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Abstract— This paper presents a decentralized observer with
a consensus filter for the state observation of a discrete-time
linear distributed systems. In this setup, each agent in the
distributed system has an observer with a model of the plant
that utilizes the set of locally available measurements, which
may not make the full plant state detectable. This lack of
detectability is overcome by utilizing a consensus filter that
blends the state estimate of each agent with its neighbors’
estimates. We assume that the communication graph is con-
nected for all times as well as the sensing graph. It is proven
that the state estimates of the proposed observer asymptotically
converge to the actual plant states under arbitrarily changing,
but connected, communication and sensing topologies. As a
byproduct of this research, we also obtained a result on the
location of eigenvalues, the spectrum, of the Laplacian for a
family of graphs with self-loops.

I. INTRODUCTION

Decentralized estimation [1] has long been an active area
of research with an increased recent interest in distributed
systems. Here we focus on a decentralized estimation prob-
lem for a distributed system with multiple agents, where
each agent estimates the state of the whole system. In
this problem setup, each agent represents a physical entity
such as a spacecraft or an aircraft in a formation. Some
of the earlier research in decentralized estimation focused
on combining the state estimates of a system with multiple
agents into a single central estimate [2], [3], [4], where
all the information is communicated to all agents in the
system back and forth. This is a communication intensive
approach and may not be appropriate for distributed systems
with a large number of agents. The main idea behind these
algorithms is to blend independently obtained state estimates
into a single better state estimate, which has been the main
idea behind the more recent algorithms as well. In the
covariance intersection method [5], [6], the state estimates
and their error covariance matrices are exchanged without
the exact knowledge of correlation between the estimates of
the different agents. The unknown correlation between the
exchanged state estimates is bounded by a bound on the
intersection of the error covariance matrices. This method
ensures that the unknown correlations are accounted for,
but it requires the computation of the error covariances and
their inverses, which can be computationally demanding. In
a recent approach to distributed system state estimation, Ref.
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[7] considers a fusion center that combines measurements or
state estimates from the agents into a single estimate by using
a Kalman filter with a particular structure. However we have
to treat each agent as a fusion center if this approach is to
be adapted, which considerably increases the complexity in
the information routing problem.

A large number of recent research study the consensus
problems in distributed systems in a graph theoretical frame-
work [8], [9], [10], [11], [12], [13] to tackle the difficulties
of the distributed estimation and control. The distributed
Kalman filters with embedded consensus filters are studied
in [14], [15]. Particularly [15] introduces a state estimator
for continuous time linear time systems with a consensus
filter that blends state estimates of neighboring agents, which
motivated the particular observer structure we adapted in this
paper. Our paper provides a stable observer with a consensus
filter for a discrete-time distributed system with time varying
communication topologies and measurement matrices. The
synthesis of stable observers for discrete-time distributed lin-
ear time systems is non-trivial. In [15] a quadratic Lyapunov
function of the estimation error is constructed by using the
time-varying covariance matrix that is computed via a Riccati
matrix differential equation. However this Lyapunov function
has the right properties to be a valid candidate under non-
trivial observability conditions on the linear system [16].
These conditions must be satisfied by the system matrices
that are time-varying, which is non-trivial to verify. This
happens in distributed systems due to constantly changing
sensing topology, i.e., the set of measurements available to
each agent changes as an unknown function of time.

This paper presents an observer with an embedded con-
sensus filter for a class of discrete-time linear systems. Each
agent utilizes its local measurements and its neighbors’ com-
municated state estimates to update its own state estimate.
This observer architecture makes the information routing
problem straight-forward. The local measurement vectors are
described linearly as a function of the plant state via time
varying matrices. The local measurements do not provide the
full state detectability that is required to have asymptotically
convergent local observers. The consensus filters of each
agent blends the state estimates with its neighbors’ estimates
to overcome this limitation by seeking consensus among
neighbors’ estimates. The consensus filters update their in-
ternal states more frequently then the local observers, that is,
there are multiple consensus updates in between the observer
state updates. This ensures that a sufficient level of consensus
is reached for the stability of the observers. The number of
consensus state updates between consecutive observer state



updates is analytically determined ahead of time. The main
contribution of this paper is the proof of the exponential
stability of the observer error dynamics under time-varying
communication and sensing topologies. We provide a method
to compute quadratic Lyapunov functions that prove the
exponential stability of the observer error dynamics. We also
present a useful graph theoretic result, which is a byproduct
of this research, on the smallest eigenvalue of the Laplacians
for a class of undirected graphs with self-loops.

