a 
periodic task 
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are utility elements for internal use in Components that need 
to own and manage threads; they do not form part of the 
interface of any Component. 

Still another key pattern is the implementation of state 
machines. This is described in the next section. 

Another key behavioral pattern is the initialization sequence 
in which every Component participates. An overview is 
shown in Figure 18. This sequence involves the use of a set 
of interfaces that all Components implement. Each of the 
referenced behaviors is in turn interaction overviews, 
ultimately resolving into UML sequence diagrams too 
detailed to show here. 

7. STATE MACHINES 

The JPL StateChart Autocoder (see [7]) is a software 
development tool that auto-generates programming 
language implementations of UML StateMachines. The 
Autocoder can be used to produce flight-ready C++ code, or 
Python code that provides a graphical interface for the 
depiction and control of the execution of the state machine. 
UML StateMachines are routinely used by systems and 
software engineers for documentation and as a tool for 
analyzing and simulating system behavior.  

In order to unify and streamline the translation of state 
machines into code so that the process is less error-prone 
and costly, efforts to leverage this widely accepted design 
notation culminated in an initial version of the JPL 
StateChart Autocoder. This initial version was first 
conceived and utilized as part of the Space Interferometry 
Mission (SIM) project, and later retrofitted for Mars 
Science Laboratory (MSL) flight software. Other projects 

that used early variants of this tool included the Advanced 
Mirror Development and the Electra-Radio projects. Prior 
flight software lessons taught us that, once such an 
autocoding tool was in place, few software defects were 
found that were due to coding errors. Errors were mainly 
attributed to design errors. Positive SIM experiences 
motivated further development of the tool as well as 
process. 

The second-generation JPL StateChart Autocoder improves 
upon the initial work with an extensible plug-in architecture 
that incorporates a number of design patterns and new 
technologies for flexibility and robustness. A reworked 
UML meta-model implementation enables support for any 
UML XMI (XML Metadata Interchange) model file. A 
template-based generation technique facilitates flexible 
implementations for the resulting code. Code is generated 
using a state-chart implementation pattern based on the 
Quantum Framework for embedded systems, which boasts 
efficiency, robustness, and support for many platforms. A 
combination of Java interfaces, annotations, reflection, and 
design patterns facilitates modifiability and extensibility, 
and a sizable suite of test cases ensures robustness. 

Currently, the second-generation StateChart Autocoder 
generates C, C++, Python, and Promela3 (see [TBD]) code 
from UML StateMachine models. It allows rapid 
prototyping of executable, verifiable state behavior. In 
particular, step-by-step state transitions and event 
communication between multiple state machines can be 
visualized. Certain concurrency, liveness, and safety 
properties can be verified using Spin (see [TBD]). Finally, 

 
3 Promela is a model specification language used to create models for 
analysis of real-time and concurrent software systems, for use with the 
SPIN tool. 

 

Figure 18 - a high-level view of the component initialization sequence 
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more often than not, state machines do not fully specify all 
the behavior of the described module, so the Autocoder 
facilitates the “fleshing-in” of StateMachines with manual 
flight code. The Ares-1 requirements validation project and 
SMAP flight project both fund and use this tool. An 
example of the application of the Autocoder, which is being 
upgraded for SMAP, is shown in Figure 10. The Autocoder 
generates a Python implementation of a level 4 test 
scenario. 

8. TOOLS AND PROCESSES 

We’ve also used modeling to describe our work process. In 
the interest of space, we will shown only one or two 
examples of these applications of diagrams, and describe a 
few more. 

Structural diagrams representing artifacts are helpful in 
describing inputs and outputs of a team’s processes. One 
such diagram shows all of the sources of FSW 

requirements. These include level 3 requirements, various 
design description documents produced by flight systems 
engineering, as well as ICDs. All of the inputs are 
represented as UML artifacts. 

Activity diagrams are well suited to describe human 
processes, as they can be used to show not only the actions 
taken by the actor, but also outputs and inputs. They can 
also show parallel actions of multiple actors. For example, 
we have a diagram showing a software engineer going 
through the process of engineering a Component, 
interacting with leadership and systems engineering. It 
shows inputs, outputs, and gates. This diagram is too large 
to include here. 

