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Abstract— The project described in this paper designed
and implemented a hand-cye calibration method for ma-
nipulators under obscrvation by stcrco cameras. This
method has been utilized on Johnson Space Center’s
Robonaut, and on a planctary manipulator mock-up at
the Jet Propulsion Laboratory. The intent of this cali-
bration is to improve the manipulator’s hand-cyce coor-
dination.

The approach uscs kinematic and sterco vision measurce-
mentg, namely the joint angles sclf-reported by the arm
and 3-D positions of a calibration fixture as measured
by vision, to cstimate the transformation from the arm’s
basc coordinate system to its hand coordinate system
and to its vision coordinate system. In this formulation,
the sterco measurcments arc assumed to be accurate,
and any mismatches arc absorbed in a modified model
of the arm.

These methods have shown to reduce reduce mismatch
between kinematically derived positions and visually de-
rived positions on Robonaut Unit A from a mcan of
13.75cm to a mecan of 1.85cm. Improved performance
in scmi-autonomous tasks is also described. On JPL’s
manipulator, with kinematics similar to that of the Mars
Exploration Rover, the calibration reduced the mismatch
from 15.26mm to between 3mm and 5.5mm.
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1. INTRODUCTION

HE Dexterous Robotics Laboratory (DRL)  at

NASA Johnson Space Center (JSC) has developed
a ground-bascd prototypc humanoid robot called Robo-
naut', shown in Figurc 1. Robonaut has been designed
so that it could, for cxample, assist astronauts during
EVA type tasks[1]. Tts initial control has been by tele-
opcration, but the DRL is beginning to implement scv-
cral semi-autonomous and fully autonomous controllers
for Robonaut, necessitating improved hand-cye coordi-
nation for the system.

With the increasing demand for a higher level of sci-
cnce return in future surface missions, lander and rover-
mounted robotic arms must cxhibit a higher level of per-
formance over current capabilitics. As a recent example,
the MER mission requirements sct for the IDD includes
a precision placement requirement of 10 mm in position
and 10 degrees in orientation with respect to a science

LThere are two versions of Robonaut, referred to as Unit A and Unit B. In
this paper, we will use the name Robonaut for Unit A.



Figure 1. Ground-based Robonaut system

target when the IDD is deployed from a stationary rover
basc [2].

This paper documents a mcthod for automatic hand-
cyce calibration, originally developed for Robonaut, that
improves the correspondance of the hand and eye coor-
dinate systems.

Prior Work

Much previous work has been done on the sclf-calibration
of redundant manipulators using internal or external
kinematics constraints. [3], [4], [5], [6]. Of particular
note is the trecatment of Bennett and Hollerbach of a
vision or metrology system as an additional kincmatic
link [6], [7], allowing onc to treat a onc-arm plus vision
sctup as a closed kinematic chain. This approach allows
us to leverage works on the automatic sclf-calibration of
closed kinematic chains, such as [8].

Onc precondition of this approach is the accurate lo-
calization of a point or points of the arm’s kincmatic
chain in the coordinate system of the eyes. Several other
calibration schemes utilize special visual markers [5] or
LEDs to localize points: we opted for a spherical cali-
bration fixture and visual measurcments of this fixturc.
In order to accuratcely locate the spherical fixture in the
image, a generalized Hough transform was used. The
genceralized Hough transform is described in [9].

While this system reduces vision-kinematic mismatch
by adjusting thc kinecmatic modecl, there are other op-
tions for reduction. A system called Hybrid Image

Planc/Sterco (HIPS), developed at JPL, as well as its
predecessor, Camera Space Manipulation, adjust the
camera models to reduce this same mismatch [10], [11].
The End-cffector Pose Error Compensation method [12]
adds a workspace offsct to the visually sensed position to
bring the two coordinate systems into closer agrecment.

All of these systems are closed-loop systems. They re-
duce the residuals between visually and kinematically
derived predictions, but do not necessarily adjust these
paramcters to match the workspace. If the visual sys-
tem is not well calibrated, via for example, the proce-
dures described in [13], [14], [15], [16], the adjustments
performed by this process will not cause the predictions
to corrclate well with workspace positions. Even with
good calibrations, it is important to keep in mind that
the adjustments made to the original models optimize
the agreement of the kinematic and visual systems, cach
of which have been individually calibrated beforchand.
The final visual and kinematic systems thus explicitly
do not represent the closest approximation to “ground
truth” that is possible, but rather various adjustments
made for optimal agrecement between models within a
fixed workspacc.

