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Introduction 

This publication contains the proceedings of the JPL Airborne Earth Science Worksho~a forum held to 
report science research and applications results with spectral images measured by the NASA Airborne 
Visible/Infrared Imaging Spectrometer (AVIRJS). These papers were presented at the Jet Propulsion 
Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web 
site noted below. 

Note 

Our budget this year allows for only a few color reproductions, 
even though they now often prove necessary for a complete 
understanding of figures presented here in black and white. For 
full color versions of the papers, please go to the A VIRIS Web site 
at http://makalu.jpLnasa.gov/docs/workshops/toc.htm 





AN ALGORITHM FOR DE-SHADOWING SPECTRAL IMAGERY 

Steven M. Adler-Golden, 1 Michael W. Matthew, 1 Gail P. Anderson/ Gerald W. Felde,2 and James A. Gardner3 

I. INTRODUCTION 

The interpretation of visible-near infrared spectral imagery of the earth's surface can be complicated by 
illumination variations due to shadowing, sloped terrain, or other causes. In atmospherically "corrected" (spectral 
reflectance) data, these variations mainly affect the spectrum amplitude. However, in deep shadows where the 
illumination is mainly skylight, the spectrum is not only dimmer but also skewed to short (blue-violet) wavelengths. 
Either or both of these effects can impede the classification of surface materials and the detection of targets with 
standard methods. Recently, some classification and detection algorithms have been developed that are insensitive 
to illumination (Healy and Slater 1999; Adler-Golden et al., 200 I). However, for many applications, and for visual 
inspection of the image, it is very beneficial to normalize all the pixels to a common illumination, such as full sun 
and skylight. This requires the ability to characterize the illumination for each pixel, and in particular to identify 
shadows and quantify their depths. Knowledge of shadow depths can also be valuable as a source of elevation 
information for terrain, surface objects, and clouds. 

Several methods have appeared in the literature for identifying and correcting for shadowing. The standard 
approach is based on linear unrnixing of atmospherically corrected data (Boardman, 1993) using spectral 
endmembers, which represent the distinguishable pure materials in the scene. The shadow is defined as a "black" 
(zero reflectance) endmember, and a sum-to-unity constraint is imposed on the endmember weights. A positivity 
constraint may also be imposed. Upon unmixing, the reflectance spectrum is approximately "de-shadowed" by 
dividing by one minus the shadow weight (or, equivalently, the sum of the non-shadow endmember weights), 
provided that this quantity is not too small. There are several limitations to this approach. One is that by defining 
the shadow as black, the blue-skewed skylight illumination of the shadow is ignored, leading to under-correction for 
shadow at long wavelengths and overcorrection at short wavelengths. Another is the dependence of the results on 
the specific endmembers used, and hence on the method of endmember selection (e.g., by clustering, convex hull, 
convex cone, or other methods). 

Recently, more sophisticated shadow removal methods have been developed as part of atmospheric correction 
processing. Davenport and Ressl ( 1999) obtained excellent results with visible channels of the HYDICE sensor 
using an algorithm that models the illumination spectrum as a function of shadow depth, which is extracted using an 
endmember-finding and fitting method. Another method, developed by Portigal (2002), avoids endmember 
complications by determining the shadow fraction with a matched filter. The filter is constructed using a shadowed 
pixel in the radiance image; the filter output to adjust the amount of direct solar illumination in the atmospheric 
correction while maintaining full sky illumination. Potential pitfalls include sensitivity to the choice of shadow 
spectrum and limitations of the full-sky assumption. 

In this paper we describe a rather simple matched filter-based de-shadowing algorithm for spectral reflectance 
images that builds upon several ideas from the previous work. At present the algorithm is partially supervised, in 
that the best results are achieved with manual adjustment of a parameter that controls the sky brightness. The de
shadowing method can also be applied to the general illumination-compensation problem, including terrain 
"flattening," a topic that will be reserved for a future paper. The algorithm uses iterative application of the matched 
filter, an approach that may be suitable for a broader class of problems that involves a non-linear effect (in this case, 
the skylight blue-skewing). 

All of the de-shadowing approaches mentioned presume that differences caused by illumination variation are 
spectrally distinguishable from differences in material composition. In the black shadow approximation, this 
amounts to an assumption that all pure spectra in the image are linearly independent. As this is often untrue, 
particularly in complex scenes, many instances of mis-correction (i.e., when a fully illuminated pixel is assigned as a 
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shadowed pixel of another material or combination of materials) are to be expected. Nonetheless, we have found 
that useful and, for the most part, visually realistic de-shadowed images can be obtained with this method under a 
wide variety of conditions. 