Notation
The following is a partial list of notation used in this paper:

Q = QT > (≥)0 implies Q is a symmetric positive (semi-
)definite matrix; G = (V,E) represents a finite graph with
a set of vertices V and edges E with (i, j) ∈ E denoting
that there is an edge between the vertices i and j; L(G) is
the Laplacian matrix for the graph G; a(G) is the algebraic
connectivity of the graph G, which is the second smallest
eigenvalue of L(G); Rn is the n dimensional real vector
space; ‖v‖ is the 2-norm of the vector v; I is the identity
matrix of appropriate dimension and Im is the identity matrix
in Rm×m; 1m is a column vector of ones in Rm; ei is a
vector with its ith entry +1 and the rest of entries zero;
σ(A) is the set of all eigenvalues of the matrix A and
σ+(A) is the set of all of its positive eigenvalues; max(σ(P ))
and min(σ(P )) are maximum and minimum eigenvalues
of symmetric matrix P ; “⊗” is the Kronecker product;
(v1, v2, ..., vm) represents a vector obtained by augmenting
vectors v1, . . . , vm such that:

(v1, v2, ..., vm) ≡
[
vT1 vT2 . . . vTm

]T
.

E is the vertex-edge adjacency matrix, A adjacency ma-
trix, and D is the diagonal matrix of node in-degrees for
G, then the following gives a relationship to compute the
Laplacian matrix

L(G) = ETE = D −A.

The Laplacian matrix is a symmetric matrix with non-
negative diagonal and non-positive off-diagonal entries.

The following relationships are well known in the litera-
ture [17] and [18] for a connected undirected graph G with
N vertices and without any self-loops or multiple edges

a(G) ≥ 2(1− cos(π/N)) (1)
max(σ(L(G))) ≤ 2d(G) (2)

where d(G) is the maximum in-degree of G. Indeed the
inequality (2) is valid for any undirected graph without
self-loops or multiple edges whether they are connected
or not. Next we characterize the location of the Laplacian
eigenvalues for a connected undirected graph G with self-
loops. Having a self-loop does not change whether a graph is
connected or not, that is, a graph with self-loops is connected
if and only if the same graph with the self-loops removed
is connected. Furthermore we define the Laplacian of an
undirected graph with at least one self-loop as

L(G) = L(Go) +
∑

(i,i)∈E

eieTi (3)

where Go is the largest subgraph of G with the self-loops
removed, and

L(Go) =
∑

(i,j)∈E, i 6=j

(ei − ej)(ei − ej)T . (4)

II. SYSTEM DESCRIPTION

We consider the problem of decentralized state observation
for the following discrete-time linear system representing a
group of N collaborative agents:

xk+1 = Axk (5)
yi,k = Ci,kxk, i = 1, . . . , N (6)

where xk ∈ Rn is the state vector at time instance k and
yi,k ∈ Rmi,k is the measurement vector of the ith agent
at time instance k. In this scenario, each agent has its own
measurements determined by the measurement matrix Ci,k
and it has direct communication links with a subset of other
agents, which will be referred as the “neighbors”. The set
of communication links in between the agents determine
the communication topology and an associated graph, Gc,k,
where each agent is represented by a vertex of Gc,k, and each
communication link is represented by an edge of Gc,k. We
assume that the graph Gc,k is a undirected connected graph
[19] without self-loops or multiple edges for all times, which
implies that [17] a(Gc,k) > 0 for all k = 0, 1, . . .

We consider a “core” set of m measurements zk,

zk =

 z1,k...
zm,k

 =

 C1

...
Cm


︸ ︷︷ ︸

C

xk where zi,k ∈ Rp ∀ i. (7)

such that all locally available “actual” measurements for each
agent can be formed as a linear combination of the core
measurements as follows

yi,k = (Ei,k ⊗ Ip) zk, i = 1, . . . , N. (8)

where yi,k ∈ Rmi,k , Ei,k ∈ Rqi,k×m, i = 1, ..., N, are
“vertex-edge adjacency” matrices, hence mi,k = qi,kp, with
p being the size of the local, core measurement vector, zi,k.
A vertex-edge adjacency matrix describes an edge between
two vertices or a single vertex (for a self-loop) in a graph
on each of its rows, whose entries corresponding to these
vertices are +1 and −1 (it does not matter which entry is +
or −) and the rest of the entries are zeros. Note that if the
edge described by a row is a self-loop then there is only one
non-zero entry with +1.

The assumption that all actual measurements can be ex-
pressed in terms of the core measurements adds more struc-
ture to the problem at hand without losing much generality,
and its use will become apparent in later sections.

