

 1

The Use of Modeling for Flight Software Engineering on

SMAP
Alexander Murray, Chris G. Jones, Leonard Reder, Shang-Wen Cheng

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

818-454-0111
{atmurray, cgjones, reder, scheng}@jpl.nasa.gov

Abstract—The Soil Moisture Active Passive (SMAP)
mission proposes to deploy an Earth-orbiting satellite with
the goal of obtaining global maps of soil moisture content at
regular intervals. Launch is currently planned in 2014. The
spacecraft bus would be built at the Jet Propulsion
Laboratory (JPL), incorporating both new avionics as well
as hardware and software heritage from other JPL projects.
[4] provides a comprehensive overview of the proposed
mission.
Recently there has been increasing interest at JPL in using
model-based techniques for systems and software
engineering. In what is something of a departure from past
practice in JPL flight projects, the flight software (FSW) is
being engineered with a decidedly model-based approach,
relying heavily on the Unified Modeling Language (UML)
and System Modeling Language (SysML). In this paper, we
will describe our applications of UML and SysML to most
aspects of the flight software engineering effort. These
include not only subsystem and software architecture
expression and description, software design at all levels,
requirements management and traceability, but also
modeling of the hardware with which the software interacts,
as well as the verification approach and implementation, the
conceptualization and description of work processes and
design constraints, and model checking.

We will describe our usages of modeling techniques for all
of these activities, as well as problems and difficulties
involved in our approach. We believe that overall effect of
this integrated modeling approach will be a more reliable,
robust, and maintainable FSW product, as well as a
predictable development schedule and cost. Early
indications are positive, as we will describe.1 2

TABLE OF CONTENTS

1. INTRODUCTION ...1	
2. RELATED WORK AT JPL ...2	
3. THE SMAP FSW PROFILE ..2	
4. SUB-SYSTEM ARCHITECTURE ..4	
5. REQUIREMENTS AND VERIFICATION7	
6. SOFTWARE ARCHITECTURE AND DESIGN12	
7. STATE MACHINES ..14	
8. TOOLS AND PROCESSES ...15	
9. DOCUMENT GENERATION FROM MODELS16	

1978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1479, Version 7, Updated January 5, 2011

10. CONCLUSIONS AND ONGOING WORK 17	
REFERENCES .. 18	
ACKNOWLEDGEMENTS .. 18	
BIOGRAPHY ... 19	

1. INTRODUCTION

The UML is such a rich language that it can be used to
describe anything that has structure or relationships or logic.
This makes it apt for descriptions of anything from a long-
term, high-level human activity to a very detailed
specification of behavior of some particular software
routine.

Our techniques encompass the use of capabilities provided
by our SysML/UML tool (MagicDraw), which include code
round tripping to and from C++, as well as extensions that
we are developing using customization facilities, including
document generation and model checking. We will also
touch on capabilities that we have inherited and adapted to
transform UML state machines expressed in UML into
either scripts that drive system test scenarios, or into flight
code.

A brief list of applications of these tools and techniques
follows:

(2) Architecture expression and documentation

(3) Management of traditional requirements: maintenance,
traceability.

(4) Description of work processes and tools

(5) Modeling of hardware components

(6) Sharing of models among teams

(7) Expression of design constraints, use of model
checking to enforce them

(8) Software design expression, documentation

(9) Expression of detailed software requirements

(10) Code generation from classifier model elements

(11) Code generation from state machines

(12) Verification planning and organization

 2

(13) Management and expression of verification scenarios

(14) Definition of logic of test scenarios as behaviors

(15) Generation of test scripts from state machines

(16) Document generation from models

(17) Profiling for all of the above

In this paper we will describe all of these applications of
SysML and UML.

The profiling mechanism of UML allows the language to be
extended and made more specific for a particular project or
domain. We have created a profile to allow us to capture
some of the concepts and information that are key to our
task. Since our profile underlies much of our modeling
work, we begin with a short description of the profile. As
we discuss particular applications of the pofile throughout
the paper, we describe more detail about particular
stereotypes as needed.

We continue into a description of architecture of the FSW
subsystem, and how we describe it in UML and SysML.
This leads into a discussion of the use of models to manage
requirements and relationships among them. This leads to
the topic of verification, and how we use modeling to plan
and describe verification activities.

This is followed by a discussion of software architecture
and design and our use of modeling techniques to generate
and document them. This will include a few special topics,
e.g. code generation from UML state machines.

We then briefly discuss the modeling of processes
employed in the FSW engineering effort, followed by a
discussion of document generation from the models.

We conclude with a discussion of benefits of an integrated
modeling approach, as well as problems and disadvantages.
Problems include difficulties in efficiently meshing an
integrated model-based approach with a prevalent
document-based approach, or inheriting software that was
not developed or documented with model-based techniques,
as well as tool limitations, such as the difficulty of sharing
data between MagicDraw and the requirements
management tool that is used on the project.

2. RELATED WORK AT JPL

We mentioned in the introduction that there is a great deal
of interest in model-based engineering at JPL. The most
important and comprehensive effort in this area within JPL
is undoubtedly the Integrated Model-Centric Engineering
initiative (see [11]). The IMCE initiative has taken on the
ambitious task of examining all aspects of systems
engineering as currently practiced at JPL, and

systematically developing methods and techniques for
replacing or improving current practice with a model-
centric approach. IMCE is also developing infrastructure to
support projects in adopting these methods and techniques,
including a set of ontologies and UML profiles.

IMCE has also produced a general and powerful document
generation capability for use on MagicDraw models. Had
this capability been ready six months earlier, we would
probably have used it on our project.

In general, UML and SysML are becoming commonplace at
JPL, particularly in software engineering. It is becoming
more common too to see UML or SysML diagrams pop up
in system engineering documentation. And some software
projects are using UML extensively for software design.
But we are not aware of any project at JPL that has
consistently and comprehensively used model-based
engineering techniques.