Task Background

Robonaut has historically been operated by a human
tcleoperator. The DRL is increasing the autonomy level
of the tasks performed by Robonaut [17], [18]. This
includes, for cxample, the autonomous modification of
previously trained bchaviors such as wrench grasping.
In this cxperiment, described in more detail later in this
report, the telecoperator grasps wrenches in several differ-
cnt locations in the workspace. Robonaut then visually
observes a wrench in a new location in the workspace and
modifics and combinces the trained behaviors to grasp
this wrench. This task obviously requires good hand-cye
coordination.

Robonaut Unit A is constructed with relative joint cn-
coders. As the arm is powered down in the evening and
restarted the next morning, the position of all joints on
the 7DOF right arm and the 2DOF ncck? can change,
leading to crrors in sclf-reported joint angles. Errors in
these angles, as well as uncertainty in the as-built kine-
matic paramcters of the arm, have lead to workspace
crrors of up to 10-15¢m in various situations. While hu-
man telcoperators arc very good at correcting for this
type of systematic error, it is unacceptable for the de-
gree of autonomy now being required of Robonaut.

2For simplicity, and to allow for automatic calibration of the helmet-
camera transform, we use 3 degrees of freedom in the chest-head transform.
On Unit A, the joint angle will always be zero for the third DOF, but Unit B
has active head roll as well as pitch and yaw.



Kinematic Model

Robonaut’s arm is a redundant manipulator with 7 de-
grees of freedom. This manipulator can be described by
7 homogencous transformations A; from link j to link
j — 1 as defined by the Denavit-Hartenberg (DH) con-
vention.

There are two common structures for the definition of
Dcenavit-Hartenberg Parameters (DHPs): one involving
a screw about the z; axis followed by a screw about the
!, axis (the rotated x; axis) [19], [20] and one involving
a screw about the x; axis followed by a screw about
the 2} axis [21]. In addition to the screw order, these
systems differ in their conventions for placing coordinate
axcs relative to links. DHPs for cquivalent manipulator
systems will therefore differ in the two structurces. In this
work, we utilize the former, where cach transformation
is defined as

Aj = Trans(z}, a;) Rot(x;, aj)Trans(zy, d;) Rot(z5, 0;),

where Rot implics a rotation about an axis and Trans
implies a translation along an axis[21]. The position
and oricntation of the last link can be computed by a
scquence of DH transformations defining the kinematic
modcl

T, =A1A2Az ... Apy

where nf is the number of degrees of freedom.

Both the 7DOF transformation from the chest coor-
dinate system to the hand coordinate system and the
2DOF transformation * from the chest coordinate sys-
tem to the cye coordinate system are paramecterized in
this way.

2. CALIBRATION PROCEDURES

Opcrationally, two methods arc used to gather calibra-
tion data from the robot. In the first, the robot is ob-
scrved under external control and data are logged. In the
sccond, the robot is actuated to cach of a sct of prere-
corded target configurations, and data arc again logged.

A sct of DHP wvalues is derived from these data in onc of
two ways. In a daily calibration, cstimates are gencrated
only for the joint angle offscts. In a full calibration,
cstimates are generated for all relevant DHPs.

Daily Calibration

The daily calibration method is intended to be a
lightweight process that is performed frequently. First, a
prerecorded set of configurations is loaded into the sys-
tem. The robot is sent to cach configuration and a new

3For simplicity, and to allow for automatic calibration of the helmet-
camera transform, we use 3 degrees of freedom in the chest-head transform.
On Unit A, the joint angle will always be zero for the third DOF, but Unit B
has active head roll as well as pitch and yaw.
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Figure 2. Comparing Kinematic and Visual Predictions of
the location of a sphere. Blue markings in the left frame
indicate the projection into the image of the sphere based on
the original kinematic model. Green markings in the right
frame indicate the projection into the image of the sphere
based on the updated kinematic model. Red markings in
each frame indicate the visually detected location of the
image of the sphere. These colors are utilized in all displays
in this paper.

sct of kinematic and visual measurements (sce Figure 2is
taken.

As the individual measurcments are updated, summary
of the entire data set (figure 3) is also updated, including
the average residual between the visual measurcements
and the kinematically derived predictions. This process
takes approximately 10 minutes for a 65-clement calibra-
tion sct. Most of this time is spent moving the robot,
not performing calculations.