Next we collect the set of all distinct local measurements
into a global measurement vector yk as follows

yk = (Ek ⊗ Ip) zk = (Ek ⊗ Ip)Cxk, (9)



where the vertex-edge adjacency matrix Ek contains all the
distinct rows of all Ei,k, i = 1, ..., N , that is, Ek is a vertex-
edge adjacency matrix of a graph without multiple edges.
Therefore, yk is not necessarily an augmentation of all local
measurements in general, that is, yk 6= (y1,k, . . . , yN,k) in
general. Moreover a local measurement vector yi,k for any
agent can simply be obtained by picking the right entries of
the vector yk. Consequently, a row of Ek can correspond
to a measurement that belongs to multiple agents, that is, a
measurement can be available to multiple agents. For each
agent we will define a vector hi,k ∈ Zqi,k that contains the
positive integer numbers representing how many agents each
measurement is available to. This implies that

ETk Ek =
N∑
i=1

ETi,k (diag(hi,k))−1
Ei,k. (10)

In summary, the sensing graph Gs,k is constructed with
its vertices as the core set of measurements z1,k, . . . , zm,k
and its edges represent the actual measurements at time
instance k. Since a core measurement can also be an actual
measurement, e.g., yi,k = zj,k, a sensing graph can have self
loops, and in the case when all measurements are the core
ones, the sensing graph can be completely disconnected in
the usual sense. We introduce a concept of pseudo-connected
graphs to capture useful properties of the sensing graphs that
will be encountered (see Figure 8 for an example of a pseudo-
connected graph).

Definition 1: An undirected graph G(V,E) without mul-
tiple edges is defined to be pseudo-connected if every vertex
is connected to itself and/or to another vertex and if every
connected subgraph of G has at least one vertex with a self-
loop.
Given the above definition, the following conditions are
assumed to hold for the system defined by Equations (5)
and (6):

A1) Gc,k is a connected graph without self-loops or mul-
tiple edges ∀ k.

A2) Gs,k is pseudo-connected without multiple edges ∀ k.
A3) The pair (C,A) is detectable.
A4) Each agent knows hi,k at any given time instance k.

Assuming a pseudo-connected sensing graph implies that
one or more of the core measurements are among the actual
measurements at any given time. The assumption of having
a connected communication graphs can be relaxed to, for
example, having jointly connected communication graphs
[20]. Such relaxations can lead to some generalizations
of the forthcoming results, which is beyond the scope of
this paper. The detectability of (C,A) pair ensures that an
exponentially stable observer exists by utilizing only the core
measurements. The last assumption of each agent having the
information of the vectors hi,k simply means that each agent
knows how many other agents have access to the information
that it has. The hi,k vectors can be routed to each agent in
real-time, or the distributed system at hand may have the
working assumption that each measurement is known by a
fixed number of agents at any given time.

III. DECENTRALIZED OBSERVER WITH CONSENSUS
FILTER

We propose the following local observers with a consensus
filter that process both the locally available measurements
and the neighbors’ state estimates:

Local Observers with Consensus Filter

x̂i,k+1 = Asi,k + Li,k(Ci,ksi,k − yi,k) (11)

ξi,l+1 = ξi,l −
∑
j∈Si,k

δ(ξi,l − ξj,l) (12)

ξi,0 = x̂i,k, l = 1 . . . r
si,k = ξi,r, i = 1 . . . N.

where r is the number of iterations, consensus state updates,
per single time step, δ > 0 is a design parameter, Si,k is the
index set of neighbors for the agent i. The gain matrices
Li,k are computed by using the matrix L, which is defined
as the core observer gain matrix corresponding to the core
measurement zk, as follows

Li,k = L
(
ETi,kdiag(hi,k)−1 ⊗ Ip

)
. (13)

The choices for the scalars r and δ will be explained later
in the paper. Here we assume that the consensus filter
can be iterated as many times as the integer r dictates
during a single time step. Hence r can be seen as a design
parameter that determines how fast the consensus dynamics
need to be for the stability of this observation algorithm.
Clearly the number r can be too large to be handled by the
available communication hardware. Hence one of our design
objectives is to determine the least conservative upper bound
on the number of consensus updates r.

IV. SYNTHESIS FOR A STABLE OBSERVER

In this section, we present a constructive proof of the
exponential stability of the proposed decentralized observa-
tion algorithm. As a by-product of this proof, we obtain
synthesis procedures to compute the observer gain matrix
L and parameter r.

Let ξl be the overall (stacked-up) vector of ξi,k ∈ RnN
where N is the number of spacecraft and n is the number
of states per agent.

