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ABSTRACT 
Often repositories of systems engineering artifacts at NASA’s Jet 
Propulsion Laboratory (JPL) are so large and poorly structured 
that they have outgrown our capability to effectively manually 
process their contents to extract useful information. Sophisticated 
text mining methods and tools seem a quick, low-effort approach 
to automating our limited manual efforts. Our experiences of 
exploring such methods mainly in three areas including historical 
risk analysis, defect identification based on requirements analysis, 
and over-time analysis of system anomalies at JPL, have shown 
that obtaining useful results requires substantial unanticipated 
efforts - from preprocessing the data to transforming the output 
for practical applications. We have not observed any quick “wins” 
or realized benefit from short-term effort avoidance through 
automation in this area. Surprisingly we have realized a number 
of unexpected long-term benefits from the process of applying 
text mining to our repositories. This paper elaborates some of 
these benefits and our important lessons learned from the process 
of preparing and applying text mining to large unstructured 
system artifacts at JPL aiming to benefit future TM applications 
in similar problem domains and also in hope for being extended to 
broader areas of applications. 

Categories and Subject Descriptors 
D.2.9 [Management]: Software quality assurance (SQA). 

General Terms 
Management, Verification. 

Keywords 
Experience, Text Mining, System Repository Mining, Systems 
Development Artifact, Assurance, Risk, Risk Assurance, 
Requirements Assurance. 

1. INTRODUCTION 
Today’s NASA projects produce tens of thousands of important 
inter-project artifacts such as requirements, systems risks, 

anomaly reports and lessons learned. However, these artifacts are 
in general poorly structured and cumbersome to work with at 
large scale. Despite NASA’s policies mandating the archival of 
project records and lessons learned as well as its explorations into 
the field of knowledge management, many of the artifact 
repositories that have been built for well over a decade at NASA’s 
Jet Propulsion Laboratory (JPL) have outgrown our ability to 
effectively manually process their contents to extract useful 
information.  

These repositories exist to support project development and 
management decision making, guide assurance activities, and 
preserve organizational memory. They provide valuable historical 
data for such tasks as identifying lessons learned, recognizing 
systemic risks, understanding the causes of cost growth, and 
determining defect root causes. The artifacts are generally 
documented in natural language, which are relatively unstructured 
and vary widely in file and data formatting, naming conventions 
and use of language (e.g. terms). Given this and the sheer 
magnitude of data now available in the repositories it is not 
surprising it exceeds a humans’ ability to comprehensively 
understand and analyze it. Owing to this, we were led to explore 
if text mining (TM) techniques could help expand our capabilities 
since they are specifically designed to analyze large sets of 
unstructured artifacts such as we have. Given the availability of 
mature and sophisticated TM tools and methods, we imagined it 
would be relatively straightforward to apply TM to extract the 
comprehensive and useful information to support objective 
decision making and to improve the quality of system 
development. For example, we have applied TM techniques to 
over 400 mission feasibility studies to help generate an annual 
top-10 systems risk list, perform risk predictions from study 
keywords, assure completeness of risk identification, investigate 
risk changes over time, and conduct other artifact repository 
processing efforts that humans are not good at. TM techniques 
have been widely applied in open source domains. With promises 
in the literature advertising capabilities that swiftly find valuable 
information in large, amorphous document repositories, TM is 
deceptively attractive. However, our experiences over the past 5 
years exploring TM techniques at JPL have shown us that 
obtaining useful results in practice requires substantial 
unanticipated effort in selecting and configuring the TM methods 
and tools, preprocessing the data for these tools, and transforming 
tool outputs for practical use by humans. 
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Here we have not yet experienced any quick “wins” or short-term 
effort avoidance by use TM for automating our artifact repository 
processing. Indeed, after nearly 8 months of effort by four 
professional developers and researchers we were only able to 
prepare 180 of the 400 feasibility studies mentioned previously 
for TM. Nevertheless this effort was not in vein. Through this 
effort we discovered a number of unexpected long-term benefits 
from applying TM to our repositories. This paper mainly 
discusses our TM experiences in historical risk analysis, defect 
identification/characterization based on requirements analysis, 
and over-time analysis of system anomalies at JPL. It details 11 
lessons we have learned “the hard way” from three of our 
experiences applying TM to large unstructured system artifact 
repositories (i.e., historical risk repositories, requirements 
specifications and system anomaly reports) at JPL. These lessons 
will be detailed in Section 6 after some background is presented. 
As a preview, we highlight our top 3 lessons learned to provide 
context for the subsequent discussion on background and 
motivation for the use of TM: 

 TM requires input of relevant information and is deficient at 
ignoring irrelevant information (Lesson 2). 

 TM methods do not perform well with inconsistent and 
dynamically changing terminology. Do not assume static and 
consistent terminology in your historical artifacts (Lesson 3).   

 Supporting information gathering and structuring for manual 
post-processing and interpretation is more important and 
practical than trying to completely automate (Lesson 8). 

In addition to the lessons, we offer a number of suggestions and 
cautions in the use of TM on software artifacts (see Section 6). 
Although we make no claim of their generality, we hope these 
lessons learned and experiences gained from our TM applications 
in three areas of studies can be extended and will serve others in 
making effective use of TM and help them avoid some of the 
intensely effort wasting pitfalls that we encountered at JPL. 

2. MOTIVATION 
To date JPL has applied TM primarily in three main areas to: (1) 
the analysis of historical risks to develop a top-10 risk lists with 
expected risk scores; (2) the analysis of requirements to 
characterize and identify defects; and (3) to analyze the large 
anomaly repositories to determine how the frequencies and types 
of software anomalies are changing over time. The commonality 
of these efforts is that each one seeks to process a large number of 
informally structured artifacts to identify patterns and compile 
statistics.  The output of the processing is useful only if it aids in 
addressing important development questions. For example, are the 
risks identified sufficiently comprehensive?  Have any important 
risks been forgotten?  How frequently has the same kind of 
anomaly been reported in the past?  If a development organization 
is to improve, it must learn from its past and apply that knowledge 
to the effective management of current projects. With more 
experiences we expect more effective management and better 
project outcomes. However over time our experience base 
becomes increasingly fragmented and difficult to digest or apply.  