An optimization algorithm is then used to cstimate a sct
of joint angle offscts 6;, i = 0...10 for the arm and nceck
based on the current sct of visual mcasurements. This
process takes approximately 5 scconds per iteration, and
can be done repeatedly to improve the estimate. As this
is an iterative scarch with a random initial value, re-
pcated optimizations on the same data may improve the
results. A daily calibration thus consists of updating a

Sug\/\sCaIPrnc- SummanyVisCal : DoDailyCalibration - Update'isionheasurements
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OldDH Mean DistError 11375 m  NewDH Awvg Dist Enor. 0.0185 m
Status: idle
theta offsets = [-.444-1.635-2.013-3.793 3.413-95.581 4.227-1.057 -59.969 -30.000] (deg)

Figure 3. Summary of a calibration data set.



sct of visual mcasurements, followed by cstimating the
joint angle offsets. Currently, these estimates are manu-
ally input to Robonaut’s control system.

Full Calibration

A full calibration method has also been developed. An
updated sct of kinematic and visual mcasurements is
taken as described above. This data sct is saved to a
text file and taken to Matlab, where an optimization al-
gorithm is uscd to find a sct of DHPs that best explain
this sct of mcasurements. This process takes from 25-120
minutes, depending mostly on the computational hard-
warc. The results from this scarch arc a full sct of DHPs
that can be used in Robonaut’s control softwarc to accu-
rately map between the manipulator workspace and the
visual workspacc.

Calibration Fixture

While hand-cyc calibration could be performed using vi-
sual measurements of any point on the kinematic chain
(or many points on the chain), we designed the calibra-
tion fixture shown in Figurc 2 for scveral reasons. A
visual mcasurcment point distant from the wrist axes
gives good obscrvability for motions in the wrist roll and
yaw axes. This particular fixturc docs not give good ob-
scrvability of wrist pitch. The center of a sphere is ob-
scrvable and well defined regardless of the relative pose
between the cameras and fixture. The fixture also has a
hand-guard to cnsure a relatively repeatable grasp. This
prototype fixturc should be replaced with a more robust
fixturc that exhibits a very repeatable grasp and signif-
icant distancc from the wrist axes in cach of the wrist

DOPFs.

3. THEORY

This section describes the theoretical underpinnings of
the above methods and presents the algorithms used in
the calibration. First, the Sphere Hough Transform and
its usc in locating the calibration fixture in the eye co-
ordinate system arc described. Then, the sctup for the
nonlincar optimization at the heart of the hand-cye cal-
ibration system is described.

Finding a Sphere in a depth dataset

Central to this task is the accurate localization of the
calibration fixture, shown in Figure 2, in the visual co-
ordinate system. We utilize the existing depth-from-
disparity sterco algorithms developed by the DRL and
perform a scarch for a sphere-shaped object in the depth
map (a 2D array of depths measured from the visual co-
ordinate system origin).

The BallFinder algorithm begins with a seed location.
This location is currently sct to the kinematically derived
prediction of the calibration fixture location, expressed

in the visual coordinate system.

Points outside a large spherical region centered at this
location are rcjected from consideration. This pruning
step rejects distant points, such as the floor, from further
consideration as possible members of the sphere surface.
Next, a minimal surface arca test is performed on all
surviving points. Based on the distance of the sced lo-
cation from the camera, the expected number of points
on the sphere’s surface is computed. Locations under
consideration that arc not members of a contiguous sct
of some fraction of this sizc arc rejected from considera-
tion. This pruning stcp climinates small isolated regions.
All remaining points participate in a vote based on the
generalized Hough Transform described below.

The Hough Transform is a classic computer vision algo-
rithm in which lincs arc located in an image by allow-
ing cach point that is a member of a line to vote for
some sct of M lines that could have crecated this point.
Lines which truly exist in an image will accrue more
votes, and the top vote getters are very good candidates
for lincs in an image. Sce [9] for more detail on the
standard Hough Transform. This algorithm can be ex-
tended to describe many types of parameterized shapes,
such as circles [22] or or spheres. In the Sphere-Hough
Transform, cach point Pss that survives the pruning al-
gorithms described above votes for a sct of M spheres
(centered at Ps,; ¢ = 1...M, points randomly sam-
pled from the surface of a sphere centered at Pgg) of
which this point could be a surface point. Each of these
points Py, represents once vote, in the Hough Transform
paradigm, for a sphere centered at point Ps.. In our
casc, the voting is in Cartesian space, since the radius
of our calibration fixturc is known. The location with
the most votes is deemed the most likely to contain the
actual sphere center. Figurce 4 depicts a slice of the vot-
ing results from an cxample image (the depth slice that
contains the winning vote) on the right, and on the left
the input image with the winning 3-D location projected
into it using the current camcra calibration.