2. DESCRIPTION OF METHOD 

The method consists of (I) atmospherically correcting the original radiance data to reflectance with the usual 
assumption of full sun and sky illumination, (2) applying a matched filter for a black surface to the reflectance data 
to infer an initial shadow fraction for each pixel, (3) rebalancing the data to remove the skylight skewing effect, (4) 
refining the shadow fraction by reapplying the matched filter, and (5) using the shadow fraction, de-shadowing the 
data by dividing by the ratio of the inferred to full illumination. The procedure was implemented in IDL code using 
the Research Systems, Inc. ENVI software. 

Atmospheric Correction. A number of atmospheric correction algorithms have been developed. For de
shadowing, especially accurate results are needed for dark pixels. We have employed the FLAASH algorithm 
(Matthew et al., 2000, Adler-Golden et al., I 999), which uses MODTRAN4 (Berk et a!., 1998) for radiation 
transport modeling and includes an adjacency effect correction and an automated aerosol retrieval method based on 
the work of Kaufman et al. (I 997). 

Matched Filtering. A matched filter for a zero reflectance target is generated and applied to the reflectance 
image. In the following discussion we provide some mathematical motivation for the matched filtering step and 
qualitatively compare the matched filter and endmember unrnixing approaches. 

As described in the Introduction, each pixel reflectance spectrum y is assumed to be a mixture of linearly 
independent, fully-illuminated endmember spectra, e;: 

(I) 

where w;y is the ith endmember weight for the pixel (here bold face denotes a column vector). Let a be a fully 
illuminated pixel, whose weights w;3 sum to I . If shadow is considered as a zero reflectance endmember, then the 
shadow fractionfcan be written as the difference between the total weights for pixel a and pixely: 

(2) 

In unconstrained least-squares unrnixing, the ith endmember weight may be extracted from each spectrum by taking 
its dot product with a filter vector v; that is orthogonal to all endmembers except e;; that is, W;y = v;Ty and w;. = v;T a. 
Eq. (2) can then be written as 

(3) 

where g is a filter vector. If we furthermore assume that shadow is rare, the scene mean spectrum can be used for a . 
Thus, according to Eq. (3) the shadow fraction can be unmixed by applying a linear filter to mean-subtracted spectra. 
One such linear filter is the matched filter. Instead of being constructed from explicit endmembers, the matched 
filter q is defined in terms of the covariance matrix C: 

(4) 

where tis the target spectrum to be detected and a is the scene mean spectrum. Taking t = 0 for shadow, the shadow 
matched filter is given by 

(5) 

The matched filter, like the CEM filter (Farrand and Harsanyi, 1997), yields a minimum RMS target abundance for 
the scene as a whole. However, instead of using the covariance and mean-subtracted reflectance signal, the CEM 
filter uses the correlation matrix and the reflectance signal. This results in a singularity when t = 0 and makes the 
CEM filter unusable for shadow detection 

4 



In the limit of zero shadow abundance and linear independence of all materials in the scene, the outputs of both 
the matched filter and the endmember-based filter g should be zero, and the two filters should be equivalent. In real 
scenes the outputs differ. In particular, the matched filter generates negative as well as positive shadow outputs, 
whereas the endmember filter, if constructed from outlying endmembers (such as from a convex-hull or convex-cone 
algorithm), should in principle generate only non-negative outputs. A negative output may be interpreted as 
indicating either an anomalously bright material or excess illumination in the pixel compared with the nominal full 
sun plus sky illumination of a horizontal surface. With flat terrain, it would generally not be appropriate to "correct" 
the illumination for a negative shadow output. However, with sloped terrain it may be desirable to do so in order to 
remove the excess illumination of surfaces tilted towards the sun. 

As the amount of shadow in the scene increases, the behavior of the matched filter increasingly deviates from 
what would be obtained with linear unmixing. As the mean spectrum becomes contaminated with shadow, the 
filter's response to partial shadow is reduced and the negative outputs become larger and more numerous. Very dark 
materials that can be confused with shadow, such as bodies of water, produce the same contamination effect. A 
remedy is to remove as much water and deep shadow from the scene as is practical before constructing the matched 
filter. A simple method is to set a low threshold for the average spectral reflectance, such as 0.03, and to eliminate 
all pixels falling below this threshold when calculating the mean and covariance. 