The consequences of this challenge should not be understated. For 
example, such difficulties may have contributed to the demise of 
NASA's Mars Climate Orbiter (MCO) launched in December 
1998. It was discovered that the developers of the Ground 
navigation software used English Units while the flight software 
developers used Metric Units. The discrepancy in units biased 

trajectory calculations in route and set MCO too close to Mars 
during its insertion into orbit where MCO went silent and was 
lost. The specific problem of incompatible units between system 
components that led to the MCO mishap was a well-known and 
documented risk on previous projects, yet the development teams 
still failed to identify it. 

From the MCO mishap example we see that a particularly 
troublesome challenge has been providing confidence in the 
completeness of a risk analysis (i.e. the degree of certainty that all 
significant risks have been identified). There are two major 
problems here – (1) accounting for previously unknown risks, or 
the so-called unknown-unknown’s, and (2) blindness or bias 
against recognizing known risks or risk patterns. Several 
techniques have been developed to deal with these problems. 
Generally these involve risk identification audit checklists and 
guidelines based on historical risk management experiences such 
as “top-10” risk lists, risk area taxonomies, and risk analysis 
processes. However, generating these aids can be cumbersome, 
costly, and difficult if possible to keep current. Furthermore, 
when manually generated, these aids too are subject to common 
risk assurance challenges such as completeness and tangibility. 

Such challenges led us to the subject of this paper – to develop 
effective, automated TM tools to process large unstructured 
artifact repositories to extract useful project developed aids. 

3. RELATED WORK 
3.1 Text Mining in Software Engineering 
1) LSA/LSI and K-Means clustering: Maletic and Marcus [33] 
first showed the usefulness of applying LSI in software reverse 
engineering. Poshyvanyk et al. [37] combined LSI and 
probabilistic ranking to improve the effectiveness of the feature 
location in source code. LSI was also applied to recover the 
traceability links between software documentation and program 
code [34], and other software engineering areas [35, 36]. Duan 
[38] compared the K-means with other clustering algorithms, and 
proposed a technology to automate the traceability process. For 
instance, LSA and k-means clustering are applied at JPL to 
identify similar risk patterns in the risk repository and the K-
means algorithm to cluster similar risk patterns has different 
target and application domain with them. 

2) Pattern/association rule mining: Michail shows CodeWeb 
[39] mines association rules from source code as framework reuse 
patterns. Li and Zhou propose PR-Miner [40], a tool using the 
closed frequent itemset mining technique to extract frequent 
program rules and detect the violations in C code. Livshits and 
Zimmermann show DynaMine [41], a tool that uses association 
rule mining to extract program rules from version histories for 
Java code and detect rule violations. Engler et al. [3] proposed a 
general approach for extracting program rules and detecting 
derivations by using the predefined rule templates from 
programmers. Their work focused on patterns mining in a specific 
programming language. At JPL, Risk Association Rules (RARs) 
are mined from risk analysis documents in historical projects 
sharing a specific domain in order to automate the risk reduction 
process, which addresses a different software engineering issue on 
software system risk assurance.  

3) Data Mining and Machine Learning: Menzies et al. have 
used data mining/machine learning techniques for (1) predicting 
the frequency and severity of defect issues that will be observed 



 

 

during a software system’s development, and (2) tuning 
Independent Verification and Validation (IV&V) efforts to 
software development tasks based on measurable attributes of 
those tasks. Accurate predictions can reduce the risk of not 
addressed significant issues during development, as well as the 
risk of expending effort on ineffective IV&V techniques.  In [5], 
they applied existing data mining techniques to historical logs 
from NASA IV&V efforts to find selection and ranking rules for 
IV&V tasks. Due to large-scale ongoing organizational changes 
within NASA, data available to this study was potentially noisy; 
i.e., it contained signals not necessarily connected to the target of 
predicting issue severity and frequency. These studies reveal 
challenges in analyzing and mining historical project data and 
artifacts in large industrial organizations and thus have motivated 
our research addressed in this paper. 

3.2 Software Systems Risk Management 
Risks are ubiquitous to all system development projects. Boehm 
argues [2] that risk is a primary driver for project management. 
Many others agree. Carr [21] states “Risks are inherent in any 
software development activity. Furthermore, risk taking is 
essential to progress, and failure is often a key part of learning.” 
We here summarize the risk-related research in two categories. 

Software systems risk management has been an important 
research topic in software engineering for many years. Boehm [2] 
proposes a general risk management framework and five risk 
mitigation strategies: risk reduction, buy information, risk 
avoidance, risk transfer, and risk acceptance. Rashid and Kotonya 
[22] propose a checklist-based risk assessment technique for 
COTS-based software development. Carney et al. [4] present a 
questionnaire-based method for the same problem. Most of these 
risk analysis techniques and tools require a great deal of manual 
efforts and take subjective inputs from domain experts and/or 
system analysts. We have initially applied text mining techniques 
and tools at JPL aiming to automate software system risk 
identification, classification and assessment as a complementary 
to manual risk assurance techniques such as top-10 risk lists [2], 
29-risk area taxonomy and checklists, chronic risk detection, and 
risk patterns, in order to improve the confidence of risk assurance. 

3.3 Requirements Traceability Assurance 
Although they are not text mining approaches in the strict sense of 
the term, the requirements tracing methods and tools developed 
by Hayes et al. for NASA are relevant to this discussion, since 
they are related to the overall problem of analyzing large volumes 
of natural-language text to provide assurance that they exhibit a 
set of specific quality attributes. Their results can reduce the risk 
that traces between related requirements have not been included 
in a trace matrix, thereby increasing confidence that the 
functionality and behavior of the implemented system will be as 
specified by the requirements. These techniques include keyword 
matching based SFEP for Software Automated Verification and 
Validation and Analysis System (SAVVAS) [6] and Information 
Retrieval (IR) based approach [7, 8]. The IR-based technique has 
been applied to a small project and has shown improvement over 
manual tracing. We are investigating its use on a larger effort to 
help automate the identification of ambiguous and inconsistent 
natural language requirements (see Section 5.1). 