Figure 4. Sphere-Hough Transform Results



Optimization

The daily and full calibrations described above differ
only in which paramcters arc optimized. In this sec-
tion, we will describe how this calibration is poscd as
an optimization problem. As described above, a sct of
joint mecasurements and visual measurcments of the cal-
ibration fixturc is gencrated. For cach configuration i in
the calibration sct, the kinematic model is used to pre-
dict the location of the calibration fixture in the chest
coordinate system. This is a function of the Dencvit-
Hartenberg Parameters (DHPs) as well as the joint an-
gles of the arm:

P.;=A(DH q;)A2(DH,q;) ... Az(DH. q;) P,

where P, is the (fixed) position of the calibration fixture
in the hand coordinate system, DH contains the DHPs
for the arm and neck, and q; contains the joint angles for
the arm and neck* The kinematic model for the neck is
uscd to predict the transformation from the chest coor-
dinate system to the eye coordinate system in the same
way:

Tees = Ain(DH, q;)Asn (DH, q;)Asn(DH, q;).

These transformations arc used to create a kinematic
cstimate of the position of the calibration fixturc in the
cyc coordinate system: P.; = (Tce_,,;)’ch,i. We also
have for cach configuration ¢ in the calibration set the
visual measurcment of the 3-D position of the calibration
fixture, also in the cye coordinate system, that we call
P,

The optimization attempts to minimize the difference
between P, ; (fixed) and P,; (function of DHPs) over
all i in the calibration sct by scarch in DHP spacc. Our
objective function (the function to minimize) for this
scarch is the sum of the distances between point pairs
in our calibration sct. We currently usc a Nelder-Mcead
simplex method [23] to minimize this function by scarch
in the DHP space. For daily calibration, the joint an-
gle offsets (6; = 0...10) arc optimized. For a full cali-
bration all nonzero (and non-mw/2) DHPs arc optimized.
Several pairs of offsets, designed to be symmetric, arc
constrained to be cqual and only contribute one dimen-
sion to the DHP scarch space.

4. RESULTS - ROBONAUT

Four experiments were performed on Robonaut to vali-
date our calibration procedurcs. These are summarized
in Table 1.

In the first experiment, the mean residual between a set
of visual obscrvations and kinematically derived predic-
tions is compared with the existing and revised DHPs. In

4For convenience, we take q; =
[91,arm - - G7.armdl neckd2, neckd3,neck) -, and  similarly concate-
nate the DHPs.

the sccond experiment, the updated DHPs derived from
the data above arc used in conjunction with a daily cal-
ibration on a different day, and the residuals are again
comparcd. In the third experiment, a daily calibration
is performed on onc-half of a datasct, and the residuals
in both this sct and the half of the dataset not used for
training arc cvaluated. Finally, the cffect of using an
updated calibration in an autonomous wrench-grasping
experiment is described.

Experiment I — Effect of Full Calibration

The as-designed DHPs for the arm and ncck arc pre-
sented in Table 2. A set of 67 robot configurations were
chosen, and the reported joint angles and visual mea-
surcments logged. This data sct will be referred to as
DS1. The mean 3D distance between the kinematically
derived prediction for these measurements and the ac-
tual visual mecasurements was 13.75cm.

A full calibration was pcrformed on DS1. The DHPs
shown in Table 3 were found. For the same sct of 67
configurations, the mean distance between the kinemat-
ically derived prediction (using the updated DHPs) for
these measurements and the visual measurements was
1.85cm. These data arc summarized in Figure 3.

Experiment 2 — Effect of Daily Calibration

The DHPs shown in Table 3 were used to predict the lo-
cation of the calibration fixturc in a sct of 150 unique
configurations (referred to as DS2), with an average
residual of 7.94cm. This was scveral days (and several
power cycles) after the experiment described in Exper-
iment 1, so it is expected that the reported joint an-
gles deviated from the actual joint angles by different
amounts than cstimated in Table 3. A daily calibra-
tion was used to compute the updated joint angle offsets
shown in Table 4. The remainder of the DHPs were as
shown in Table 3. With thc new offscts, the average
residual was reduced to 2.02cm over this datasct.