ξl = (ξ1,l, ξ2,l, . . . , ξN,l)

Similarly, x̂k and Xk (both in RnN ) can be expressed as

x̂k := (x̂1,k, x̂2,k, . . . , x̂N,k)
Xk := 1N ⊗ xk = (xk, xk, . . . , xk).

From equation (12):

ξl+1 = (InN − δLc⊗)ξl, l = 1, . . . , r
⇒ ξr = (InN − δLc⊗)rx̂k

where Lc⊗ = Lc,k ⊗ In, and Lc,k is the Laplacian ma-
trix of the communication graph Gc,k at time k. Let the



observation error be defined as ei,k := x̂i,k − xk and
ek = (e1,k, . . . , eN,k), then using the equation (11), we have

ei,k+1 = x̂i,k+1 − xk+1

= Asi,k + Li,k(Ci,ksi,k − yi,k)−Axk.

Since (Lc,k ⊗ In)(1N ⊗ xk) = Lc,k1N ⊗ xk = 0 and

(InN − δLc⊗)r = I + (. . .)Lc⊗ + (. . .)L2
c⊗ + . . . ,

we have

(InN − δLc⊗)rXk = (InN − δLc⊗)r(1N ⊗ xk)
= (1N ⊗ xk).

Then, the overall error dynamics, ek can be expressed as:

ek+1 = Ac(InN − δLc⊗)rek
= Ac[(IN − δLc,k)r ⊗ In]ek (14)

where

Ac = diag {A+ Li,kCi,k; i = 1,..., N} (15)
= diag

{
A+ L(ETi,kdiag(hi,k)−1Ei,k ⊗ Ip)C;

}
where i=1,..., N

Proposition 1: Suppose that the sensing graph is pseudo-
connected and communication graph is connected for all k =
1, 2, . . ., and there exist some P =PT >0 and λ∈ [0, 1) such
that the following inequality holds for the Laplacian, Ls, of
any pseudo-connected sensing graph Gs:

λP −Aa(Ls)TPAa(Ls) ≥ 0 (16)

where Aa(Ls) := A+
1
N
L(Ls ⊗ Ip)C

Let δ ∈ (0, 1/(N − 1)). Then there exists a large enough
positive integer r ≥ 1 such that the error dynamics of
the observer given by (14) are globally exponentially stable
(GES), hence the observer given by (11) and (12) is GES.

Proof: We consider the following Lyapunov function
for the error dynamics

V (ek) = eTk (Iα ⊗ P )ek where Iα =
[

1 0
0 αIN−1

]
(17)

and α> 0. The first step is to find an appropriate transfor-
mation that will split the error vector ek into agreement and
disagreement subspaces. These subspaces bring a geometri-
cal insight to the observer synthesis, and help clarifying the
roles of the measurement and communication feedback terms
in the observer. Consider the following transformation

T =



1√
N

1√
2

1√
6

. . . 1√
N(N−1)

1√
N

−1√
2

1√
6

. . . 1√
N(N−1)

0 −2√
6

. . . 1√
N(N−1)

... 0
. . . 1√

N(N−1)

0 0 0 −(N−1)√
N(N−1)


︸ ︷︷ ︸

Tc

⊗In. (18)

It can easily be shown that columns of T and Tc has 2-norm
equal to one and they are orthogonal to each other, hence T
and Tc are orthogonal matrices such that TTT = TTT =
InN and TcT

T
c = TcT

T
c = IN . Note that, for any graph

without self loops or multiple edges G, such as the graph of
a communication topology, we have

L(G) =
[

1T v −vT
−v V

]
(19)

for some vector v ≥ 0 and matrix V = V T , which are related
by V 1 = v, and we can express matrix Tc as follows

Tc =
[

1/
√
N wT

1/
√
N U

]
with appropriately defined vector w and matrix U . Now we
can show that

TTc L(G)Tc =
[

0 0
0T Lp(G)

]
(20)

where Lp(G)∈R(n−1)×(n−1) is a symmetric matrix given by

Lp(G) = (1T v)wwT − wvTU − UT vwT + UTV U. (21)

This can be shown as follows:

TT
c L(G)Tc =

»
1 1T

w UT

–2664
1T v−vT 1| {z }

0

1T vwT−vTU

−v+V 1| {z }
0

−vwT +V U

3775

=

26664 0 1T vwT − 1T vwT| {z }
0T

−vTU +

vTz}|{
1TV U| {z }

0T

0 Lp(G)

37775 .
Note that Tc (hence T ) is a universal transformation that

does not depend on the graph at hand, and it generates
Lp(G) (that is a function of the graph), which is symmetric.
Furthermore, since Tc is used as a similarity transformation,
for any connected graph G without self-loops or multiple
edges, σ(L(G)) = σ(TTc L(G)Tc). This implies that