3. THE SMAP FSW PROFILE

A UML profile is a special kind of UML model whose
purpose is to extend and/or constrain the UML language.
This is useful to refine concepts in the UML language to
better represent concepts in the problem domain at hand.
The SysML language itself consists largely of a UML
profile. Profiles consist of special model elements called
stereotypes. Each stereotype refines one or more UML
concepts (or more precisely, metaclasses). See [1] for a
complete description of the UML profiling mechanism.

The SMAP FSW UML profile allows us to express
concepts and details about them that are specific to our
project. As shown in Figure 1, the profile is organized in
packages according to the types of concepts and activities
for which we need to define stereotypes.

Relationships to Common or Standard Profiles

Our profile is largely “home grown”, but it does leverage
the SysML profile by making several of our stereotypes
derive from the SysML Requirement stereotype. This is
particularly useful for stereotypes that need a text tag and an
ID tag, both of which the derived stereotypes inherit from
SysML Requirement.

We used the OMG’s MARTE (Modeling and Analysis of
Real-Time Embedded Systems) profile (see [10]) for a
while, but we found scant tool support for MARTE’s
analytical capabilities. Moreover, we found it an annoyance
to have so many stereotypes that we never used
complicating our modeling efforts (e.g. when selecting a
stereotype from a pull-down, having to scroll through
several dozens of stereotypes that we never used). So we
discontinued using MARTE, and instead defined a half-
dozen or so stereotypes to cover the concepts we needed.

 3

These are described below in the discussion of the Patterns
package.

SMAP Profile Descriptions

This section, organized by profile package, provides a
description of key stereotypes in our profile. We cannot
discuss all of the stereotypes due to space.

The Architecture package contains stereotypes used in our
FSW Architectural Description Document (ADD), which
discusses quality attributes, stakeholders, and their
concerns. These concepts are typical in discussions of
architecture, but we are not aware of a well-established
standard UML profile for modeling them.

So for example, the concept of a Stakeholder is a key one,
and it typically represents a user of a system, or someone
affected by the development or operation of the system in
some way. As we began to analyze our stakeholders, we
found that their concerns were characteristics of teams of
people, rather than of individuals. Thus we decided to
model stakeholders as teams rather than individual actors,

which led us to define the Team stereotype. We similarly
introduced stereotypes Concern and QualityAttribute as
stereotypes that extend the metaclass Class (being derived
from SysML Requirement). Using these three stereotypes,
we can model a team caring about specific quality
attributes. Examples of applications of these stereotypes are

shown in Figure 5.

In the Requirements package, the L4Requirement
stereotype, derived from SysML’s Requirement, is used to
mark level 4 requirements imported into the model from
IBM Rational DOORS [9] (used consistently for
requirements at JPL, at least for level 4 and higher). Section
4 discusses the meaning of requirement levels 4 and 5 in the
context of SMAP FSW. The L5Requirement stereotype,
applicable to any metaclass, is not derived from SysML’s
Requirement as might be expected, to avoid some of the
constraints on that stereotype that SysML imposes.

The stereotypes of the Trades package mark parts of a
tradeoff study: a tradeoff generally has a few or more
Alternatives, have Criteria to guide the decision,
PointsOfInfo, and a Resolution. We express these in the
model as Comment elements, which we mark with the
applicable stereotype from the Trades package. We
summarize trade studies with a single diagram containing
nothing but Comments. This results in a crisp and easily-
digestible summary of the trade.

The Patterns package contains stereotypes that are key for
describing software design patterns. For example, a crucial
concept in embedded and real-time software engineering is
the thread, which is an independently-schedulable unit of
control in the software, owning their own memory
resources. At runtime, threads are the scheduled and

Figure 1 - The organization of the SMAP Profile

Figure 2 - The cover page of the Architectural
Description Document (ADD)

 4

executed by the operating system, based on priorities
assigned each thread by the software architect. Thus, the
modeling of threads is key in architecting FSW. Threads
can run in response to sporadic events, or they can run
periodically.

We introduced stereotypes SporadicThread and
PeriodicThread to mark classifiers in our model that
represent threads. Both stereotypes are derived from
ThreadProperties, and provide a useful way to identify, and
search the model for, tasks in the design. ThreadProperties
contains a priority tag, which represents a key property of a
thread in embedded software design. The UML attribute
IsActive on metaclass Class is not adequate because it
doesn’t capture priority or release style (periodic, sporadic).
Isr (interrupt service routine), is another key concept in
embedded software, and it is important to have these
operations clearly identified in the design. Thus we defined
the Isr stereotype to mark functions in our model that are
responsible for handling interrupts from the hardware.

The Ipc package contains stereotypes that are applied to
connectors: logical connections between software
components, representing internal software communications
channels in the implementation, in order to describe the
style of communication over that connector. For example, a

connector that is implemented as a synchronous method call
through an object is marked with the SyncMethod
stereotype, while one implemented asynchronously with a
queue handle for a response passed is marked with the
AsyncQHandleRsp stereotype. These stereotypes help a
reader understand how the software communicates
internally among its components.

Our ADD describes various aspects of how we do our
software engineering work, and the products of our work.
This is the reason for the Artifacts package and the
stereotypes contained therein. An example is the stereotype
WebDocument, which we use in diagrams showing how our
UML/SysML models are used to generate documents, the
ADD being one example. Document generation is discussed
in a subsequent chapter.

The ADD and models also describe verification, which
includes the description of verification techniques, as well
as tests or other verification activities and mappings
between tests and requirements. We use the stereotypes in
the package Testing for these purposes. Examples of
application of these are given in Chapter TBD.

Our profile also includes the Programming package, which
contains stereotypes that apply specifically to the
implementation of the software (which is in C and C++).

Our profile was used extensively in all of our models, and
these were the basis of the ADD. The profile then, was an
important contributor to the clarity of the ADD.

4. SUB-SYSTEM ARCHITECTURE

Just as there is increasing interest in model-based
engineering at JPL, there is also a push to concentrate and
focus more on system and software architecture in our
work.

