Trajectory Design Considerations for Small Body Touch-and-Go

Mark Wallace, Stephen Broschart, Eugene Bonfiglio, Shyam Bhaskharan, Alberto Cangahuala

2/14/2011
Introduction

• What is TAG?
 – Descent to the surface
 – Brief contact
 – Ascends to a safe distance

• Why TAG?
 – Sample acquisition, demonstration of landing technology, etc
 – May be preferable to landing
 • Avoid additional hardware
 • Mitigates concerns about topography

• Outline
 – Trajectory Description
 – Design Drivers:
 • Dynamics
 • Environment
 • Spacecraft and Ground System Capabilities
 • Mission Objectives
 – Design Choices
 – Historical Precedents
 – Case Studies
TAG Trajectory Description

Trajectory Design Considerations for Small Body Touch-and-Go

- **Staging**
 - Before the commitment is made to go to the surface
 - Flybys, orbits, active stationkeeping

- **Descent**
 - Between staging and contact.
 - Contains most of the maneuvers

- **Contact**
 - On the surface
 - Spacecraft/surface interactions

- **Ascent**
 - From contact to some safe distance
 - Typically initiated with a single burn.
Drivers: Dynamics

Trajectory Design Considerations for Small Body Touch-and-Go

- Very complex due to:
 - Non-spherical gravity
 - High SRP relative to gravity
 - Effect of tides
 - Which is dominant varies with position

- Contain atypical effects
 - Coriolis and centrifugal effects
 - Outgassing
 - Secondaries
Dynamical Uncertainty

- Dynamics of the small body environment have large uncertainties
 - Limited observations from Earth
 - Available data should be used to bound uncertainty
- Design must be robust to these uncertainties
Drivers: Environment

- Orbiting debris and dust
 - TAG event itself can raise significant quantities of dust which may interfere with spacecraft functionality
 - Cometary outgassing can lift dust and rocks (10s of cm) which can cause damage upon impact

- Landing site availability and topography
 - Almost always entirely unknown/unknowable pre-rendezvous
 - Spacecraft may require smooth, obstacle-free sites for successful TAG.
 - Delivery errors should be minimized to increase likelihood that a suitable site can be found.
Drivers: Spacecraft and Ground

Trajectory Design Considerations for Small Body Touch-and-Go

• Navigation and maneuver capabilities
 – Light time constraints
 – Approach can limit number of maneuvers
 – Optical navigation

• Power and Communications
 – Over-constrained geometries
 – Battery depth-of-discharge

• Thrust available
 – Allowable time/distance during contact
 – Moments by surface

• Fault protection
 – Ascent-on-fault
 – Can potentially constrain attitude during descent
Drivers: Mission Objectives

Trajectory Design Considerations for Small Body Touch-and-Go

- Landing site location and contact site accuracy
 - Surface topography typically unknown during mission planning
 - Range of landing sites
 - Ability to adapt
 - Contact state variations may be constrained
 - Samples may be desired from some specific site
 - End-effector works best in a small range
 - Etc.

- Contamination
 - Sample science may require unaltered samples
 - Can constrain maneuvers such as to minimize plume impingement on the surface
 - Can constrain campaign to ability to reach multiple sites
 - Could require special approaches to ascent
Design Choices (1)

Trajectory Design Considerations for Small Body Touch-and-Go

• Staging
 – Gateway between TAG and the rest of the mission
 – Should ensure that the spacecraft remains on a safe trajectory until descent is willfully initiated.
 – Options:
 • Stable orbit
 • Unstable orbits with stationkeeping
 • Ping-pongs
 • Hovering in a fixed position

• Descent
 – Begins and ends motion toward the surface.
 – Includes all the maneuvers to reach the contact state and time
 • Driven by navigation approach
 • Must meet requirements (e.g. contamination)
 • Execution errors
 – Passive abort vs. direct descent
Design Choices (2)

Trajectory Design Considerations for Small Body Touch-and-Go

• Contact
 – Lasts a few seconds
 – Complex 6-DOF dynamics due to surface interaction
 – Drivers:
 • Purpose of TAG
 • Contact velocity
 • Spacecraft design
 – Thruster size
 – Allowable stroke
 – Attitude control system

• Ascent
 – “Ascent burn” triggered at contact or shortly thereafter
 • Sized to ensure re-contact doesn’t occur
 • Must account for attitude and rate disturbances during contact
 – Single burn or series of smaller burns
 • Contamination
 • Propulsion system type
Precedents and Case Studies

Trajectory Design Considerations for Small Body Touch-and-Go

<table>
<thead>
<tr>
<th>Mission/Target</th>
<th>Target Body Summary</th>
<th>Staging</th>
<th>Descent</th>
<th>Ascent</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAR-Shoemaker Landing on Eros</td>
<td>Large small body (33 km), weak SRP</td>
<td>Retrograde equatorial orbit</td>
<td>No passive abort with horizontal velocity biasing</td>
<td>N/A</td>
</tr>
<tr>
<td>Hayabusa TAG on Itokawa</td>
<td>Very small body (0.5 km), strong SRP</td>
<td>Earth-line vertical hovering</td>
<td>No passive abort with autonomous cross-track control</td>
<td>To staging</td>
</tr>
<tr>
<td>Deimos</td>
<td>Medium size body (15 km), dominated by Mars tides</td>
<td>Distant retrograde orbit</td>
<td>Passive abort with horizontal velocity cancellation and limited autonomy</td>
<td>Escape</td>
</tr>
<tr>
<td>Comet Tempel 1</td>
<td>Active Jupiter-family comet with known shape (6 km)</td>
<td>Hyperbolic flyby</td>
<td>Passive abort, fully autonomous descent with sensitivity to contamination</td>
<td>Escape</td>
</tr>
<tr>
<td>1996 FG3</td>
<td>Small body (1.8 km), fast rotator, small moon</td>
<td>Horizontal sun-line hover</td>
<td>Passive abort with periodic Coriolis cancellation during fully autonomous descent and sensitivity to contamination</td>
<td>To staging</td>
</tr>
</tbody>
</table>
Historical Precedents: NEAR