Experiment 3 — Effect on Novel Data

In this cxperiment, the 150 clement DS2 data sct was
randomly split into two 75 clement subsets, DS2A and
DS2B. The data in DS2A was usced to tunc the DHPs,
and the power of these parameters to predict the position
of the calibration fixturc in the DS2B was tested.

The DHPs shown in Table 3 were used to predict the
location of the calibration fixture in cach of the 75
unique configurations in DS2A, with an average resid-
ual of 7.87cm. This was scveral days (and scveral power
cycles) after Experiment 1, so the reported joint angles
likely deviated from the actual joint angles by different
amounts than cstimated in Table 3. A daily calibration
on DS2A was used to compute the updated joint angle
offsets shown in Table 4. The remainder of the DHPs



Table 1. Quantitative Summary of Hand-Eye Experiments on Robonaut.

Experiment DH Set Training Sample Test Sample Mean Error (mm)
Exp. 1 As-Designed (Tbl. 2) - DSI1 13.75 cm
Exp. 1 Full (Tbl. 3) DSI1 DSI1 1.85cm
Exp. 2 Full (Tbl. 3) DSI1 DS2 7.94 cm
Exp. 2 Daily (Tbl. 4) DS2 DS2 2.02 cm
Exp. 3 Full (Tbl. 3) DSI1 DS2A 7.87 cm
Exp. 3 Daily (Tbl. 5) DS2A DS2A 2.04 cm
Exp. 3 Daily (Tbl. 5) DS2A DS2B 2.35cm

Table 2. As-Designed D-H Parameters for Robonaut, Unit A. Angles are in degrees and lengths in cm.

Shoulder | Shoulder | Elbow | Elbow | Wrist | Wrist | Wrist Neck Neck | Neck
Roll Pitch Roll Pitch Roll | Pitch | Yaw Yaw Pitch Roll
; 0 0 0 0 0 -90 0 0 -601 -90
d; 30.48? 0 36.83 0 36.83 0 -1.27 || 28.5753 0 2.92
o -90 90 -90 90 -90 90 0 90 90 0
aj -6.35 6.35 -5.08 5.08 0 0 3.81 -5.08 -11.96 0

1 - a slight head-tilt is more comfortable for teleoperation
2 - in some designs, this is 32.94 cm
3 - in some designs, this is 27.31 cm

Table 3. Robonaut D-H Parameters after full calibration using DS1. Angles are in degrees and lengths in cm.

Shoulder | Shoulder | Elbow | Elbow | Wrist Wrist | Wrist Neck Neck Neck
Roll Pitch Roll Pitch Roll Pitch Yaw Yaw Pitch Roll
0; -8.444 -1.535 -2.013 | -3.780 | 3.414 | -95.58 | 4.227 -1.057 | -59.969 | -90.0
d; 31.856 0 35.498 0 35.498 0 -0.053 || 28.292 0 2.537
o -90 90 -90 90 -90 90 0 90 90 0
a; -5.056 5.056 -0.99 .99 0 0 11.358 || -6.773 | -12.667 0
Table 4. Robonaut D-H Parameters after daily calibration using DS2. Angles are in degrees.
Shoulder | Shoulder | Elbow | Elbow | Wrist Wrist Wrist || Neck Neck Neck
Roll Pitch Roll Pitch Roll Pitch Yaw Yaw Pitch Roll
0; -1.70 0.243 -0.149 | 2.323 | 3.810 | -90.634 | 9.340 || 0.601 | -61.249 | -93.078

were as shown in Table 3. After this calibration, the
average residual was reduced to 2.04cm over the DS2A
datasct. This sct of DHPs was then used with no further
optimization to predict the position of the calibration
fixturc in the 75 configurations that had not been used
in training (DS2B). Over the DS2B datasct, the DHPs
from Tables 3 and 5 produced an average prediction crror
of 2.35cm.

Wrench-Grasping Experiment

As an cxample of the types of tasks that the DRL is
demanding of Robonaut, this scction presents the con-
tribution of visual calibration to an cxperiment run by a
tecam from Vanderbilt University on autonomous wrench-
grasping. In this cxperiment, a tclcoperator is observed
grasping wrenches in ninc different workspace locations.
Figure 5 shows the physical sctup for this experiment.
Robonaut’s vision system is used to obscrve the wrench
in a unique location, and a learning algorithm [17] is
used to attempt to grasp the wrench in this location.

