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Abstract- This paper highlights a new technique that allows 
the Teledyne Scientific & Imaging LLC TCM6604A 
Mercury-Cadmium-Telluride (MCT) Focal Plane Array 
(FPA) to operate at room temperature.  

The Teledyne MCT FPA has been a standard in Imaging 
Spectroscopy since its creation in the 1980's. This FPA has 
been used in applications ranging from space instruments 
such as CRISM, M3 and ARTEMIS to airborne instruments 
such as MaRS and the Next Generation AVIRIS 
Instruments1. Precise focal plane alignment is always a 
challenge for such instruments. The current FPA alignment 
process results in multiple cold cycles requiring week-long 
durations, thereby increasing the risk and cost of a project. 
These alignment cycles are necessary because optimal 
alignment is approached incrementally and can only be 
measured with the FPA and Optics at standard operating 
conditions, requiring a cold instrument. Instruments using 
this FPA are normally cooled to temperatures below 150K 
for the MCT FPA to properly function. When the FPA is 
run at higher temperatures the dark current increases 
saturating the output. This paper covers the prospect of 
warm MCT FPA operation from a theoretical and 
experimental perspective. We discuss the empirical models 
and physical laws that govern MCT material properties and 
predict the optimal settings that will result in the best MCT 
FPA performance at 300K. Theoretical results are then 
calculated for the proposed settings. We finally present the 
images and data obtained using the actual system with the 
warm MCT FPA settings. The paper concludes by 
emphasizing the strong positive correlation between the 
measured values and the theoretical results.  
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1. INTRODUCTION 

Focal plane alignment remains one of the most critical steps 
in the assembly of Imaging Spectroscopy Systems. Great 
time and expense are dedicated to precisely positioning the 
focal plane within a fraction of a millimeter in the optical 
system. Proper focal plane placement can only be verified 
with an operational focal plane at standard operating 
temperatures, below 150K. This often requires multiple cold 
cycles to complete the alignment process. Acceleration of 
the  alignment process is greatly desired in the imaging 
spectroscopy community. The difficult and cumbersome 
methods used in the past for focal plane alignment often 
caused schedule slips and budgeting issues at the end of an 
instrument build when reserves are low, zero, or negative 
hence adding pressure to an already difficult task. 

In a standard alignment scenario the first few cold cycles 
allow the FPA to be roughly placed in the optimal position. 
The later cold cycles fine tune the positioning for near 
perfect alignment. These later cycles take into account the 
deformation of the opto-mechanical mounts at low 
temperatures. The ability to run the MCT FPA at room 
temperature allows the first few cold cycles to be 
eliminated. The final cold cycle is still necessary for fine 
tuning because of the mount deformation caused by the 
cryogenic temperatures. The ability to run the FPA at room 
temperature is especially beneficial during these final 
crucial steps to assure the FPA is adjusted in the right 
direction and by the correct amount. 

Initially this problem was approached in theory using simple 
assumptions coupled with empirical models of MCT FPA 
behavior characteristics. These models provided a starting 
point for the testing that followed. After multiple trials the 
optimal settings were determined.  

 



2. THEORETICAL FOUNDATIONS  

During normal MCT focal plane operation at cryogenic 
temperatures the dark current contribution to the signal is 
quite small filling only a tiny fraction of the well. As the 
FPA operating temperature increases the dark current 
contribution soon becomes the primary factor, 
overwhelming any optical signal and saturating the sensor. 
This effect quickly becomes apparent when running a MCT 
FPA at factory settings near room temperature, the outputs 
are completely saturated. 

External Radiative Limit 

There are many factors that play into the dark current 
observed in detectors. Even ideal detectors will have a dark 
current contribution defined by the External Radiative limit. 
The External Radiative limit sets the absolute minimum 
possible dark current an ideal detector would have based on 
the Blackbody radiation it emits. With a quick back of the 
envelope calculation we can determine if it's even physically 
possible to run an MCT detector at 300K. Assuming the 
detector and surroundings will be held at 300K we can 
approximate the dark current contribution caused by black 
body radiation from the environment using Planck's law of 
black-body radiation, Equation 1, along with the cutoff 
wavelength of the MCT and the pixel size. 
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Band Gap Temperature Dependence  

Unfortunately, the cutoff wavelength of the MCT material is 
not a constant, it is temperature dependent. At normal 
operating temperatures (140K) the detector has a cutoff 
wavelength of 2.55µm. Using the results presented by G.K. 
Hansen et al2, the Bandgap Energy at 300K can be 
approximated using Equation 2  and then converted to the 
cutoff wavelength using Equation 3. The NGIS MCT FPA 
has a cadmium fraction x of around 0.45. Figure 1 presents 
the cutoff wavelength as a function of temperature for the 
NGIS Detector material. From this data we determine that 
the cutoff wavelength at 300K is around 2.51µm. 
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Figure 1: MCT Cutoff Wavelength vs Temperature 

 

 

Figure 2: Showing the approximate Dark current (e/s) 
from the external radiation temperature. 