Our project is probably the first at JPL to have held a
specific review dedicated to FSW subsystem and software
architecture, and this will likely be standard practice moving
forward.

Our architecture review, while guided with the use of
viewgraphs, was focused on the ADD itself; the viewgraphs
were full of hyperlinks into the on-line ADD, and a web
browser was used heavily in the presentation.

Thus, the reviewers spent the majority of their time
examining and discussing diagrams in the ADD, rather than
looking at viewgraphs. This seems to be a hallmark of
model-based engineering: the engineering products
themselves are reviewed more than viewgraphs about the
products.

Figure 3 - The system of models making up the FSW
architecture and design

 5

The concept of “Architecture” which we’ve employed
includes not only the structural and behavioral principles
and patterns of the software itself, but also an analysis of the
context of the FSW as a subsystem in the larger flight
system, from both operational and programmatic
viewpoints. We used MagicDraw to generate our ADD in
the form a web document with a navigation tree in one
frame, and the content in another (document generation is
discussed below). The outline of the document, shown in
Figure 2, gives a good overview of the scope and content of
our architecture, and of our uses of modeling.

One of the difficulties associated with this emphasis on
modeling is that models can become large and unwieldy.
Fortunately MagicDraw allows one model to “use” another,
in the sense of importing another model as a read-only
library model. We exploited this capability to partition our

architectural model into a collection of sub-models
addressing particular aspects of the architecture, as shown
in Figure 3. In that diagram, we use composition to model
the inclusion by one model of another, as the
FswArchitecture model does the FswRuntime model.

The FswSubsystemArchitectureModel is the root model
from which the ADD is generated. It contains modeling of
FSW context, quality attributes and stakeholders. The
FswArchitectureModel contains the software high-level
design (also via inclusion): the FswRuntimeModel contains
the structural decomposition of the FSW at runtime, the
InfrastructureModel describes a set of software support
classes used throughout the rest of the FSW. The
ComponentSpecModel specifies the interfaces among all of
the components. FooComponentModel stands for any of
several models of the design of individual components. We
have twenty-some individual component models.

Architectural Drivers

Our ADD includes an exposition of key and driving
requirements. This is organized with a set of Use Cases,
which serve to tie a related set of higher-level requirements
together, and then to elaborate the behavior, at a conceptual
level, showing the FSW subsystem achieving that Use Case.
We say higher-level to emphasize that we used level 3
requirements – which are requirements on the entire
spacecraft, not just the FSW – for this exposition of driving
requirements, in part because the higher level of abstraction
was appropriate for this document, but also because the
FSW subsystem requirements (at level 4) were not yet
ready.

An example of one of these use cases is shown in Figure 4:
the use case groups and refines a pair of requirements that
have implications on FSW design. The state machine
OperatingContinuously (show only as a classifier box)
specifies characteristics of FSW operation that enable it to
run reliably for indefinite periods of time.

Architectural Tradeoffs and Decisions

In exploring and documenting tradeoffs that led to key
decisions, we sometimes used modeling, but more often
used simple text, depending on the type of decision. A
lower-level tradeoff between two software design
alternatives would inevitably depend heavily on UML,
whereas a higher-level issue with programmatic
implications would be expressed in English, usually as the
documentation attribute of a UML package.

But for any type of trade, we found it useful to have a
compact and indivisible summary of the trade and decision,
in a way that was easily shared. For this we used a UML
diagram containing only Comment objects, tagged with one
of the special stereotypes Description, Alternative,
Discussion, Action, PointOfInfo, or Resolution, and color-
coded. Using diagrams as containers for comments only
struck some of the reviewers of the ADD as odd, but
nonetheless useful.

No ADD is complete without a discussion of stakeholders,
concerns, and quality attributes. As shown in Figure 5, an
excerpt of a diagram showing a few of these concepts, we
modeled stakeholders as teams (rather than as individuals),
tagging Class instances with the Team stereotype.
QualityAttribute and Concern are both derived from the
SysML Requirement stereotype, which gives them the text
field tag.

Quality Attributes, Stakeholders, and their Concerns

We displayed quality attribute priorities by simply
displaying the QA’s, color-coding (red meaning high,
yellow medium, and green, low) on a diagram.

Figure 4 - A use case, elaborated by a state machine,
refining requirements

 6

Another piece of the quality analysis in the ADD is a
subsection called Realization, and this has the goal of
presenting an argument that our architecture achieves the
QA’s and meets the concerns of the stakeholders.

We defined a viewpoint consisting of a custom diagram
called a Success Tree Diagram. Inspired by the concept of a
fault tree, in which the possible paths to the fault are
analyzed, the success tree shows the QA at the root, and
shows all of the things that must be done, or must be true, in
order for that QA to be achieved. As shown in Figure 6, the
QA is shown being supported by design principles defined
in the architecture (in other Success Trees, other

architectural elemnents are also shown supporting the
attainment of QAs, including designConstriants,
testRequirements, patterns, or other architectural features).

We also defined a stereotype to identify Figures of Merit –
criteria to measure how well the FSW meets the QA. An
example is the AssessibilityOfImpact figure of merit, shown
in yellow in Figure 6. We plan to take benchmarks of these
figures at major milestones.

The Environment Section

The concept of the Environment appears in [3], and this
section of our ADD describes the FSW subsystem’s context
in the rest of the flight system, using a series of context

Figure 5 - Part of a diagram depicting stakeholders, their concerns, and quality attributes

Figure 6 - A Success Tree Diagram excerpt

 7

diagrams.

An example that is similar to one of these context diagrams,
shown in Figure 7, in which SysML blocks represent
hardware components. In SMAP we maintain a separate
model of the hardware components of the spacecraft. This
hardware model is used by the software models as needed to
represent the hardware and the interrupts and data flows
between it and the software. The hardware models are also
used to represent many of the details of the hardware
components themselves and their connections to each other
– a topic for another paper.

5. REQUIREMENTS AND VERIFICATION

The use of DOORS is pervasive and embodied in
institutional procedures at JPL. DOORS enables the
expression of textual requirements and the linking of
requirements from parent to child and vice versa. It also
supports enumerating test cases and other verification
activities, and linking requirements to them.