σ(Lp(G))=σ(L(G))\{0}⊂ [2(1−cos(π/N)), 2d(G)].
(22)

Define transformed error as ẽk , TT ek. Then the equation
(14) can be written as:

ẽk+1 = TTAc[(IN − δLc,k)r ⊗ In]T ẽk
= TTAcT︸ ︷︷ ︸

:= Ãc

TT [(IN − δLc,k)r ⊗ In]T︸ ︷︷ ︸
:= Λrk ⊗ In

ẽk (23)

Next we derive an expression for Λk. Noting that T = Tc⊗
In, we have

TT [(IN − δLc,k)r ⊗ In]T =[TTc (IN − δLc,k)rTc]⊗ In.

Here we have,

TTc (IN − δLc,k)rTc
= TTc INTc + c1T

−1
c Lc,kTc + c2T

−1
c L2

c,kTc + . . .

= IN + c1L̃c,k + c2L̃2
c,k + . . . = (IN − δL̃c,k)r,



where c1 and c2 etc., are some constants, and the newly
defined L̃c,k is

L̃c,k , TTc Lc,kTc =
[

0 0T

0 Lp,k

]
which is obtained by noting that the first column of T is in
the null space of Lk. Consequently

(IN − δL̃c,k)r =
([

1 0T

0 IN−1

]
− δ

[
0 0T

0 Lp,k

])r
=

[
1 0T

0 IN−1 − δLp,k

]r
.

This transformation allows us to project the overall estima-
tion error vector ẽk into its components in the agreement
subspace, εk, and the disagreement subspace, ηk:

ẽk =
[
εk
ηk

]
⇒
[
εk+1

ηk+1

]
=
[
Aa,k FkΛrp,k
Gk Ad,kΛrp,k

]
︸ ︷︷ ︸

Ae

[
εk
ηk

]
, (24)

where Λp,k=(IN−1−δLp,k)⊗In and

Aa,k = A+
1
N
L

(
N∑
i=1

ETi,kEi,k ⊗ Ip

)
C.

Λp,k is a symmetric matrix with 2(1− cos(π/N))I≤Λp,k≤
2d(Gc,k)I . Hence a choice of δ∈(0, 1/(N−1)) renders the
eigenvalues of the Laplacian of any connected communica-
tion graph inside the unit circle, i.e., max(σ(Λp,k))<1.

Next note that Ls,k := L(Gs,k) =
∑N
i=1E

T
i,kEi,k is the

Laplacian of the sensing graph Gs,k. The Lyapunov function
Ṽ (ẽk) (17) is expressed with the transformed state as follows

Ṽ (ẽ) = V (Tαẽk)

= ẽTk (I−
1
2

α TTc I
− 1

2
α ⊗ In)(Iα ⊗ P )(I−

1
2

α TcI
− 1

2
α ⊗ In)ẽk

= ẽTk (I−
1
2

α TTc I
− 1

2
α IαI

− 1
2

α TcI
− 1

2
α ⊗ P )ẽk = ẽTk (I−1

α ⊗ P )ẽk.

where I−1
α is a positive definite matrix. Consider some γ ∈

(λ, 1), we have

γṼ (ẽk)− Ṽ (ẽk+1) =
= ẽTk (λ(I−1

α ⊗ P )−ATe (I−1
α ⊗ P )Ae)︸ ︷︷ ︸

:= S

ẽk. (25)

Then we can express the matrix S as

S =

»
γP 0
0 γ(α−1IN−1 ⊗ P )

–
−
»
Aa,k FkΛr

p,k

Gk Ad,kΛr
p,k

–T»
P 0
0 α−1IN−1 ⊗ P

–»
Aa,k FkΛr

p,k

Gk Ad,kΛr
p,k

–
= S1 − S2 − S3,

where S1, S2, and S3 are symmetric matrices defined by

S1 =

»
γP −AT

a,kPAa,k 0

0 α−1γP̂

–
S2 =α−1

»
GT

k P̂Gk GT
k P̂Ad,kΛr

(GT
k P̂Ad,kΛr)T 0

–
S3 =

»
0 Aa,kPFΛr

p,k

(Aa,kPFΛr
p,k)T Λr

p,k(α−1AT
a,kP̂Aa,k+FTPF )Λr

p,k

–
.