 

"Rule 07" Empirical Model 

Unlike ideal detectors, real detectors have additional dark 
current contributions from imperfections. The external 
radiative limit of performance is usually two or three orders 
of magnitude better then the best MCT devices available. 
Defect generation centers and Auger recombination 
mechanisms limit the overall performance of real detectors. 
Equation 4  is the "Rule 07" empirical model presented by 
W.E. Tennant3 in the Journal of Electronic Materials. When 
applied correctly, this model provides the attainable dark 
current performance level that can be expected from MCT 
devices.  
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Where: 
 C = -1.162972237 
 Pwr = 0.544071282 
 Jo = 8367.000019 
 λcutoff = 2.51µm 
 λscale = 0.200847413 
 λthreshold = 4.635136423 
 
 
Figure 3 shows the "Rule 07" empirical model Dark Current 
results as well as the approximate external radiation Dark 
Current limit. As expected the "Rule 07" model does predict 
a larger detector dark current then the theoretical limit. 
However, we can already see that the dark current rate is 
about 1000 times more than the signal rate for a 293K 
blackbody when the detector is at 300K. This suggests that 
when warm the detector will have a lower sensitivity then 
when the detector is cooled. 

 

Figure 3: Showing the approximate Dark current (e/s) 
from the "Rule 07" Model and the External Radiation 
Limit. 

Atmospheric Dark Current Leakage Contribution 

Other important leakage mechanisms play into the dark 
current estimate. First, MCT sensors are traditionally 
designed and operated at very low temperatures requiring 
the use of a vacuum chamber. While in operation the 
detectors are held under vacuum to avoid condensation and 
the deposition of airborne particulates on the FPA surface. 
When operating the detector at room temperature (300K) 
the vacuum chamber does not have to be used. Running the 
FPA at atmospheric conditions introduces another source of 
leakage current. Based on observation there is about 1pA 
(6.24151*106 e/s) of electrical leakage due to the pressure 
differences. This effect will not be accounted for in the 
"Rule 07" model and needs to be added separately. 

Using the data from the "Rule 07" Model along with the 
integration time of the detector the number of dark current 
electrons collected can be calculated. The Teledyne 6604a 
detector clocks at 4Mhz outputting a maximum of 100 
frames per second. The shortest integration time possible is 
2 lines,  (1/100)*(2/480)=4.166*10-5 seconds. With the 
detector at 300K running at the shortest integration time the 
"Rule 07" Model predicts that 1.4018*105  electrons will be 
collected. The amount of electrons collected due to the 
atmospheric water vapor is approximately (6.24151*106 
e/s)*( 4.166*10-5 s) = 260 electrons. Summing these values 
provides the total number of electrons collected over the 
4.166*10-5 second integration time. 

The TCM 6604a has a Well Depth of 8.22*105  electrons. 
Therefore, a warm FPA (300K) running at the shortest 
integration time possible will have a dark current 
contribution of approximately 17% of the full well capacity. 
We conclude that it should be possible to get a useable 
photon signal output from these devices at room 
temperature. 

 

3. OPTIMIZING THE MCT FOCAL PLANE AT 

300K  

The dark current calculations performed in the previous 
section model the expected dark current of an MCT device 
at factory settings. Modifications to the factory settings can 
change the dark current measured. Optimizing the factory 
setting for MCT detector operation at 300K involves 
adjustments of both the internal and external biasing 
options. 

Internal Biasing Options 

Many manufacturers use a given Readout Integrated Circuit 
(ROIC) for many types of detectors ranging from MCT 
devices cooled to LN2 temperatures to Silicon devices 
designed to function at higher temperatures. Therefore, the 
ROIC is design to operate efficiently  over a wide range of 
temperatures. This functionality can be used to our 
advantage when running an MCT device warm. Normally a 
set of temperature dependent biases are generated on the 
ROIC and can be adjusted via an external "Mode" pin. 
Choosing the setting that allows the ROIC to run optimally 
at 300K will assure no artifacts appear in the output caused 
by improper circuit biasing. 

The Effect of Reverse Bias on Dark Current 

Many MCT devices require a series of external DC bias 
voltages to operate. These voltages typically provide power 
for the basic electrical functions (i.e output amplifiers, 
column buffers, digital electronics), they also set the reverse 
bias voltage of the detection diode on the unit cell. Since 
these DC bias are externally supplied, modifications can 
easily be made. Examination of a MCT diode current 
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