SysML and UML provide a much richer environment for
developing, managing, describing, and tracing
requirements. They provide all of the capabilities of
DOORS, as well as the capability to elaborate and refine
requirements with various behavioral and structural
diagrams, to map requirements to design elements, and to
specify the behavior of verification scenarios (rather than
just name and summarize them).

Perhaps most importantly, UML can be used to express

expectations on system interfaces and behavior (i.e.
requirements) in more concise and precise ways than with
English statements, especially in the case of detailed
software requirements. Our detailed software requirements,
which we call level 5, are generally expressed as UML
model elements, not necessarily as text. The level 5
requirements reside only in our models, and not in DOORS.
The models are maintained in the same configuration
management system as our source code.

The authoritative repository for the requirements on the
FSW subsystem (level 4) is necessarily DOORS. We
replicate the requirements in SysML, using MagicDraw;
DOORS can export requirements in spreadsheet form, and
MagicDraw can import them in that form. The level 4 FSW
requirements are in the model in the form of Class instances
tagged with our L4Requirement stereotype. This is derived
from the SysML Requirement stereotype but contains an
additional attribute that identifies the subsection to which
the requirement belongs in DOORS.

Level 5 Requirements

Level 5 detailed software requirements are levied on parts
of the FSW subsystem. They can be at the level of a
component (which is the first level of decomposition of the
software; something like the level of an application), or at
the level of an individual class or function.

These requirements tend to fall into two types: interface
requirements and behavioral requirements. A typical
interface requirement is for a software component to
provide some interface for use by other components.

Figure 7 - A sample flight software context diagram

 8

Another typical interface requirement is that the
implementation of a given interface operation enforce
constraints on the arguments to the function. Examples of
these are shown in Figure 16. The requirements are
expressed by the “providing” relation in the component
diagram; for example, the component SomeComponent is
required to provide an implementation of the interface
AnInterface1. The providing relation (the connector from
the component to the “lollipop”) is tagged with the
L5Requirement stereotype.

The interfaces themselves, as well as the component
diagram showing the component providing it, are marked as
L5Requirements: the existence of the interfaces,
independent of providers, is also an interface requirement.

We couldn’t use the SysML Requirement stereotype for
this, because that can only be applied to classifiers. This is
one reason we needed to define an L5Requirement
stereotype: we apply it to associations, diagrams, interfaces,
UML constraints, connectors, and other model elements.

Behavioral requirements express a constraint on logic,
calculations, transformations (of inputs to outputs), or
timing. A few examples of computational requirements are
shown in Figure 8, which contains three requirements One
requirement states a relation between input myCmd and
output xyzReq, the second a requirement to wait (at the join
node stereotyped L5Requirement) for a response before
proceeding. The third requirement is a constraint on the
minimum value of the output myData.result (which is the
response to the input myCmd).

The actual requirements in these three cases are the two
control flows (including the UML Constraints applied to
them) and the join node that are tagged with the
L5Requirement stereotype. There is no UML Constraint on
the join node, but its existence at that position in the
diagram constrains the logic of the activity: the logic must
wait for a control flow from HandleMyCmd, and for a data
flow of type XyzResponse, before proceeding.

The Comment elements associated with the two flows are
also constrained by the Constraint on the respective control
flow. The Comment associated with the join node
requirement has no UML Constraint on it, but it is
annotating an L5Requirement. These tagged comments can
be displayed in other diagrams, and in fact they appear in
diagrams depicting the logic of the test programs that test
the requirements.

It’s important to note that the requirement in each case is
not the text body of the comment; the text in the comments
is analogous to an informational paragraph accompanying a
“shall” statement in a traditional requirements document.

Performance requirements are an important type of
behavioral requirement. Examples of these are shown in
Figure 9. The timing requirements are expressed as a UML
DurationConstraint, also tagged as a level 5 requirement.
Other examples of UML model elements tagged as level 5
requirements appear in Figure 12.

Figure 8 - Two examples of UML constraints as level 5 requirements

 9

Verification Scenarios

Verification takes place at the FSW subsystem level
(verifying level 4 requirements), and at component or sub-
component level. Component or sub-component level
testing is done both for level 5 requirement verification, and
to satisfy a self-imposed requirement that every element of
the software design be mapped to a test, as a way of
achieving high code coverage in testing.

Subsystem (Level 4) Verification

At level 4, verification scenarios are of three types: tests,
analyses, and inspections. We model tests as UML
behaviors, primarily as state machines. We use state
machines because we have the capability to generate an
implementation of the state machine in Python (more on this
below), which allows us to use a test environment Python
API that provides the capabilities of sending commands to
the FSW and receiving telemetry from it. An example of
one of these state machine scenarios is shown in Figure 10.
The function calls in the entry actions, e.g. sendCmd(), are
utility Python functions that interface with the ground
system software to send commands or retrieve and parse
telemetry. These functions are used by all scenarios.

Analyses and inspections are human activities, and we
model them as UML Activities. Having them in the model
allows tracing them to level 4 requirements.

Our Analysis stereotype is derived from the SysML Test
Case stereotype. We tag our level 4 test cases, whether
defined as state machines or other behaviors, with that
SysML stereotype.

Component and Sub-Component Level Testing

Verification at this level is almost completely done by
testing (as opposed to analysis or other methods). These
tests are white-box tests, designed and implemented just as
flight software is, and run as applications (under Unix) or
functions (under VxWorks).

The logic of white-box tests is specified using UML
behaviors – state machines, activities, or interactions in
sequence diagrams. State machines are preferred, since we
can use them to generate C++ code to execute the test.
White-box tests, then, can appear in the model as classes
(that own behaviors), or as behaviors (state machines,
sequences, etc). They are not tagged with stereotypes to
identify them: our source tree is split at the top between

Figure 9 - Two level 5 performance requirements

 10

flight and test, so the package membership of a classifier in
the test tree identifies it as a test.