Specifically, as one of the text mining applications at JPL 
examines the satisfaction or completeness of non-functional 
requirements by functional requirements (each NFR minimally 

needs to map to at least one FR in order to be ‘satisfied’), 
Holbrook, Hayes and Dekhtyar examined the use of Requirements 
Traceability Matrix (RTM) to assist with performing satisfaction 
assessment – determining if requirements were satisfied by design 
[6].  When such a technique is  used to examine each NFR and 
see if it is satisfied by one or more FRs, it requires that each FR 
and NFR be chunked (parsed into phrases, basically) as well as 
tagged with parts of speech. Our text mining techniques do not 
require this additional pre-processing in assuring the 
completeness and correctness of RTM. Another unique aspect to 
our work is that of the use of bi-partite graphs. Though all tracing 
work directly or indirectly represents RTMs as graphs, 
traceability research does not discuss the assessment of the RTMs 
based on this structure.   

4. TEXT MINING TECHNIQUES AND 
TOOLS APPLIED at JPL 
4.1 Text Mining Techniques  
We applied and experimented with a wide variety of TM 
techniques including Latent Semantic Analysis (LSA), K-means 
clustering and classification, (closed) frequent itemset mining, 
and parts-of-speech identification. In addition, techniques for pre-
processing unstructured textual documents (such as removing 
“stopwords”) are always needed to make effective use of TM. 

1) Pre-processing artifacts for TM: Initially we need to collect 
a corpus of documents (e.g., risk analysis documents describing 
risks, risk reduction actions, and/or risk assessment information at 
various levels of details) from historical projects. Since 
documents may be kept in a variety of locations and formats, even 
within the same project, manual processing is generally required. 
After collecting and preparing the documents, we pre-processed 
them in order to construct the risk repository for TM. We 
performed tokenization (i.e., removing spurious upper case 
symbols, punctuation, and white space), pruning non-
informational “stopwords” frequently used in all documents such 
as “the” and “a”, and stemming (i.e., removing spurious suffixes. 
For example, after applying Porter’s stemming algorithm [9], the 
terms “connecting, connection, connections” would all become 
“connect”.)  In other cases (e.g., anomaly report analysis in 
Section 5.2), we augmented the text with structural information in 
the form of parts-of-speech tags (see Section 4.2). 

2) LSA/LSI: LSA (LSI) is a natural language processing 
technique for extracting and representing the contextual usage 
meaning of words by statistical computations applied to a large 
corpus of text. It uses a term-document matrix which describes 
the occurrences of terms in documents to analyze relationships (in 
particular in vectorial semantics) between a set of documents and 
the terms they contain by producing a set of concepts related to 
the documents and terms. We used Latent Semantic Analysis 
(LSA) to develop document similarity and dissimilarity measures 
for risks and requirements clustering because estimates produced 
by LSA depend on a deeper statistical analysis than contiguity 
and co-occurrence counts, LSA is often a much better predictor of 
semantic meaning-based judgments and performance. 

3)  K-Means clustering and classification: K-means clustering 
in an unsupervised (i.e. does not require a training data set) that 
aims to partition n observations into k clusters in which each 
observation belongs to the cluster with the nearest mean. We 
employed the iterative refinement approach to find natural 
clusters in the documents under investigation to use as candidate 



 

 

classifications or categories. Similar to this is K-means 
classification. This is a supervised process that takes a given set 
of classifications and examples documents with those 
classifications and applied the same approach as described above 
to determine the nearest classification for a given document. K-
means can make use of a variety of “distance” metrics to 
determine nearness. We experimented with many different 
metrics but generally found the “Cosine” distance to have the best 
performance. This is also what is dictated for the LSA approach.  

4) Frequent Itemset mining: Closed Frequent Itemset mining 
technique accepts the pre-processed mining repository S and a 
threshold  , and returns the sub-itemsets that appear at least   
times in S. An itemset I, is considered as frequent if its support 
Support(I)    . We applied Closed Frequent Itemset mining in 
automated discovery of Risk Association Rules (RARs) (i.e., a 
risk with its effective reduction actions, or a risk with its child-
risks) from historical risk repository analysis. 

4.2 Text Mining Tools  
We used widely available tools such as WEKA [10], RapidMiner 
[11], and R [12] to perform many of the TM tasks. These tools 
implement a wide variety of supervised and unsupervised data 
miners, offer numerous pre- and post-processing techniques, 
present the output in way that can easily be interpreted, and are 
sufficiently mature to ensure reliable operation when conducting 
long running experiments involving the application of many data 
miners on a large set of data. We found that the effort required to 
learn RapidMiner was less than that to learn other similar tools. 

Because no one of these tools implement all of the techniques we 
needed for our TM efforts, one of the authors implemented their 
own Risk Association Rule (RAR) mining tool called RARGen 
[13] for mining risk repositories. In particular, we needed a well 
established approach for reliably automating the identification of 
associations of similar and dissimilar risk documents. Our 
experience with using RARGen, however, indicated that for most 
efforts, it is more effective to use multiple well established tools 
supplemented perhaps with small scripts or programs to perform 
the appropriate pre- or post-processing rather than writing a 
custom TM tool that provides the complete capabilities. We did 
this for our requirements classification and anomaly analysis 
efforts, in which we wished to augment the information in the text 
being mined with structural information about the text, in this 
case the parts of speech associated with each word in the text, to 
determine the effect on TM performance of the additional 
information.  Before applying text miners, we applied a parts-of-
speech (PoS) tagging tool, Trigrams’n Tags (TnT) [14] to the text 
we intended to mine, and then appended the PoS tag produced by 
TnT (e.g., NN, indicating a common noun) to each word in the 
text string. It is these modified strings from which we constructed 
the repository and to which we applied TM. 

