Design Challenges of Digital Radiator Technology for Future NASA Space Missions

Daniel F. Berisford, Gajanana C. Birur, Jennifer R. Miller, Eric T. Sunada, Gani B. Ganapathi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Ryan Stephan
NASA Johnson Space Center, Houston Texas, 77058

Presented at the Spacecraft Thermal Control Workshop
March 8-10, 2011, El Segundo, CA
Digital Radiator Basic Design
Challenges

• Stopping flow in a leg
 – Fluid freezing
• Fluid evacuation
 – Restarting flow
Stopping Flow in a "Leg"
Fluid “Freezing”

- PPG/ H2O -30°C (baseline)
- Therminol D-12 -100°C
- MultiTherm ULT-170 -129°C
- MultiTherm WB-58 -62°C
- Novec 7200 -138°C
- Galden HT-170 -97°C
- QTherm SZ2 -50°C
Freeze Experiment Setup

Lexan containment box for GN2 purge

GN2 purge line

Heat x-changer cup

Bulk fluid T

Inside wall T (replaced by datalogger)

Mag. Stir plate
Freeze Experiment Setup (top view)

- Manual stir rod
- Heat x-changer cup
- GN2 purge line
- Mag. Stir bar
- Bulk fluid T (mid depth)
- Inside wall T (touching wall in corner)
Unstirred freeze test (50 min bet 1st and last frame)

 Bulk T: -34C
 Wall T: -39C

 Bulk T: -36C
 Wall T: -44C

 Bulk T: -37C
 Wall T: -46C

 Bulk T: -38C
 Wall T: -48C

 Bulk T: -38C
 Wall T: -50C

 Bulk T: -38C
 Wall T: -50C (min attainable T - extra 20 min)

Liquid sample taken here
Concentration analysis

- PPG percentage measured in sample of unfrozen liquid
- Results show little concentration change
In this video, the liquid begins at bulk $T=-29^\circ C$. At the start of the video, the chiller is set to $-38^\circ C$, which drops the wall T to $-35^\circ C$. Final bulk $T=-35^\circ C$.

The post-freeze clip at the end is after 40 minutes of unstirred freezing. Bulk $T=-57^\circ C$.
Thermocouple data from unstirred test

PPG Full Freeze Lid On

Lid removed and fluid stirred (1st video)

Fluid T

Wall T
Qtherm freeze test
(Temp at center. 70 min. time)

Initial State > 0 C
Cooling -5 C
Freezing -26 C

Frozen -30 C
(Hand stir) Broken up -30 C
Thawing -10 C
Qtherm TC data unstirred

Temperature vs. Time

- Temperature (°C)
- Time (min)

- Freezing
- Frozen
- Machine Set-point
- Rapid Thaw

DI Water
Q Therm
Lessons Learned from Freeze Tests

• Freezing behavior not well characterized

• Difficult to predict flow-stopping T

• Must fully evacuate fluid from stopped legs
Fluid Evacuation Experiments

• Test of different evacuation techniques
 – Vacuum pump
 – Vent to space
 – Dissolved CO$_2$
 – Bubble Injection
 – Heater/ pump

15
Dissolved CO$_2$ Experiment

- RV
- Pump
- MV-5
- MV-4
- Polycarbonate tube
- MV-3
- MV-2
- MV-1
- Tank valves
- Carbonation stone
- H$_2$O
- CO$_2$
Dissolved CO$_2$ Experiment

- Fails to evacuate due to uniform bubble forming all over tube

Video: carbonation_video_cut.wmv
Dissolved CO$_2$ Experiment
Bubble Injection Experiment

- **RV**
- Pump
- Polycarbonate tube
- MV-5, MV-4
- MV-2, MV-1, MV-6, MV-3
- CO₂
- H₂O
Bubble Injection Experiment

- Evacuates well
- Added complexity to S/C to remove gas

Video: bubble_injection_video_cut.wmv
Startup Heater Experiment

PPG/ H₂O mix

Immersion heater in “stub” leg

Polycarbonate tube

pump

MV-5

MV-4

MV-2

MV-1

P
Startup Heater Experiment

- Successful evacuation in 45s with 35W heater power.
- Works w/ favorable and adverse gravity

Video: single tube 12ft heater evac-cut.wmv
Multiple Tube Evacuation

• Evacuation of three tubes with individual heaters demonstrated successfully.

• ~15% of fluid remains in each tube due to adhesion to walls.
Incomplete Evacuation

• 15% of fluid remains in tube as film on walls due to surface tension for all techniques.
 – Occurs for polycarbonate, teflon, Al tubes

• This fluid coalesces into “clots” to block flow upon freezing

• Use **internally finned** tubes to combat
Internally Finned Tubing

- Tube with internal fins to trap excess fluid by capillary action.
Internally Finned Tubing Experiment

- Smooth and finned tubes attached to chiller line to freeze remaining fluid

- Post freeze flow test to indicate blockage
 - Finned tube flows
 - Smooth tube – no flow
Summary

- Coolant freezing behavior not well defined
- Evacuation of stagnant fluid necessary
- Stub heater evacuation method is promising
- Internally finned tubes prevent blockage
Supplementary

• The following slides are for back-up QA purposes
Test results

- 50/50 PPG/H₂O mix behaves according to literature

- Liquid becomes opaque and highly viscous at ~ -30°C (bulk T) and mag. stirrer fails.

- This is not a hard freeze, but essentially useless beyond this point (except for stag. Rad.)

Fig 11 from “A Guide to Glycols” – Dow corporation, 2003
PPG surface tension/ drop angle test

- Teflon: 42°
- Polycarbonate: 37°
- Aluminum: 36°
- Glass: 28°