To ensure complete verification at this level, our
architecture model specifies a set of testing methodology
requirements expressed using the testRequirement

stereotype from the profile. A few examples: “Every
Interface must have a test program that can verify that any
given implementation of the interface conforms to the
ProtocolStateMachine for that interface”, or “Every flight
classifier must be mapped to at least one test class via the
Verifies relationship. Classifiers include Class, Interface,
and Component”, or “For every method of every Interface
implementation, there must be an adaption of a required test
that verifies complete and correct parameter checking.”

To help achieve these requirements, we define design
patterns for testing. An example is shown in Figure 11,
which shows a pattern for designing reusable tests. In the
figure, SomeReusableTest, defines an interface
SubjectAdapter that allows it to communicate with the
subject. To be able to run the test for a given flight class, the
programmer has only to implement the SubjectAdapter
interface for that particular class.

A specific example of a reusable test is the
ResourceUsageTest, designed to ensure that if a resource
becomes unavailable (full), the software should behave

predictably. The SubjectAdapter interface in that case, has a
exhaustResource() operation, which the test will invoke.

If the test is adapted for, say, a class that implements a
container, then exhaustResource() will mean filling up the
container, where as implementing exhaustResource() for a
communication channel might mean causing the channel to
go offline.

Traceability

Institutional standards require the tracing of requirements to
the parents from which they’re derived, and to some sort of
verification activity (a test or analysis, for example). For
detailed software requirements, an additional mapping from
requirements to the design element(s) that satisfy them is
required.

The trace of level 4 FSW requirements to parent level 3’s
(and to other types of parents, such as Interface Control
Documents), is managed in DOORS. The other traces are
done with UML and SysML relationships in the models.
Level 4 requirements are traced to level 5’s using our
profile’s derivedFrom stereotype.

Because the SysML derivedFrom stereotype requires that
both participants in the relation be SysML Requirements,
and our level 5 requirements are not, we cannot use the
SysML relationship. This mapping technique is shown in
Figure 13.

Figure 10 - a FSW subsystem-level state machine test
scenario

Figure 11 - a pattern for the design of reusable tests

 11

The trace of test cases and analyses to level 4 requirements
is done similarly, as shown in Figure 14. For this mapping,
we use the SysML verify relationship.

The mapping of white-box, component- and subcomponent-
level tests to level 5 requirements is done using our Verifies
stereotype, as shown in Figure 12. Again, we could not use
the SysML verify relationship because of constraints on the
related elements.

All of these traces done in MagicDraw can be compactly
represented in a matrix. The example shown in Figure 15
embodies the relations depicted in the mappings of Figure
14. MagicDraw can export these matrices as comma-
separated value files. This allows a relatively simple export
of the list of level 4 verification scenarios, along with lists
of linked requirements, back to DOORS.

Tracing Level 5 Requirements to Design

Since level 5 requirements are expressed as constraints on
elements of the design, such as Component interfaces,
diagrams depicting the behaviors of Components and other
elements of the FSW implementation, the association of
these level 5 requirements to the design is clear. We haven’t
seen a need or benefit in extracting some more explicit trace
of level 5 requirements to design.

Figure 13 - Mapping of level 5 requirements to level 4's

Figure 14 - The mapping of level 4 requirements to
scenarios

Figure 12 - The trace of white-box tests to level 5
requirements

 12

6. SOFTWARE ARCHITECTURE AND DESIGN

We distinguish software architecture from subsystem
architecture as being solely concerned with the structure and
behavior of the software. This is a narrower concept of
architecture than subsystem architecture, encompassing as it
does programmatic context, stakeholders, etc. Software
architecture does include guiding principles, design and test
constraints and requirements, patterns, and detailed software
requirements. We’ve discussed two of these concepts
(testRequirements, and detailed software requirements,
already).

Guiding Principles

Our software design is guided by a set of principles,
expressed in the architecture model as classes tagged with
the stereotype Principle, which is derived from SysML
Requirement, which lends them name and text properties.
Here are a few examples:

Least Visibility: An object should be visible only in the
scopes where it is needed

Follow Patterns: Common logic or tasks must follow a
consistent pattern throughout the architecture

Minimize Dependencies: Keep dependencies among
packages to a minimum. Dependencies should be
avoided unless necessary.

The advantage of having them in the model rather than a
text document is that they can be placed in various

diagrams, e.g. in support of a design decision. A few of
these appeared in the Success Tree diagrams shown above.

Design Constraints

Design constraints are similar to principles, but they are
more specific, and intended to be specific enough to be
expressible in UML’s Object Constraint Language (OCL),
though we haven’t done that. We handle constraints
similarly, marking them in the model with the SysML
Requirement-derived stereotype designConstraint.

Here are a few examples:

Interface Protocols: Every interface must have an
associated ProtocolStateMachine that specifies how that
interface may be used.

Interface Ops Virtual: Every operation of an interface
must have the virtual property set to true.

Circular Dependencies 1: The source package
CompileTime::Flt may not depend on source package
CompileTime::Test (dependencies considered
recursively).

No Multiple Inheritance: A classifier may be the source
of at most one Generalization relationship

These constraints are intended to prevent programming
errors, or to preserve important architectural properties
(such as the capability to build and load components
individually – impossible if certain circular dependencies
arise). The last item forbidding multiple inheritance is
directly derived from a C++ sub-setting coding standard.

These design constraints (there are approximately 30 of
them), are amenable to automatic checking by analyzing the
model of the software design.

Design Patterns

Our architecture model contains several packages of design
patterns. Among the most important ones are: Component
definition and specification, initialization, inter-task
communication, thread management, sharing data between
threads, state machine implementation, handling ground
commands, and white-box testing.

Our usage of UML for software design patterns is not
unusual. We use the stereotype PatternElement to clearly
mark model elements that are not part of the actual design,
but exist only to illustrate a pattern or principle. We use
several of the types of UML diagrams available, and many
of these diagrams are too complex to fit in a paper format
very well. But we can show a few meaningful examples.