5. TM EXPERIENCES AT JPL 
5.1 Requirements Analysis 
We have been investigating TM at JPL to identify defective 
requirements more effectively. Previous work indicates that 
defective or misunderstood requirements are a significant source 
of anomalous behavior in fielded systems [15]; more detailed and 
accurate analyses of the requirements can reduce the risk of 
introducing requirements defects and propagating them into the 
implemented system. Since a typical space mission of the type 

developed at JPL may be specified by over 10,000 requirements, 
unaided manual analysis is not effective for assuring that 
specifications accurately reflect the system being developed. 

Requirements Classification. Earlier work focused on 
identifying subsets of the requirements that could be analyzed 
separately, reducing the effort required by assurance engineers to 
perform the analysis as well as the number of analysis errors [16, 
17]. We combined TM (e.g., word frequency analysis) and natural 
language processing (i.e., TnT parts-of-speech (PoS) taggers) to 
discriminate between temporal and non-temporal requirements. 
Using the complete set of over 7500 requirements for a currently 
operating robotic space mission, we developed learning models 
that perform well in distinguishing between temporal and non-
temporal requirements [16]. We have also applied TM to 
distinguish between different types of temporal requirements, the 
goal being to automate the transformation of those requirements 
into a machine-readable notation that can be checked for 
consistency automatically. The learning models we developed 
performed well in many cases [17], but improvements, especially 
in the false positive rate, are still needed before they can be 
transitioned to operational use on a development effort. Our 
experiments indicated that information about the structure of the 
requirements (e.g., parts of speech for each word in the 
requirements text) led to better performing classifiers. 

Ambiguity and Inconsistency Detection. We are also 
investigating TM and natural language processing for identifying 
ambiguous and inconsistent requirements. We have analyzed a 
subset of requirements for a currently operating mission to show 
that relatively simple learning and natural language processing 
techniques (e.g., parts of speech tagging) can differentiate 
between ambiguous and unambiguous natural-language 
requirements with a detection rate above 80% and a false positive 
rate of about 30% [18]. We are investigating more sophisticated 
learning techniques (e.g., boosting, bagging, voting) to improve 
the detection and false positive rates. 

To automate the detection of temporal conflicts and 
inconsistencies in requirements, we are adapting tools developed 
by the University of Kentucky investigators [19, 20] for 
extracting constraints from natural language requirement 
documents and producing the results in a high-level constraint-
representation language. The representations capture disjunctive 
temporal constraints (“completion of task A is followed by task B 
or task C”), often marked up with preferences (“completion of 
task A by the time t is preferred to the completion of task B in s 
time units”). 

Requirements Traceability Assurance. We have also conducted 
a pilot study using TM to assure software requirements traces 
[23]. Determining the correctness and completeness of the many-
to-many relationships between functional and non-functional 
requirements (NFRs) is a particularly tedious and error prone 
activity. For this study, we developed a practical method that 
applies well established TM and statistical methods (i.e., an 
integration of LSA and K-means with Empirical Maximum 
Likelihood estimates to determine the thresholds) to reduce the 
effort and to increase the confidence in assuring the traceability 
matrix. This method makes use of both requirements similarity 
(related to the likelihood that requirements trace to each other) 
and dissimilarity (or anti-trace, related to the likelihood that 
requirements do not trace to each other) to generate investigation 
sets that can significantly reduce the complexity of the 



 

 

traceability assurance task and help personnel focus on likely 
problem areas.  In applying the technique to a set of requirements 
from the PROMISE data repository [24], we found a 58% 
reduction in the effort required to verify traces (compared to 
manual analysis), at the same time finding 120% more missing 
traces than the manual analysis and verifying nearly the same 
number of traces as the manual analysis (131 vs. 159). We also 
generated 154% more spurious traces (99 vs. 39) than manual 
analysis, which is wasteful of resources, but does not increase the 
risk of missing a trace critical to mission success. Our case study 
was small, but representative; we observed no inhibitors to scaling 
the method up to JPL sized projects. We will further investigate 
this approach on one or more JPL SQA efforts in the near future. 

5.2 Analyzing Anomaly Reports 
We have also used TM to analyze large volumes of anomaly 
reports to discover trends in the number and types of anomalies 
observed during testing and mission operations, and relationships 
between different types of anomalies. One of the simplest 
questions to ask is whether the frequencies and proportions of 
software anomalies observed during mission operations change 
from mission to mission. Although JPL has been tracking reported 
anomalies for many years, these questions have been surprisingly 
difficult to answer. Recent experience indicates that the 
quantitative or enumerated fields identifying characteristics such 
as the anomaly type (e.g., software, hardware, procedural errors) 
may contain substantial inaccuracies. For example, a detailed 
reading of the descriptive text (anomaly description, verification 
of anomaly, corrective actions) for a subset of the anomaly reports 
indicated that nearly all of the reports tagged as being software 
related did involve software defects, but many of the reports that 
were tagged as being something besides software turned out to be 
software related. In fact, the number of mislabeled anomaly 
reports was enough to double the count of software related 
anomalies [27]. By applying TM to the descriptive text in 
anomaly reports, we have been able to obtain more accurate 
counts of the number of software related anomaly reports [27]. 
The data on which we trained the learners was the result of 
another recent analysis of a subset of the anomaly data focused on 
identifying the types of anomalies observed during the cruise 
phase of missions to Mars [28]. The resulting learning models 
performed well in distinguishing between software and non-
software related failures (a detection rate of 82% with a false 
positive rate of 20%). We are proceeding with the application of 
the learned models to the larger set of anomaly data.  If the 
models perform well on this larger set of test data, we will then be 
able to establish a baseline against which we can quantitatively 
compare anomalous behavior observed during future missions. 

5.3 Team X System Risk Assessment 
Team X is JPL’s concurrent engineering team that performs space 
mission systems feasibility and trade studies during the 
conceptual design phase as an input into the proposal decision-
making process (see [25, 26] for more details). By Risk 
assessment we mean the identification and scoring of events that 
can lead to significant cost growth, schedule slip, or loss of 
science return including total mission failure. Historically the risk 
assessment process has been performed by ad-hoc “expert” driven 
methods. One of the known limitations of expert knowledge is the 
non-uniform quality of risks identified based upon the individual 
expert involved in the process. Individual experts have biases 
from their personal experience that can cause them to overlook or 

underestimate particular risks of project failure.  The result is that 
there is very limited consistency across studies with respect to the 
risks identified, how they are described and how they have been 
scored. This has produced a risk repository where the risk 
descriptions are unstructured and expressed in natural language 
which can be redundant, ambiguous, and inconsistent. It also 
meant that the existing repository was difficult if not impossible 
to use during active studies. 