We use a highly configurable issue tracking tool, JIRA, for 
both anomaly reporting and planned work management. We 
went through a process of specifying the configuration of 
this tool. We specified the types of issues and attributes of 
each in the class diagram shown in Figure 19. 

Figure 19 - the attributes of a JIRA item 
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The tool also allows the configuration of the life cycle of an 
issue. We specified that in the state machine shown in 
Figure 20. The configuration was done by an external 
system administration group, and these diagrams helped us 
quickly and clearly communicate to them what we needed 
in our configuration. 

9. DOCUMENT GENERATION FROM MODELS 

The generation of well-organized and usable documents 
from MagicDraw models is somewhat involved. 
MagicDraw has built in generators of web documents, but 
the generated documents include every model element, 
producing a web document that is very handy for reference 
and internal use in the FSW design team, but not at all 
suitable for documentation of the software architecture and 
design. 

We experimented with a few different approaches before 
settling upon the one we’ve taken. One involved having an 
external model of the document that made reference to 
annotated elements in the target model. In the end we opted 
for a somewhat simpler approach, which consisted of 
modifying Velocity templates provided by MagicDraw for 
the generation of web documents.  

MagicDraw’s templates provide a library of macros for 
traversing the model, finding elements, and examining their 
attributes, as well as for producing Hypertext Markup 
Language (HTML) text from model elements. The primary 

problem we had to solve was selecting which parts of the 
model should go in the generated document.  

We solved this problem by annotating our models with 
enumeration definitions that specify the selection and order 
of elements in the document. (The name of the enumeration 
is a parameter to the generator, so that the same model, or 
sections of one, can appear in various documents.)  

For example, the FSW Subsystem Architecture model has a 
root package called FswSubsystemArchitecture. In that 
package, it has sub-packages ArchitecturalDrivers, 
Environment, FswArchitecture, Introduction, etc., and a 
package diagram called Architecture Overview. When we 
generate the ADD, we want these elements to appear in this 
order:  

Architecture Overview 

Introduction 

ArchitecturalDrivers 

Environment 

FswArchitecture 

To achieve this, we define an enumeration named 
ArchDocOrder in the top-level package 
(FswSubsystemArchitecture), and the enumeration literals 
have exactly the names and order of the elements we want 
to see. 

We apply this technique recursively: each sub-package also 

 

Figure 20 - The life cycle of an anomaly report or task issue 
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has an enumeration named ArchDocOrder. The modified 
Velocity template uses MagicDraw macros to recursively 
descend into the model. In each package it finds the 
enumeration and puts out the named elements (if they’re not 
packages), and descends into any packages named in the list 
in the order they’re encountered. 

The modified velocity templates can be configured based on 
the settings of a group of variables that it reads. These 
include: 

(1) The root package at which to start generating 

(2) The document’s name 

(3) The name of the enumeration to use to order the 
generation and output 

(4) The root package at which to start generating 

(5) The document’s name 

(6) The name of the enumeration to use to order the 
generation and output 

With this configurability, we can use the generator for a 
variety of documents, generated with overlapping sets of 
models. We will use this generator for our detailed 
verification plan document (which will include definitions 
of the level 4 verification scenarios) and for software design 
documents for all of the components. 

There are actually two templates: one generates the 
navigation tree seen in the left frame of the web document, 
the other generates the content frame. Both have the same 
logic for navigating the model. 

10. CONCLUSIONS AND ONGOING WORK 

Every methodology has pros and cons. In this section we 
list and describe the principle advantages and disadvantages 
of our approach. 

Problems and Disadvantages 

We have encountered difficulties and disadvantages in our 
approach: 

(1) Tool unreliability: For the most part, we are quite 
happy with MagicDraw: it’s a fine tool, it has a high-
fidelity representation of the UML Metamodel that is 
available to the user, and in general it’s fairly easy to 
use, considering the depth and power it puts at the 
user’s disposal. But we have encountered difficulties 
with it: it is not the most reliable piece of software 
we’ve seen, and finding workarounds for some of its 
foibles has been time consuming. 