Figure 15 - Trace matrix of level 4 requirements to
tests

 13

The first of these is the pattern for defining the interface
specification, or role, of a Component in the system. The
top-level depiction of the pattern for this is shown in Figure
16. The Component is the top-level decomposition concept
of the FSW subsystem, both at compile time (source level),
and run time. Components are independently compilable
and loadable.

The diagram defines the role of AComponent as providing
the interfaces Interface1 through InterfaceN. The provider
relationship is tagged as an L5Requirement, since it is an
important interface requirement on the component. We do
not treat a Component’s usage of an Interface as a
requirement at the interface specification level.
Requirements for a Component to use an interface appear
first in specifying the behavioral requirements for a
Component.

We use the term Interface to mean what UML means by
Interface: a Classifier that has no Properties and only
abstract Operations. Our understanding of the provider and
user relationships between Components and Interfaces is
also the UML specification’s version of these concepts. In
our implementation, Interfaces are mapped to abstract C++
classes, but this doesn’t affect our usage of Interfaces in the
model.

Yet another key pattern is the management of threads that
need to run at a regular period. Figure 17 shows how the
logic of arranging to wake up periodically is handled in an
abstract base class, Periodic, and the application for a
specific context is accomplished by making a derived class
(SomePeriodic in the diagram), and providing an
implementation of the abstract doCycle() operation.

The classifiers shown in Figure 17, except for
OverrunHandler, are Classes, not Interfaces. These classes

Figure 16 - the pattern for specifying the role of a Component

Figure 17 - The classes involved in managing a
periodic task

 14

are utility elements for internal use in Components that need
to own and manage threads; they do not form part of the
interface of any Component.

Still another key pattern is the implementation of state
machines. This is described in the next section.

Another key behavioral pattern is the initialization sequence
in which every Component participates. An overview is
shown in Figure 18. This sequence involves the use of a set
of interfaces that all Components implement. Each of the
referenced behaviors is in turn interaction overviews,
ultimately resolving into UML sequence diagrams too
detailed to show here.

7. STATE MACHINES

The JPL StateChart Autocoder (see [7]) is a software
development tool that auto-generates programming
language implementations of UML StateMachines. The
Autocoder can be used to produce flight-ready C++ code, or
Python code that provides a graphical interface for the
depiction and control of the execution of the state machine.
UML StateMachines are routinely used by systems and
software engineers for documentation and as a tool for
analyzing and simulating system behavior.

In order to unify and streamline the translation of state
machines into code so that the process is less error-prone
and costly, efforts to leverage this widely accepted design
notation culminated in an initial version of the JPL
StateChart Autocoder. This initial version was first
conceived and utilized as part of the Space Interferometry
Mission (SIM) project, and later retrofitted for Mars
Science Laboratory (MSL) flight software. Other projects

that used early variants of this tool included the Advanced
Mirror Development and the Electra-Radio projects. Prior
flight software lessons taught us that, once such an
autocoding tool was in place, few software defects were
found that were due to coding errors. Errors were mainly
attributed to design errors. Positive SIM experiences
motivated further development of the tool as well as
process.

The second-generation JPL StateChart Autocoder improves
upon the initial work with an extensible plug-in architecture
that incorporates a number of design patterns and new
technologies for flexibility and robustness. A reworked
UML meta-model implementation enables support for any
UML XMI (XML Metadata Interchange) model file. A
template-based generation technique facilitates flexible
implementations for the resulting code. Code is generated
using a state-chart implementation pattern based on the
Quantum Framework for embedded systems, which boasts
efficiency, robustness, and support for many platforms. A
combination of Java interfaces, annotations, reflection, and
design patterns facilitates modifiability and extensibility,
and a sizable suite of test cases ensures robustness.

Currently, the second-generation StateChart Autocoder
generates C, C++, Python, and Promela3 (see [TBD]) code
from UML StateMachine models. It allows rapid
prototyping of executable, verifiable state behavior. In
particular, step-by-step state transitions and event
communication between multiple state machines can be
visualized. Certain concurrency, liveness, and safety
properties can be verified using Spin (see [TBD]). Finally,

3 Promela is a model specification language used to create models for
analysis of real-time and concurrent software systems, for use with the
SPIN tool.

Figure 18 - a high-level view of the component initialization sequence

 15

more often than not, state machines do not fully specify all
the behavior of the described module, so the Autocoder
facilitates the “fleshing-in” of StateMachines with manual
flight code. The Ares-1 requirements validation project and
SMAP flight project both fund and use this tool. An
example of the application of the Autocoder, which is being
upgraded for SMAP, is shown in Figure 10. The Autocoder
generates a Python implementation of a level 4 test
scenario.

8. TOOLS AND PROCESSES

We’ve also used modeling to describe our work process. In
the interest of space, we will shown only one or two
examples of these applications of diagrams, and describe a
few more.

Structural diagrams representing artifacts are helpful in
describing inputs and outputs of a team’s processes. One
such diagram shows all of the sources of FSW

requirements. These include level 3 requirements, various
design description documents produced by flight systems
engineering, as well as ICDs. All of the inputs are
represented as UML artifacts.

Activity diagrams are well suited to describe human
processes, as they can be used to show not only the actions
taken by the actor, but also outputs and inputs. They can
also show parallel actions of multiple actors. For example,
we have a diagram showing a software engineer going
through the process of engineering a Component,
interacting with leadership and systems engineering. It
shows inputs, outputs, and gates. This diagram is too large
to include here.

We use a highly configurable issue tracking tool, JIRA, for
both anomaly reporting and planned work management. We
went through a process of specifying the configuration of
this tool. We specified the types of issues and attributes of
each in the class diagram shown in Figure 19.

Figure 19 - the attributes of a JIRA item

 16

The tool also allows the configuration of the life cycle of an
issue. We specified that in the state machine shown in
Figure 20. The configuration was done by an external
system administration group, and these diagrams helped us
quickly and clearly communicate to them what we needed
in our configuration.