By using the inequality (16), for any k

γP −ATa,kPAa,k = λP −ATa,kPAa,k︸ ︷︷ ︸
≥ 0

+(γ−λ)P

⇒ γP −ATa,kPAa,k ≥ (γ−λ)P > 0.

Hence S1 =ST1 >0. Note that we can make the spectral radii
of the matrices S2 and S3 arbitrarily small by choosing r and
α large enough. Consequently, since S1 is positive definite
matrix, by a large enough pair of r and α, we can guarantee
that S = S1 − S2 − S3 > 0, which then implies that

γṼ (ẽk)− Ṽ (ẽk+1) = ẽTk Sẽk ≥ λ̃Ṽ (ẽk)>0 for ẽk 6=0,

for some λ̃ ∈ (0, 1). Since Ṽ is positive definite quadratic
function of ẽk, this implies the exponential stability of the
error dynamics.

Next we will focus on how to design observer gain matrix
L and a valid lower bound on the number of consensus
iterations r so that the results of Proposition 1.

A. Computation of the Observer Gain Matrix L

By using Lemma 2 together with (1) and (2), we have:

2
(

1−cos
π

2N + 1

)
I ≤

N∑
i=1

ETi,kdiag(hi,k)−1Ei,k = Ls,k

≤ (2d(Gs,ok
)+1)I (26)

where Gs,ok
is the sensing graph with the self-loops re-

moved. Note that, since Gsk
has m vertices, d(Gs,ok

) ≤
m−1. Let

β1 = 2 (1−cos (π/(2N+1))) , β2 = 2d(Gs,ok
+1).

Now we have the matrix Aa defined in equation (16) for
each time k as follows

Aa,k = A+
1

N
L (Ls,k ⊗ Ip)C +

β1 + β2

2N
LC − β1+β2

2N
LC

= A+
1

N
L

„
Ls,k ⊗ Ip−

β1+β2

2
I

«
| {z }

∆k

C+
β1+β2

2N
LC

= A+
β1+β2

2N
LC +

1

N
L∆kC

where −β2−β1

2
I≤∆k≤

β2−β1

2
I . Furthermore:

∃δ ≤ 1 such that ||IN−1 − δLp,k||r ≤ ρr (27)

which can be made sufficiently small by a choice of r and
with ||ρ|| < 1. Then the agreement dynamics for εk, when
ηk=0 for all k, are given by:

εk+1 =
(
A+

β1 + β2

2N
LC

)
︸ ︷︷ ︸

:= Aε

εk +
1
N
Lpk

pk = ∆kqk where qk = Cεk

−β̃I ≤ ∆k = ∆T
k ≤ β̃I



where β̃ =
β2 − β1

2
>0. We will prove the quadratic stability

of the above system. For that, we first identify a set of
multiplier matrices M such that, for all qk and pk(

qk
pk

)T
M

(
qk
pk

)
≥ 0. (28)

Consider M be given by

M =
[
α̂β̃2I 0

0 −α̂I

]
(29)

where α̂>0. Now using the equation (29) in the inequality
(28) results in [

qk
pk

]T [
α̂β̃2I 0

0 −α̂I

] [
qk
pk

]
= α̂qTk [β̃2I −∆T

k ∆k]︸ ︷︷ ︸
≥ 0

qk ≥ 0,

which shows that the set of matrices M given by (29) is a
valid set of multiplier matrices satisfying (28). Next, consider
a Lyapunov function V (εk)= εTk Pεk with P =PT >0 such
that, for some λ∈(0, 1),

λVk−Vk+1≥0, ∀
[
qk
pk

]T
M

[
qk
pk

]
≥ 0. (30)

By using the S-procedure, we combine the two inequalities
in (30) into the following inequality (noting that α̂ in M can
be any positive scalar)

λVk − Vk+1 −
[
qk
pk

]T
M

[
qk
pk

]
≥ 0,

for all εk, qk, pk. Then the above inequality implies that

λεTk Pεk − (Aεεk +
1
N
Lpk)TP (Aεεk+

1
N
Lpk)

−
[
εk
pk

]T[
C 0
0 I

]T
M

[
C 0
0 I

][
εk
pk

]
≥ 0.

The above inequality is equivalent to[
λP −ATε PAε − α̂β̃2CTC − 1

NA
T
ε PL

− 1
NL

TPAε α̂I − 1
N2L

TPL

]
≥0λP − α̂β̃2CTC 0

0 α̂I

−
 ATε PAε

1
NA

T
ε PL

1
NL

TPAε
1
N2L

TPL


︸ ︷︷ ︸

G

≥0.