To improve our confidence in the Team X risk identification 
process, some form of risk assurance needed to be performed, 
which required identifying and imposing a structure that could be 
used to reduce variation in language use and promote consistent 
risk identification. In particular, it is hoped that a structured risk 
repository will enable the generation of organization specific risk 
analysis tools such as a “top-10” project risk list or risk 
identification checklists.  

But where does one obtain the risk source data?  Project risks, 
which could provide ‘real’ risks, are scattered across documents 
located at numerous servers many of which have restricted access. 
They also have even greater variation in language that will be 
very specific to each project. Risks documented in the literature 
tend to be too generic. For example, Boehm generates a bi-annual 
industry top-10 risk list via a survey of industry affiliates of the 
Center for Systems and Software Engineering [1], which is quite 
helpful for providing top-level risk guidance. But they are overly 
general and lack specific association with an organizations 
particular risk considerations. For example, a risk always on this 
top-10 list is “Schedules, budgets, process” but how does this 
apply to JPL in particular? The schedule risk considerations for 
“missing the Mars launch window” are considerably different 
than “the product will not ship as announced.” Hence, we decided 
to focus on the Team X repository even though it was a highly 
subjective predicted risk repository, as all the risks were in one 
database and could be searched. It was soon determined that 
manually categorizing risk data for a repository is cumbersome, 
expensive, and usually requires domain experts to generate useful 
meta-data and organizational categories. Indeed, at JPL our first 
attempt to create a semi-structured risk repository from 3361 
unique risks from 170 Team X studies where the risk data was 
stored in a centralized risk management tool took 4 people 
working 4 to 6 hours per week over 3 months and never 
completed. The initial estimate was 1 to 2 weeks to ingest 170 
projects.   

In response to the above risk assurance issues, we are using TM 
techniques to assist with classifying risks in the Team X risk 
repository mentioned above. To date we have only engaged in 
mining the Team X Risk repository because it is more structured, 
but we intend to mine the distributed project repositories in the 
future. For our effort, the following key objectives define the 
value we hope to generate from TM methods: 

1. Automate the continuous collection of historical project risks 
and their mitigations into a repository that enables economical 
generation and maintenance of risk assurance tools such as 
top-10 risk lists, 29-risk area taxonomy, chronic risk 
detection, risk patterns, and risk area taxonomies and 
checklists. 

2. Improve confidence in auditing of risk documents, especially 
with inexperienced project personnel (i.e. unbiased and 
comprehensive, reduce variability of results, identify potential 
gaps and omissions, reduce redundancies, etc.) 



 

 

3. Increase the cost-effectiveness of risk assurance (reduce cost 
and time to perform, increase utility of results, etc.) 

4. Support targeted risk assurance by automating (i.e. predicting) 
the identification of historically high-priority risks relevant for 
a given (new) project. 

It is important to note that the above objectives are in support of 
assuring more accurate risk identification but not to replace 
human risk identification and assessment activities. We do not 
believe the complete replacement of human-based risk 
identification is practical, prudent, or even possible at this time 
given the quality of available data and the immaturity of TM 
technology. TM is currently being used to generate clusters and 
classification of the risk descriptions from the Team X risk 
repository. The number of risks within a given cluster can provide 
a sample estimate for frequency of occurrence of risks with a 
given classification. This and associating classifications with 
project descriptions enable prediction of relevant historical risks 
for a given (new) project.  

It required several attempts at applying different TM methods to 
obtain a ‘successful’ solution. All approaches required significant 
pre-processing of the data (some details in the lessons learned 
section below). The specific TM methods and tools used are 
described in Section 4. Our first attempt used unsupervised 
clustering methods to observe what risk groupings might be 
observed in the current repository.  The clusters generated using 
the unsupervised methods were for the most part un-interpretable 
risk categories.  While we did not actually measure the success 
rate it appeared to be around 5%. To address this, we next 
performed supervised clustering by supplying groups of key terms 
based on the 12 risk checklists generated by the Team X 
subsystem chairs (generated as part of a parallel activity) as the 
training set for the clustering. This attempt enabled us to observe 
how well our human generated risk categories are able to describe 
risks in our repository. Then these results were combined with 
classification based on the unsupervised clusters to generate a 
hybrid training set to generate new clusters that became more 
easily interpreted. We had to experiment with different variations 
of pre-processing the data based on different combinations of the 
levels in the hierarchy of the risk categories. Finally we apply 
classification with the project descriptions and to associate groups 
of project key terms with the clusters.  Over the 12 subsystems the 
hybrid approach yielded from 35% to 75% correct categorization 
with an approximate average of 50% and risks were only binned 
in the wrong subsystem less than 1% of the time. This may appear 
to be mediocre results. However, it greatly reduced the amount of 
time required to manually categorize the risks as verifying a 
correct classification took seconds allowing us to focus on the 
incorrect classifications.  Even with the misclassified risks the 
TM results enabled a simpler mental evaluation and saved the 
time for manual learning.  The final version took an average of 
one day per subsystem to successfully complete the 
classifications. This also yielded numerous specific risk examples 
for each category that can be used in training new Team X 
members and providing guidance during sessions. 

We have learned a great deal about the nature of our risk data, the 
effort required to produce useable results from TM these data, and 
the importance of establishing long-term value-driven objectives. 
Indeed, the objectives listed above are the a major refinement 
over our initial “short term” objectives which essentially assumed 
TM would magically produce useable clusters with little data 
preparation. How the data preparation effort far exceeded our 

initial expectations and other lessons learned are discussed in the 
next section. 