9. DOCUMENT GENERATION FROM MODELS

The generation of well-organized and usable documents
from MagicDraw models is somewhat involved.
MagicDraw has built in generators of web documents, but
the generated documents include every model element,
producing a web document that is very handy for reference
and internal use in the FSW design team, but not at all
suitable for documentation of the software architecture and
design.

We experimented with a few different approaches before
settling upon the one we’ve taken. One involved having an
external model of the document that made reference to
annotated elements in the target model. In the end we opted
for a somewhat simpler approach, which consisted of
modifying Velocity templates provided by MagicDraw for
the generation of web documents.

MagicDraw’s templates provide a library of macros for
traversing the model, finding elements, and examining their
attributes, as well as for producing Hypertext Markup
Language (HTML) text from model elements. The primary

problem we had to solve was selecting which parts of the
model should go in the generated document.

We solved this problem by annotating our models with
enumeration definitions that specify the selection and order
of elements in the document. (The name of the enumeration
is a parameter to the generator, so that the same model, or
sections of one, can appear in various documents.)

For example, the FSW Subsystem Architecture model has a
root package called FswSubsystemArchitecture. In that
package, it has sub-packages ArchitecturalDrivers,
Environment, FswArchitecture, Introduction, etc., and a
package diagram called Architecture Overview. When we
generate the ADD, we want these elements to appear in this
order:

Architecture Overview

Introduction

ArchitecturalDrivers

Environment

FswArchitecture

To achieve this, we define an enumeration named
ArchDocOrder in the top-level package
(FswSubsystemArchitecture), and the enumeration literals
have exactly the names and order of the elements we want
to see.

We apply this technique recursively: each sub-package also

Figure 20 - The life cycle of an anomaly report or task issue

 17

has an enumeration named ArchDocOrder. The modified
Velocity template uses MagicDraw macros to recursively
descend into the model. In each package it finds the
enumeration and puts out the named elements (if they’re not
packages), and descends into any packages named in the list
in the order they’re encountered.

The modified velocity templates can be configured based on
the settings of a group of variables that it reads. These
include:

(1) The root package at which to start generating

(2) The document’s name

(3) The name of the enumeration to use to order the
generation and output

(4) The root package at which to start generating

(5) The document’s name

(6) The name of the enumeration to use to order the
generation and output

With this configurability, we can use the generator for a
variety of documents, generated with overlapping sets of
models. We will use this generator for our detailed
verification plan document (which will include definitions
of the level 4 verification scenarios) and for software design
documents for all of the components.

There are actually two templates: one generates the
navigation tree seen in the left frame of the web document,
the other generates the content frame. Both have the same
logic for navigating the model.

10. CONCLUSIONS AND ONGOING WORK

Every methodology has pros and cons. In this section we
list and describe the principle advantages and disadvantages
of our approach.

Problems and Disadvantages

We have encountered difficulties and disadvantages in our
approach:

(1) Tool unreliability: For the most part, we are quite
happy with MagicDraw: it’s a fine tool, it has a high-
fidelity representation of the UML Metamodel that is
available to the user, and in general it’s fairly easy to
use, considering the depth and power it puts at the
user’s disposal. But we have encountered difficulties
with it: it is not the most reliable piece of software
we’ve seen, and finding workarounds for some of its
foibles has been time consuming.

(2) Modeling time overhead: This may be related to the
previous item, but we notice that time is consumed by
details and idiosyncracies of the model itself, perhaps
because the model and modeling tool are such rich and
engrossing things. This is somewhat similar to the
tendency to endlessly tweak the formatting of a Word
document. We have to continually remind ourselves
that the model is a means to an end.

(3) Communication outside of our team: Audiences not
familiar with modeling techniques and UML and
SysML in particular can be put off by presentations
featuring these diagrams.

(4) Requirements tool difficulties: The interface for
exchange between MagicDraw and DOORS is not as
automatic and seamless as we would like. From our
point of view, DOORS is the problem, though clearly
it is a core tool for systems engineering at JPL and will
not be replaced soon.

Advantages and Benefits

We have experienced and observed positive aspects and
results of our model-based emphasis in FSW engineering as
well:

(1) Architecture enabling: The use of modeling seems to
foster the early analysis of architectural issues and
concepts. Making a model of something is kind of a
forcing function that prods the modeler to obtain a
better understanding of what is being modeled.

(2) Communication of designs: The use of UML enables
software engineers to visualize, understand, and
communicate complex software design concepts
quickly. We find the use of UML, frequently sketched
on paper or white boards, facilitates and streamlines
our architecting and design process.

(3) Reusability of design and architecture: Storing our
architectural and design information in a model allows
us to re-use aspects of the information in multiple
situations easily, e.g. using the same design elements
in different kinds of diagrams for different purposes,
e.g. for inclusion in a document or a presentation. If
we used a simple drawing tool, each diagram would
only serve the purpose it was originally intended for.
This reusability also fosters consistency, a by-product
of maintaining information in a single place.

(4) More useable traceability: While there is utility in
having a spreadsheet that maps, for example,
requirement numbers to test case numbers, it is much
more useful to have a trace relationship that can be
easily followed from one element to another, e.g.
seeing a requirement in context, following a Verifies
relationship easily to a test, and being able to see the
logic of the test

 18

Ongoing and Future Work

There are some specific activities and techniques that we
would like to delve into more. Given the demands of a
project and the need to prioritize, we may not be able to
accomplish these things.

(1) Design checking using automated model analysis and
validation: We described a few of our design
constraints. If we could be certain that these
constraints were followed in our design, our FSW
product would likely be more reliable. The checking
of these constraints could be automated, using
MagicDraw’s built in validation language (or using
Java – it is possible to augment MagicDraw validation
with Java programs).

(2) We would like to arrive at a fuller evaluation of how
well these methods are working. We plan to collect
metrics for use in comparison with other projects, e.g.
software defect rates, in order to try to get an objective
assessment of these techniques for these kinds of
projects.