Trajectory Design Considerations for Small Body Touch-and-Go

- **Not TAG**
 - Objective: As much low-altitude imaging as possible.
 - Spacecraft survival not a requirement
 - No ascent planned

- **Staging:**
 - 35 km radius retrograde orbit
 - Eros: 34 x 11 x 11 km in extent
 - Hovering rejected due to fuel requirements

- **Navigation:**
 - Ground-based optical navigation
 - Autonomy considered and rejected due to need to alter flight code.

- **Descent included 5 “end of mission maneuvers,” or EMMs**
 - EMM-1: alter inclination and place s/c on impact trajectory
 - EMM-2 zeroed horizontal velocity at 12.2 km radius, 3.75 hrs after EMM-1
 - EMM-3 and 4: “Bouncing” braking maneuvers
 - EMM-5: Minimize landing velocity and bias horizontal velocity to keep s/c upright

- **Maneuver control:**
 - Timing update after EMM-1 to target EMM-2
 - Absent the update, EMM-3 and 4 would place s/c on escape trajectory
Historical Precedents: Hayabusa

Trajectory Design Considerations for Small Body Touch-and-Go

- **Itokawa**
 - 12 hour “day”
 - 535 x 294 x 209 meters in extent

- **Staging:**
 - Earth-line hover
 - Motion directly observable in Doppler
 - Ground-commanded station-keeping
 - Orbits unstable due to SRP

- **Descent:**
 - Extension of hovering control box to include surface.
 - Manual control of real-time residuals to control velocity and timing of contact
 - Constrained sites to be through the Earth line
 - Plane-of-sky control via autonomous tracking of artificial landmark
 - Anomalous contact

- **Ascent** was reversal of descent.
Case Study: Deimos

Trajectory Design Considerations for Small Body Touch-and-Go

• Deimos:
 – Smaller and further of Martian moons
 – 15 x 12.2 x 10.4 km in extent
 – Imaged by Viking and others

• Staging:
 – 20 x 24 km equatorial DRO
 – Altitude chosen to allow sufficient time for ground-based NEAR-like navigation
 – Type was most stable option

• Descent:
 – 500 meter “flyby” at 5 m/s
 – Two-part drop burn with autonomous correction
 – Two braking burns

• Contact:
 – DRO-based design and passive abort requirement constrained sites to be sub-Mars or antipode

• Ascent:
 – Escape to Deimos-leading Mars orbit
Case Study: Comet Tempel 1

Trajectory Design Considerations for Small Body Touch-and-Go

- **Tempel 1**
 - Active Jupiter-family comet
 - Target of Deep Impact and Stardust NExT
 - 7.4 x 6.2 x 5.4 km in extent
 - Significant uncertainty in mass

- **Staging**
 - 3 m/s hyperbolic flyby
 - 120 km radius to 500 meter alt
 - One cleanup and AutoNav enabled

- **Descent**
 - “Drop burn” to send to surface
 - Two autonomous braking burns
 - Must occur while on battery power only
 - Contamination concerns

- **Contact:**
 - Local morning to avoid outgassing

- **Ascent**
 - Single burn
 - Separate cold-gas system was too expensive
Case Study: 1996 FG3 (1)

Trajectory Design Considerations for Small Body Touch-and-Go

- **Unknown size/shape**
 - Lightcurve data available and processed by astronomers
 - “Normalizing distance” of 720 meters
 - Primary: 756 x 684 x 504 (radii)
 - Spin: 3.6 hrs
 - Secondary: 231 x 166 x 166 (radii)
 - Orbit Radius 2.09 km
 - Period: 16.2 hrs
 - Periods well known, but $2^{1/2}$ uncertainty in distances and $2^{3/2}$ uncertainty in mass

- **Unknown topography**
 - Used uniform boulder distribution from Itokawa to simulate likelihood of finding landing sites
 - 19 sites with landing ellipse diameter of 6 meters
 - 0 sites with landing ellipse diameter of 10 meters
 - Admittedly conservative because it neglects sorting mechanisms
 - Concluded that the landing location dispersions needed to be as small as possible.
Case Study: 1996 FG3 (2)

Trajectory Design Considerations for Small Body Touch-and-Go

• Staging
 – “Horizontal hover” at 5 km radius, ±45 deg off sun-line
 – Simplified phasing to keep Secondary on far side of Primary during TAG and meet lighting requirements at contact

• Descent
 – Two “corridor correction” maneuvers to counter strong Coriolis effect
 – Two “push down” maneuvers to bias trajectory for contamination

• Contact
 – Context imaging required mid afternoon or morning contact
 – Mid morning selected to keep entire trajectory over sun-lit surface

• Ascent
 – Single burn to return to 5 km altitude within 5 hours including contact disturbances
 – On escape trajectory
Any Questions?