6. LESSONS LEARNED 
We have accumulated 11 lessons learned from our TM 
experiences discussed in Section 5. Note that the lessons were 
significant to us and we make no claims of their relevance or 
importance in general. However, we also note that the TM 
literature does not adequately address the lessons we discuss 
below. It appears that it is assumed that the problems described 
are easy or inconsequential to resolve. This has not been our 
experience. They are not trivial or as straightforward as they may 
appear and can drastically affect the success of a TM effort. The 
lessons learned with suggestions and cautions gained from our 
TM applications in three areas at JPL will benefit practitioners 
seeking TM aids for similar problems, which we hope could also 
be extended to other application domains if possible. 

A few of these lessons may appear obvious, yet we note that we 
as experienced developers and researchers did not recognize them 
immediately. Other lessons are subtler and also perhaps more 
specialized to our particular environment at JPL.  In either case, 
we share these lessons openly with the hope they will be of 
benefit for other organizations seeking to effectively apply TM. 
Collectively they summarize our experiences in applying TM. 
Our focus on examples from our TM experiences for the Team X 
risk repository (see Section 5.3) is not meant to imply that the 
lessons were not drawn for other experiences. Rather, the Team X 
risk TM is our most recent and ambitious effort. Also the ordering 
of the lessons below is not meant to imply any ranking. 

Lesson 1: Preprocessing TM data will take much longer than 
you expect. The proper choice of the stopword list, stemming 
mechanism and an indexing mechanism is crucial. And beware 
of data conversion and formatting overhead. 
When performing TM, there are a number of time consuming pre-
processing tasks that can add substantially to your effort. These 
include removing replicates, tuning stemming, editing stopwords, 
and removing “generic” terms. For this latter effort, we found in 
our requirements tracing TM effort that some terms were used 
frequently specifically for requirements that were not common 
stopwords. The tf*idf weighting scheme was inadequate in 
discounting such words because they were not always used in 
each requirement but they contribute zero information. As an 
example, we noticed that the words “system” and “product” were 
always implicit in functional requirements and but not explicitly 
used in the requirement description. Such terms led the TM to 
mistakenly assign a higher similarity to requirements that used 
these terms over those that did not even though the requirements 
were not related more. There are no TM methods that we are 
aware of that can automatically detect and remove such generic 
terms. Our approach was to generate the most frequently 
occurring terms (the 80th percentile) after removing stopwords 
and manually review these for informational significance.  

In addition, data sources take many different forms and formats. 
In our experience with Team X, risks were documented in 
PowerPoint files, PDF files, flat file databases, and Excel 
spreadsheets. We could not simply point our TM tools to a 
directory of files and expect results. The files needed to be 
converted into a useable format (e.g. TXT, ARFF) or conversion 
tools need to be found or developed (e.g. XLS to ARFF). Even 
though some automated tools (e.g., Google search) can help with 



 

 

the conversion, there is still a significant amount of tool 
searching, assessment, configuration, installation overheads and 
learning curve. And the tool set-up effort is usually not 
completely reusable for a different project due to the variations of 
source data formats. 

Lesson 2: TM requires input of relevant information and is 
deficient at ignoring irrelevant information. 
Perhaps due to the success of general data mining of unstructured 
data, the TM literature seems to imply that it too is able to pull 
meaningful knowledge from a mash-up of information. This 
seems to assume that the documents do not contribute overly 
much “noise” or irrelevant information. This is not generally a 
reasonable assumption. For example, in addition to risk 
description, the risks in our risk repository contain information 
such as project description, risk mitigation, risk assessment, risk 
factors, creation dates, and mitigation dates. By simply loading all 
this information into the TM and performed LSA for clustering, 
we did not get useful results. We only obtained meaningful results 
after eliminating all but the risk descriptions. 

Caution 1:  It takes significant manual effort to prepare relevant 
information from inconsistent and unstructured data to a state 
useable for reliable and meaningful TM results. 

Often inconsistent specification in unstructured documents makes 
it time consuming to locate relevant information. This is even the 
case when documents are gathered from a structured artifact 
collection tool. For example, many Team X projects made use of 
the Risk Assessment Process (RAP) tool to describe risks and 
collect assessment data from multiple stakeholders in a distributed 
and structured manner. In our dump of the RAP database we often 
found that the “risk title” contained the “risk description” leaving 
the field for the latter empty. 

Suggestion 1: Consider migrating data into a structured 
database. 

In our Team X risk repository TM effort, we found it useful to 
import the risk repository data into a relational database. Flat files 
and spreadsheets were too slow and cumbersome to work with. 
For example, among the 9955 in Team X risks reported in the 
RAP database, 7182 (72%) of these were essentially duplicates 
because the RAP tool stores risks by each risk reporter, not by a 
unique risk ID. If multiple stakeholders provided risk assessments 
or any risk metadata there would be individual risk entries for 
these. The K-means clustering we want to apply creates overly 
narrow similarity classifications in the presence of duplicates. 
Because duplicate risks differed in only a few ways (e.g. risk 
assessment values), it was straightforward using the database to 
remove records that had duplicate risks and project descriptions 
but may have differed elsewhere. In addition, we were more 
easily able to locate missing data and remove irrelevant data 
(usually by removing table attributes). Preprocessing documents 
(e.g. stopword removal, stemming) in a database is far more 
efficient than in tools such as WEKA and RapidMiner for large 
data sets. Furthermore, preprocessing can be specialized to each 
attribute (e.g. risk description ontology or thesaurus) that is more 
targeted and easier to maintain over global processing. Perhaps 
the most valuable is its ability to easily create “flattened” data by 
combining multiple attributes. For example a risk document to be 
classified was combined with the name of the subsystem for that 
risk. As per Lesson 2, determining what information is relevant 
for a particular learner is essential for obtaining useful results. 
Although such “flattening” can be done with many of the TM 

tools we used, but it is not as efficient or flexible as a database for 
large data sets as in our case. In addition to increased flexibility, 
by preprocessing the data in a database we estimate we were able 
to cut 30%-60% of the TM processing time. On our Team X risk 
database this was a difference between 80 minutes and 4 hours 
waiting for clustering results.  