Concluding Observations

This paper has described the application of a more
consistently model-based technique than we’ve done before
for flight software engineering at JPL.

It’s still quite early in the process: we are coming up on our
Preliminary Design Review, which will be the first external
review of any kind of design detail. The ultimate
effectiveness of this approach has to be judged, at least in
part, on the success of the product: the timeliness of
development, the quality of the software, the ease or
difficulty of integration; these are the things that really
matter. We think this approach will help us achieve these
things.

We have had a FSW Architecture Review with a board of
about a dozen reviewers, several external to JPL. Some
experienced in flight systems, others not. We received a
large number and variety of comments on the architecture
and design. There were things about the architecture that
they really liked, and some things they really disliked. There
were many conflicting opinions among the board members.

But there was a consistent feeling among that board,
highlighted in their report, that the review provided them
with a more comprehensive and deeper insight into the
software architecture than they had seen in flight software
projects before. This seemed to us an indication of the value
of this model-based approach from one point of view: the
ability to communicate architecture, requirements, and
software design effectively.

REFERENCES

[1] Object Modeling Group (OMG), “OMG Unified
Modeling Language (OMG UML), Superstructure”,
version 2.3, May 2010

[2] OMG, “OMG Systems Modeling Language (OMG
SysML)”, version 1.2, June 2010.

[3] IEEE Software Engineering Standards Committee,
“IEEE Std 1471–2000, Recommended Practice for
Architectural Description of Software-intensive
Systems”, September 2000.

[4] Jet Propulsion Laboratory’s public SMAP mission
website: http://smap.jpl.nasa.gov/

[5] Martin Fowler, “UML Distilled: A Brief Guide to
the Standard Object Modeling Language (3rd Edition)”

[6] Sanford Friedenthal, Alan Moore, Rick Steiner: “A
Practical Guide to SysML: The Systems Modeling
Language (The MK/OMG Press)”

[7] Benowitz, E.; Clark, K.; Watney, G., “Auto-coding
UML statecharts for flight software”, Space Mission
Challenges for Information Technology, 2006. SMC-IT
2006. Second IEEE International Conference on (0-
7695-2644-6)

[8] Holzmann, Gerard; “The Spin Model Checker — Primer
and Reference Manual”, Addison-Wesley, 2003. ISBN
0-321-22862-6.

[9] The IBM Rational DOORS requirements tool: http://
www.ibm.com/developerworks/rational/products/doors

[10] Object Modeling Group (OMG), “A UML Profile for
MARTE: Modeling and Analysis of Real-Time
Embedded systems, Beta 2”, June 2008

[11] Todd Bayer, Matthew Bennett, Chris Delp, Daniel
Dvorak, J. Steven Jenkins, Sanda Mandutianu: “Update
- Operations Concept for Integrated Model-Centric
Engineering at JPL”, IEEE Aerospace Conference
Proceedings, March 5, 2011

ACKNOWLEDGEMENTS

The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

We wish to thank our colleagues Michael Sierchio and Jeff
Levison for a careful review of this paper.

 19

BIOGRAPHY

Alex Murray is a senior software
engineer with the Jet Propulsion
Laboratory, California Institute of
Technology. He is currently technical
lead for the development of the FSW
for the SMAP project at JPL. He has
led and done software development for
flight, ground, and simulation software
for missions and for technology
development projects at JPL.
Previously he led and developed

software for a variety of projects at TRW (now Northrop-
Grumman), and he served as a system engineer for the
European weather satellite agency, Eumetsat, as well as
software engineer for the Dresdner Bank in Frankfurt,
Germany. His experience includes embedded and flight
software development, prototype and research development,
OS development, AI, analysis and simulation tools, science
and image processing applications, business and GUI
applications, and databases. He holds BS and MS degrees
in mathematics from The Ohio State University.

Dr. (Owen) Shang-Wen Cheng
currently works as a Flight
Software Engineer at Jet
Propulsion Laboratory. He
performed a year of post-doctoral
research with Professor David
Garlan at Carnegie Mellon
University. Owen's research
interests include self-adaptive

systems, software architectures, control systems, and
software framework design, with an ultimate aim
ofsimplifying and automating complex but routine human
tasks. He received a Ph.D. in software engineering from
Carnegie Mellon and a B.S. in computer science from
Florida State University. On his off-time, he enjoys
spending time with his wife on the finer things in life.

Leonard Reder is currently assigned
to the Soil Moisture Active Passive
mission Flight Software team at the
Jet Propulsion Laboratory to
promote the use of UML and model
based engineering techniques for
generating real-time software
implementations. He was the lead
developer of the automatic flight
software interface code generation

tool set for the Mars Science Laboratory mission. In 2003
he deployed a science sequencer application, utilizing UML
modeling techniques, for control of the Keck Interferometer,
located a top Mauna Kea on the "Big Island" of Hawaii.
Reder has extensive work experience in software
development techniques and processes, software modeling,
software design patterns, real-time image and DSP
processing, autonomy, and media technologies. He holds
MSEE from the University of Southern California and
BSEE from Cal Poly University at San Luis Obispo

Chris Jones is a software engineer
with the Jet Propulsion Laboratory,
California Institute of Technology. He
is currently a flight software
developer for the SMAP mission at
JPL and has provided integration and
test support to a fractionated
spacecraft project at JPL funded by
DARPA. Chris has previously
developed algorithms to analyze DNA

microarray data at the UCLA Semel Institute for
Neuroscience and Human Behavior with the goal of
elucidating the genetic basis of complex human disease. He
has also contributed to a high-performance, power-aware
computing research at the Scalable Performance
Laboratory. This project aimed to reduce the overall energy
consumption of large-scale compute clusters by
dynamically throttling CPU voltage based on the execution
characteristics of scientific applications. He has experience
in the areas of embedded flight software development,
bioinformatics algorithms, computational genetics, high
performance computing, and microprocessor architecture.
Chris holds a BS degree in computer science from the
University of South Carolina Honors College and an MS
degree in computer science from the University of
California, Los Angeles.