(2) Modeling time overhead: This may be related to the 
previous item, but we notice that time is consumed by 
details and idiosyncracies of the model itself, perhaps 
because the model and modeling tool are such rich and 
engrossing things. This is somewhat similar to the 
tendency to endlessly tweak the formatting of a Word 
document. We have to continually remind ourselves 
that the model is a means to an end. 

(3) Communication outside of our team: Audiences not 
familiar with modeling techniques and UML and 
SysML in particular can be put off by presentations 
featuring these diagrams.  

(4) Requirements tool difficulties: The interface for 
exchange between MagicDraw and DOORS is not as 
automatic and seamless as we would like. From our 
point of view, DOORS is the problem, though clearly 
it is a core tool for systems engineering at JPL and will 
not be replaced soon. 

Advantages and Benefits 

We have experienced and observed positive aspects and 
results of our model-based emphasis in FSW engineering as 
well: 

(1) Architecture enabling: The use of modeling seems to 
foster the early analysis of architectural issues and 
concepts. Making a model of something is kind of a 
forcing function that prods the modeler to obtain a 
better understanding of what is being modeled. 

(2) Communication of designs: The use of UML enables 
software engineers to visualize, understand, and 
communicate complex software design concepts 
quickly. We find the use of UML, frequently sketched 
on paper or white boards, facilitates and streamlines 
our architecting and design process. 

(3) Reusability of design and architecture: Storing our 
architectural and design information in a model allows 
us to re-use aspects of the information in multiple 
situations easily, e.g. using the same design elements 
in different kinds of diagrams for different purposes, 
e.g. for inclusion in a document or a presentation. If 
we used a simple drawing tool, each diagram would 
only serve the purpose it was originally intended for. 
This reusability also fosters consistency, a by-product 
of maintaining information in a single place. 

(4) More useable traceability: While there is utility in 
having a spreadsheet that maps, for example, 
requirement numbers to test case numbers, it is much 
more useful to have a trace relationship that can be 
easily followed from one element to another, e.g. 
seeing a requirement in context, following a Verifies 
relationship easily to a test, and being able to see the 
logic of the test 
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Ongoing and Future Work 

There are some specific activities and techniques that we 
would like to delve into more. Given the demands of a 
project and the need to prioritize, we may not be able to 
accomplish these things. 

(1) Design checking using automated model analysis and 
validation: We described a few of our design 
constraints. If we could be certain that these 
constraints were followed in our design, our FSW 
product would likely be more reliable. The checking 
of these constraints could be automated, using 
MagicDraw’s built in validation language (or using 
Java – it is possible to augment MagicDraw validation 
with Java programs).  

(2) We would like to arrive at a fuller evaluation of how 
well these methods are working. We plan to collect 
metrics for use in comparison with other projects, e.g. 
software defect rates, in order to try to get an objective 
assessment of these techniques for these kinds of 
projects. 

Concluding Observations 

This paper has described the application of a more 
consistently model-based technique than we’ve done before 
for flight software engineering at JPL.  

It’s still quite early in the process: we are coming up on our 
Preliminary Design Review, which will be the first external 
review of any kind of design detail. The ultimate 
effectiveness of this approach has to be judged, at least in 
part, on the success of the product: the timeliness of 
development, the quality of the software, the ease or 
difficulty of integration; these are the things that really 
matter. We think this approach will help us achieve these 
things. 

We have had a FSW Architecture Review with a board of 
about a dozen reviewers, several external to JPL. Some 
experienced in flight systems, others not. We received a 
large number and variety of comments on the architecture 
and design. There were things about the architecture that 
they really liked, and some things they really disliked. There 
were many conflicting opinions among the board members. 

But there was a consistent feeling among that board, 
highlighted in their report, that the review provided them 
with a more comprehensive and deeper insight into the 
software architecture than they had seen in flight software 
projects before. This seemed to us an indication of the value 
of this model-based approach from one point of view: the 
ability to communicate architecture, requirements, and 
software design effectively. 
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