Another benefit that should not be underappreciated is applying 
the TM results. For us the TM results are used to generate 
assurance tools such as top-10 risk lists. Such tools are easily 
generated by adding a Risk_Cluster table to the database. This 
further enables useful enhancements such as generating a list of 
relevant risk mitigation associated with a given cluster.  

Lesson 3: TM methods do not perform well with inconsistent 
and dynamically changing terminology. Do not assume static 
and consistent terminology in your historical artifacts.   
At JPL documents use terminology that varies over different 
groups, over time, and over different projects. This makes it 
difficult to generate knowledge based on terms, and we have no 
terminology “maps” or organization thesauruses (though we do 
have a comprehensive dictionary). We have found in the Team X 
projects that different terms are sometimes used to refer to the 
same thing (e.g. early on a “concern” was the same as what we 
now call a “risk”). This is annoying, but not impossible to deal 
with. What is very challenging is that many projects use the same 
term to refer to completely different things (e.g. heritage 
sometimes means reuse and sometimes inheritance). This 
overloading and inconsistent use of terms significantly reduces 
TM results’ usefulness. 

Suggestion 2: Consider using an organization specific thesaurus. 

The thesaurus can be directly integrated into the TM process 
during pre-processing to eliminate inconstant and duplicate 
terminology. It is relatively straightforward to create a thesaurus 
from the term-frequency matrix generated by a TM. It is 
important to note that maintaining the thesaurus must be an on-
going, albeit low level, task if it is to remain relevant to an 
organization’s development efforts.  

Lesson 4: Metadata is vital but often neglected and hard to get. 
The metadata added to documents can play an essential role in 
obtaining useful results from classification and clustering. What 
the TM literature downplays is that this information cannot easily 
itself be obtained via TM. We have found there is a high manual 
effort for obtaining and specifying metadata due to a number of 
common complications. Firstly, metadata information is often 
implicitly located in a totally different document, location, or not 
documented at all. For our Team X risk TM, some metadata about 
a project is maintained in the folder hierarchy in which the project 
documents are stored. E.g. ABC means the file C is an A.B 
project. Sometimes the metadata is maintained in someone’s head, 
increasing the difficulty of obtaining it, and certainly not 
automatically. Secondly, there’s a lot of metadata to consider. 
What is actually relevant? What can be accessed? We thought we 
could get all the metadata manually for the Team X risk TM 
effort, but after 4 people spent 1 day trying to pull information 
from the repository directory structure and PowerPoint files and 
paste it into a spreadsheet, we realized it would take many weeks 
and was totally impractical. We had to explore alternatives such 
as methods that can perform association without metadata, 
incremental addition of metadata as needed, or trying to TM the 
metadata. 



 

 

Lesson 5: Do not expect “quick win” results from TM. You will 
be disappointed. But look for long-term benefits. 
Our initial objective for TM Team X risks was simple enough - 
avoid the huge manual and error prone effort of collecting and 
processing risk information from our repositories. This objective 
was short sighted because the effort to establish useful TM is very 
high too (e.g., preparing the data, pre-processing, interpreting). 
Contrary to what some TM literature implies about what manual 
effort it may avoid (which it doesn’t), or instantly and 
automatically obtaining useful knowledge from large information 
repositories, we discovered that there is more value in what TM 
enables longitudinally. As an example from our Team X risk TM 
effort, TM can enable cost-effective continual and automatic 
updating of “most frequent Team X risks.” This gives us a 
snapshot of the kinds of risks that are most relevant currently 
which Boehm has shown vary considerably over time [2].  It also 
enables us to run scenarios and investigate patterns, such as 
“which risks seem to persist over time” (maybe we do not address 
these sufficiently), or “how has the risk profile for projects at JPL 
changed over the years?” (i.e., risk evolution trend) 

Suggestion 3: Have very clear long-term objectives for what you 
are trying to achieve with TM and set acceptance quality criteria. 

The impression of TM is that it is a short-term, quick, easy to 
apply tool, but we found otherwise. We had to look for longer 
term benefit and accept that it requires substantial investment. In 
our Team X effort we eventually settled on the four objectives 
indicated in Section 5.3 after considering long-term value not just 
short term payoff. We found that “save effort over manual 
through automation” is unlikely to pay off in the short term due to 
the many effort-consuming development and preprocessing tasks. 
However, higher assurance, continual low-effort update, insight, 
“getting house in order”, improved process, etc. can have long 
term high-payoffs. Avoid demanding overly accurate or precise 
results by TM large collections of unstructured system 
development artifacts (you won’t get this anyway leveraging 
existing TM techniques and tools) based on the Team X statistics 
presented in Section 5.3. 

Lesson 6: Start with modest objectives and pilot your TM 
techniques and tools on small data sets before jumping in to a 
full analysis. 
This is especially important if you are inexperienced with TM. 
The above lessons all indicate that there is substantial data 
preparation and analysis effort needed to obtain useful TM 
results.  By piloting on a small data set with modest objectives 
you can more quickly get a handle on what this effort will be, 
what will be feasible to perform, and what quality of results to 
expect before investing heavily in a full TM effort. 

Lesson 7: Avoid developing your own TM methods and tools.  
It is always tempting to develop your own methods and tools. TM 
is deceptively simple looking. We made the mistake of trying to 
“roll our own” by developing our own risk association rule 
mining tool. This was extremely time consuming and error prone. 
In the end, we were able to obtain more reliable results with small 
modifications to the established tool packages WEKA, R, and 
RapidMiner. Develop tools only when existing tools are 
inadequate (e.g. scale or integration issues).  

Suggestion 4: Try simple, well established methods first.  

Avoid the temptation to use non-established methods. There is a 
lot of literature about using well-established methods such as LSA 

and what results can be expected. We have found that using more 
sophisticated but immature methods did not provide substantially 
better results and took a lot of effort to understand and get 
working properly. 