The matrix G can be written as

G =
[

ATε P
1
NL

TP

]
P−1

[
PAε

1
N PL

]
(31)

Using the Schur complements, the above inequality is equiv-
alent toλP − α̂β̃2CTC 0 ATε P

0 α̂I 1
NL

TP
PAε

1
N PL P

≥ 0

with P ≥ I and α̂ > 0.

Finally, by setting S = PL and by expanding Aε, the
following Agreement Dynamics LMI (ADLMI) feasibility
problem is obtained with the solution variables S, P , and α̂:

λP−α̂β̃2CTC 0 ATP+ β1+β2
2N CTST

0 α̂I 1
N S

T

PA+ β1+β2
2N SC 1

N S P

≥0. (32)

Once we obtain S and P are obtained, we can compute the
observer gain via L = SP−1.

B. Extending the LMI

We want to augment the ADLMI with another constraint
in order to improve on the bound of the p-norm of A, i.e.,
‖A‖P ≤ ā. To do that we propose a following approach:

ψ = ā2 ≥ ‖A‖2P = ‖P 1
2AP−

1
2 ‖2 (33)

This is equivalent to:

ψI ≥ (P−
1
2ATP

1
2 )(P

1
2AP−

1
2 )⇔ ψP ≥ ATPA (34)

which can then be rewritten in as a matrix inequality:[
ψP AT

A P−1

]
≥ 0 (35)

The matrix inequality in the Equation (35) is not an LMI
because of the inverse of the P matrix, which is a problem
variable. To resolve this problem, we apply a congruence
transformation, that is we pre and post-multiply the inequal-
ity with diag(I, P ) to obtain[

ψP AT

A P−1

]
≥ 0 ⇔

[
ψP ATP
PA P

]
≥ 0 (36)

The Equation (36) is now a proper LMI. By adding this
constraint to the ADLMI in Equation (32), we create a larger
LMI problem. Since the choice of λ obviously has an effect
on the value of P , this implies that it will also impact the
value of ā. Therefore, we perform a line search on λ so
that ‖A‖P ≤

√
ψ = ā, ∀λ ∈ (0, 1). The algorithm can be

summarized as follows:

λP−α̂β̃2CTC 0 ATP+ β1+β2
2N CTST

0 α̂I 1
N S

T

PA+ β1+β2
2N SC 1

N S P

 ≥0 (ADLMI)

[
ψP ATP
PA P

]
≥ 0

P = PT > 0, α̂ > 0 (37)

where minimization over λ is done via line-search



C. Bound on Consensus Iterations

In this section we highlight a result used to compute a
bound on the number of consensus iterations to ensure the
stability of the proposed decentralized observer. The detailed
derivation of this result is presented in [21]. To introduce this
result, we define p-norms of a vector as ‖q‖P = ‖P 1

2 q‖.
Similarly, for any matrix Q, we define matrix p-norm as
follows ‖Q‖P = ‖P 1

2QP−
1
2 ‖. The main result of this

section is that σ(Γ(r;L, δ)) ⊂ (−1, 1) where

Γ(r;L, δ) =
[√

λ āθr

ā āθr

]
(38)

where λ is the convergence parameter, ā is the bound on
Ac,k, i.e., ‖Ac,k‖P ≤ ā, ∀k, and ‖(IN−1−δLp,k)⊗In‖ ≤ θ.
To compute ā, we consider the fact that the matrix ||Ac,k|| is
block diagonal with blocks being of the form A+Li,kCi,k.
Since the core gain matrix L, and hence Li,k, is designed
to decrease the p-norm of A (through Lyapunov inequality,
Equation (30)), the largest possible ā is found when
Li,k = 0. This implies ā = ‖A‖P . This is achieved
by adding the LMI in Equation (36) to the overall LMI
problem. Now we can choose r large enough such that the
largest modulus eigenvalue of the matrix Γ is less than
one, which ensures that the error dynamics is exponentially
stable. This can be done via a simple line search on r as
shown on an example case in Figure 1.
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Fig. 1. Maximum absolute eigenvalue of the Γ(r;L, δ) matrix for the
example of 8 s/c and various topologies

V. SIMULATION RESULTS

This section presents an application of the decentralized
observer with the consensus filter on a formation flying
spacecraft in Low Earth Orbit (LEO). The discrete time
dynamics equations and the measurement equation are de-
scribed in [22]. The state to be estimated is a relative trans-
lational state of all spacecraft with respect to the designated
leader spacecraft, which we call the formation state. The
size of the formation state vector is 6(N − 1), where N is
the number of spacecraft. The communication and sensing
topologies are time-varying. The sensing and communica-
tion topologies considered are shown in Figures 2 and 3,
respectively, as undirected graphs. The communication links
represent a two way communication channel. The informa-
tion is exchanged across the communication channel contains
the locally computed formation state vector. The sensing

links represent the measurement availability between the two
spacecraft connected by the link, where the measurements
are linear, position measurements. The information among
the spacecraft is exchanged r times during a single time
step, which allows for reaching the consensus between the
estimates of different spacecraft. The observer gain L is pre-
computed by solving for the LMI in 37.