In this experiment, described in more detail in [18], a
6DOF Cartesian-space vision-workspace correction was
initially implemented.  This workspace correction was
computed by measuring the position of the wrench as
computed by the arm kinematics and as measurcd by
the vision system at scveral locations using telecoperator
data. The correction used was then a lincar combination
of the recorded corrections. This workspace correetion
reduced vision/kinematic mismatches at the novel tar-
gets, but not cnough to cnable Robonaut to grasp the
wrench.

Later, the updated DHPs shown in Table 3 were cx-
perimentally placed into the inverse kinematics proce-
dures for Robonaut, and the workspace correction was
removed. The system was immediately able to grasp
wrenches at several different positions in the workspace.



Table 5. Robonaut D-H Parameters after daily calibration on DS2A. Angles are in degrees.

Shoulder | Shoulder | Elbow | Elbow | Wrist Wrist Wrist Neck Neck Neck
Roll Pitch Roll Pitch Roll Pitch Yaw Yaw Pitch Roll
0; 0.186 0.153 0.404 | 3.198 | 2.716 | -88.780 | 8.946 || -0.121 | -62.990 | -93.620

5. RESULTS - MODULAR MANIPULATOR

The calibration procedurc described in this paper has
also been implemented at NASA’s Jet Propulsion Labo-
ratory, in a comparison study of vision-guided manipula-
tion algorithms described in detail in [24], on one of the
manipulators in JPL’s Modular Robotic Testbed, where
robotic arms of various kinematic configurations can be
quickly and casily constructed from AMTEC Power-
Cubes and steel piping. This system, shown in Figure 6,
has the kinematic structurc and camera locations similar
to the Mars Exploration Rovers [25], [26].

Baseline manipulation with this manipulator is similar
to that of Robonaut, as described above, being slightly
more accurate duc in large part to the shorter manipu-
lator and fixed cameras. The nominal camcera and arm
models yicld approximately 1.53 ¢m of positioning er-
ror, or difference between the position of the fiducial
predicted by the arm model and that reported by the
camera system, over a test set of 50 points.

Using the Full Calibration procedure described above in
Section 2, the DH paramcters for the modular manip-
ulator were adjusted based on training scts of 50, 25,
20, 15, 10, 5, and 1 poscs. These poses were randomly
sampled from a sct of training data. After the Full Cal-
ibration, 50 points not uscd for training were used to
test the calibration. The average difference between the
position of the fiducial predicted by the (modified) arm
model and that reported by the vision system was re-
duced scveralfold to between 3 and 5.5 mm, as shown in
Table 6.

Figure 5. Vanderbilt wrench-grasping experiment

Figure 6. The Five Degree of Freedom Modular
manipulator

Table 6. Mean Residual between Kinematics and Vision for
50 novel test points

Training Sample Size Mean Error (mm)

(Baseline) 15.26
1 5.26
5 3.22
10 3.37
15 3.27
20 3.44
25 3.62
50 3.38

6. DISCUSSION AND CONCLUSIONS

Closcd-loop sclf-calibration of the combined kinematic
and visual systems for Robonaut Unit A has been per-
formed. This calibration docs not explicitly register
the visual or the kinematic system with ground-truth,
but modifics the perceptions associated with the kine-
matic movements to match the perceptions of the vi-
sion system. In particular, the DH paramecters derived
arc not claimed to be the ones that most accurately re-
flect the “true” structure of the manipulator, but rather
arc a sct of paramcters® that cause the closed-loop vi-
sion/manipulator system perform optimally. Procedures
and algorithms have been developed that will enable the
robot to be recalibrated when necessary. These proce-
dures have reduced vision-kinematic mismatch from 13-

5With a redundant manipulator, there may be many sets of parameters,
none of which are the “true” value, that perform equally well.



15cm to 2-3em in various situations, and have cnabled
the DRL tcam to continuc incrcasing the autonomous
capability of Robonaut.

In separate work, the same system was tested on a mock-
up of a planctary manipulator at the Jet Propulsion Lab-
oratory, reducing vision-kinematic mismatch from 15mm
to 3-5.5mm.

There are scveral directions in which this work could be
improved. The most obvious is to do a careful extrin-
sic calibration of Robonaut’s vision system so that this
closed-loop procedurce will more accurately reflect dis-
tances and rotations in the workspace. Also useful would
be to systematically study the number of measurements
required to calibrate the system, both in the reduced
and full cascs. The system should also be extended to
calibrate the left arm of Unit A and cach arm of Unit
B. The method deseribed in this paper should extend to
these situations in a very straightforward manner. With
some cxtension, this method could be extended to the
simultancous calibration of the vision system and both
arms of Robonaut.
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