Lesson 8: Supporting information gathering and structuring for 
manual post-processing and interpretation is more important 
and practical than trying to completely automate. 
This lesson cannot be too strongly emphasized. The current state 
of TM does not provide confidence in fully automating 
knowledge acquisition or complete replacement of expert 
judgment and interpretation. What it can do very well is 
complement human-based methods by performing tasks that are 
difficult or error prone for humans with large data sets. For 
example, at Team X the TM risk clusters enable risk assurance 
personal to reduce the possibility that an important historical risk 
was omitted. Our risk experts at times can become desensitized to 
common risks and may “take it as given” that a project has such a 
risk without identifying it explicitly. The problem is that this risk 
may be “forgotten” and never be addressed. It is difficult for our 
risk experts to recall all historical risks, and even more difficult 
for risk assurance personnel to traverse through the risk repository 
to look for potentially missing risks. However TM is quite good at 
being exhaustive for such tasks. 

Lesson 9: Do not underestimate the TM methods and tools 
learning curve. 
You need a very thorough understanding of the particular TM 
methods and tools you use before getting good and reliable 
results. As discussed above, we have found that results are highly 
sensitive to the information provided, data pre-processing, and 
selection from many complex TM methods and configurations 
(e.g. what clustering method such as K-means or which distance 
metric such as Cosine). It is imperative to know clearly what is 
required to get the desired results and how to perform the tasks 
needed to get them. This takes quite a bit of time to research, 
study, and experiment via trials and mistakes before converging 
on a suitable approach and getting it to work. Our team consists of 
staff with PhD’s in the roles of senior researchers, developers and 
managers. Even with such experienced staff it took several 
months before we were able to set up a viable K-means 
classification system for the Team X risk database.  

Lesson 10: Do not be hasty to delete very infrequent or unique 
terms. 
Typically there will be a large number of unique terms in the 
occurrence matrix. It is inadvisable to blindly delete these (or 
automatically prune). Especially for relatively small data sets you 
expect to grow, many of these terms will become keywords and 
provide important classification information later (remember the 
long term objectives). For example, in our Team X risk TM we 
found the term “Aero-Capture” occurs in only a few risks (less 
than 1%). However we know that many projects under 
consideration and in the near future will involve aerocapture and 
so this term will be a significant risk identification term. 

Lesson 11: Supervised or unsupervised learning? Both! 
Our experiences indicate that unsupervised TM rarely can 
produce useful and interpretable results. Some guidance in the 
training for clustering or classification can go a long way to 
addressing this. Obtaining a training set in which you have high 
confidence can be a challenge. Start with an unsupervised method 
then look for patterns and indicators. Use these as a basis for 
generating training sets which are then is used for a supervised 



 

 

method. This can be iterated several times until satisfactory 
results are achieved. The hybrid clustering approach iteratively 
produced desired risk categorization outcome on 12 Team X 
subsystems (see Section 5.3).  

7. RECOMMENDATIONS AND 
CONCLUSIONS 
We have seen in the preceding sections that TM can be profitably 
applied to a number of problems in assuring different artifacts of 
large, complex software systems. As mentioned in Section 6, 
there are a number of issues to be taken into consideration when 
setting up a TM program to analyze large volumes of unstructured 
data.  The most important of these, based on our experience are 
highlighted as follows. 

Do not expect that the benefits of TM will be immediately 
apparent. Before the benefits of TM can be realized, it is 
important to conduct exploratory analyses of the data to be mined 
to 1) identify the questions that can be answered by applying TM 
and 2) for those questions that cannot be answered, identify 
additional data that must be collected as well as data for which the 
noise is too large to yield useful results. We also emphasize the 
importance of setting measurable goals for the TM program: just 
as a metrics program should be set up to achieve a set of 
measurable goals (e.g., the Goal-Question-Metric paradigm [29, 
30]) that can be satisfied by taking measurements to answer 
specific questions, our experience indicates that a TM program 
must be designed to achieve a set of measurable goals.  Because 
the amount of effort involved in setting up the program and the 
impact to development staff may be greater than that involved in 
setting up a metrics program, it is even more important to define 
appropriate, measurable goals to 1) minimize disruption to the 
development and assurance staff, and 2) to maximize the 
likelihood that the results will benefit the organization. 

It is also important to note that in many cases, TM cannot be 
applied to unstructured information without preprocessing the 
data. Large organizations such as JPL that simultaneously develop 
numerous systems to support multiple missions may organize the 
development artifacts to be analyzed across several different 
systems in a number of different formats.  For example, high-level 
requirements specifying the overall mission goals may be 
contained in a set of natural language documents managed by a 
system such as DocuShare [31]. Lower-level system and 
subsystem requirements may be managed by a tool such as 
DOORS [32], and the lowest level of requirements (e.g., the 
requirements for the on-board control software) may be managed 
in a set of spreadsheets that are again managed in a repository.  
Architectural and detailed design artifacts (e.g., state charts, 
collaboration diagrams) may also be included in the analysis.  
Finally, milestone and technical review records may also be 
analyzed – these are usually formatted as natural language 
documents or slide presentations mixing text and graphics.   For 
each type of artifact, preprocessing to extract the relevant 
information from the artifacts being analyzed and transform it into 
a form that can be input to the text miner(s) is likely to be needed. 

To obtain the full benefit of TM, analysts need to be sufficiently 
knowledgeable in the operation of the text miners in order to 
provide appropriate input to them and interpret the results.  At 
least some analysts will need sufficient training in experimental 
design and statistical analysis of experimental data to conduct the 
pilot studies that precede the use of TM in a production 

environment. Currently, this is not part of the skill sets of many of 
the assurance engineers with whom we have worked, meaning 
that some additional, non-trivial training for the assurance staff 
will be required before these techniques can be deployed. 

Finally, our experience indicates that TM should not be instituted 
with the goal of fully automating particular types of analyses.  In 
none of our efforts of the past several years have the text miners 
performed sufficiently well to supplant a human analyst’s insight.  
What we have observed repeatedly, however, is that text miners 
can provide useful assistance by 1) reducing the time and effort 
required by the analyst to accomplish a specific goal (e.g., 
verifying a trace matrix, identifying ambiguous requirements), or 
2) discovering previously unseen patterns in the data that a human 
analyst can then examine in detail to determine their origins and 
their consequences for the development effort(s) being supported. 
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