Both parameters λ, from Equations (32, 37), and r, from
Equation 38, affect the convergence rate of the observer.
Number of spacecraft for this example is N = 7. In the
first example, the parameters are set to λ = 0.90 and r = 1.
The consensus has not been reached with r = 1, as shown
in Figure 4. However, by setting the number of iterations
to r = 2, the consensus has been reached and the observer
converges, as shown in Figure 5. The effect of varying λ and

Sens topo 2 @ t=0 Sens topo 1 @ t=200 Sens topo 3 @ t=400

Sens topo 4 @ t=600 Sens topo 5 @ t=800 Sens topo 1 @ t=1000

Sens topo 5 @ t=1200 Sens topo 3 @ t=1400 Sens topo 4 @ t=1500

Fig. 2. 7s/c sensing topology

Comm topo 2 @ t=0 Comm topo 1 @ t=200 Comm topo 3 @ t=400

Comm topo 4 @ t=700 Comm topo 3 @ t=900 Comm topo 2 @ t=1100

Comm topo 3 @ t=1300 Comm topo 2 @ t=1400 Comm topo 4 @ t=1600

Fig. 3. 7s/c comm. topology

r can further be observed by comparing the Figures 6 and
7. In Figure 6 parameters are set to λ = 0.90 and r = 10,
while in Figure 7 the parameters are set to λ = 0.98 and
r = 10. The convergence rate of the decentralized observer
is better with smaller λ. Also, the increased number iterations
in Figure 6 improves the agreement between the spacecraft
in the cluster compared to the case shown in Figure 5.
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Fig. 4. 7s/c, ∆t = 1, λ = 0.90,
r = 1
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Fig. 5. 7s/c, ∆t = 1, λ = 0.90,
r = 2

0 200 400 600 800 1000 1200 1400 1600 1800
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

time, sec

E
rr

or
, k

m

Fig. 6. 7s/c, ∆t = 1, λ = 0.90,
r = 10
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VI. CONCLUSIONS

The decentralized observer with consensus filter presented
in this paper provides a technique for handling time-varying
sensing and communication topologies in a distributed sys-
tem in a computationally efficient way. Proof of convergence
for the observer is also provided, which relies on having a
sufficient number of consensus state updates between the
measurement time instances. This number comes from a
theoretical bound and its further refinement may be required
to make the algorithm applicable to a large class of systems.
Low communication requirements make it suitable for real
systems with small communication bandwidth. Simulation
results are presented to support the convergence of the
algorithm. A result on the eigenvalues of a Laplacian for
a connected graph with self-loops is also presented.
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APPENDIX

Here we present useful results, without proofs for brevity,
on the eigenvalues of undirected graphs with self-loops.

Lemma 1: The Laplacian of a pseudo-connected graph is
positive definite.
Next we introduce the following definition of a lifted graph.

Definition 2: Given an undirected graph G(E,V) with
N vertices and with at least one self-loop, its lifted graph
Ĝ(Ê, V̂) is a graph with 2N + 1 vertices and with no self-
loops such that (Figure 8): For every vertex i in G there are
vertices i and i+N+1 in Ĝ, i = 1, ..., N , and also a middle
vertex N+1 with the following set of edges

(i, j)∈E ⇒ (i, j) ∈ Ê and (i+N + 1, j +N + 1)∈Ê

(i, i)∈E ⇒ (i,N + 1) ∈ Ê and (N + 1, i+N + 1)∈Ê.

Fig. 8. Lifted graph of an undirected graph with self-loops

Lemma 2: For a finite undirected graph, G, with self-
loops but without multiple-edges:

σ (L(G)) ⊆ σ
(
L(Ĝ)

)
∩ (0, 2d(Go)+1], (39)

where Go(V,Eo) is a subgraph of G(V,E) where Eo ⊂ E
and Eo contains all the edges of E without the self-loops.
Particularly if G is a pseudo-connected graph then

σ (L(G)) ⊆ σ+

(
L(Ĝ)

)
∩ (0, 2d(Go)+1]. (40)
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