Spectral Rebalancing. Application of the matched filter to the image yields a first estimate of the shadow 
fraction/for each pixel. The spectra are then rebalanced to simulate illumination by a spectrally uniform source, 
namely, l:ftimes the direct sun plus sky spectrum, as follows. Let d = d()..) be the spectrum of the direct sun 
illumination and s = s(A.) the spectrum of the sky illumination, and define g = 1 :f as the fractional illumination of 
each pixel by the direct sun. Then the rebalancing factor applied to the spectrum is 

F(A.) = g(d(A.) + s(A.))/(gd(A.) + s(A.)) = g( I + s(A.)Id(A.))/(g + s(A.)/d(A.)) (6) 

The spectral ratio s(A.)Id(A.) is, strictly speaking, a quantity that depends on the detailed three-dimensional 
geometry of the terrain and surface objects. However, we assume that it can be adequately modeled with the full sky 
to sun illumination ratio as calculated from MODTRAN (Adler-Golden et al. , 2001) or some other radiation 
transport code, multiplied by an empirical scaling factor that accounts for the average sky fractional subtense in the 
shadows. The ratio can often be reasonably approximated by the power law expression cA.-N, where c is an empirical 
constant and N is an Angstrom-law exponent for the atmospheric scattering. 

Re-application of the Matched Filter. The matched filter is applied to the rebalanced spectra, resulting in 
refined shadow fraction estimates. The rebalancing and filter application steps may be iterated a few times to insure 
convergence. 

De-shadowing. The de-shadowed spectrum for each pixel is obtained by multiplying the rebalanced spectrum 
by the factor Jig. 

3. SAMPLE RESULTS 

We have applied the de-shadowing method to a total of around a half-dozen images to date, including A VIRIS, 
HYDICE and Landsat TM data. In this discussion we focus on two atmospherically corrected scenes: a forested 
scene taken by A VIRIS that contains a broken cloud field and an urban scene taken by HyMap that contains building 
shadows. 

3.1 A VIRIS Scene 

The A VIRIS scene, f960628t0lp02_r04_sc07, is of the White Mountains region near North Conway, New 
Hampshire. Good removal of the cloud shadows was obtained using either the original spectral data or the data 
binned to the six Landsat TM spectral channels. For simplicity we focus here on the Landsat TM representation, 
which allows us to show the complete data cube in two color images: a true-color image of the blue, green and red 
channels I to 3 and a false-color image of the infrared channels 4 to 6. The scene was atmospherically corrected 
using FLAASH. Little difference was found in performing the atmospheric correction or de-shadowing steps before 
or after the spectral binning. 

Figure 1 shows the reflectance image prior to de-shadowing. To emphasize the darker pixels, a non-linear 

5 



scaling has been applied to these and other color images in this paper, which sets the mean brightness level at 50%. 
Figure 2 shows the retrieved shadow fraction as a grayscale image; black denotes 100% shadow and white denotes 
zero shadow. Figure 3 shows the final de-shadowed image using c=0.07 and N=2 in the power-law expression for 
the full sky to sun illumination ratio; N=2 represents a compromise between the wavelength dependences of Rayleigh 
and aerosol scattering. Despite some residuals, appearing as a slight darkening in the infrared and a slight grayish 
cast in the visible, the cloud shadow removal is quite effective. Contrast is slightly enhanced compared to Figure I 
due to the non-linear display. The most serious artifacts are an artificial brightening of water bodies (streams and a 
small pond) and paved roads. Details of the scene shown in Figure 4 highlight the dramatically improved 
visualization of surface features upon de-shadowing. 

Figure 1. A VIRJS White Mountains scene displayed in Landsat TM channels; (blue, green, red) = visible channels I ,2,3 
at left, infrared channels 4,5,6 at right. 

•• ,. 

,, ... 

t . •.. · . . : 

Figure 2. Retrieved shadow image for the White Mountains scene. 
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Figure 3. White Mountains scene after de-shadowing, displayed as in Fig. 1. 

Figure 4. Details from Figures I and 3. 

The effect of ignoring the sky illumination of shadows (by setting c=O) is seen in Figure 5. In the visible the 
illumination is underestimated and the image is noticeably over-corrected. In the infrared the illumination is slightly 
overestimated and the channels are slightly under-corrected. 

Convergence of the algorithm was investigated by comparing the results for one and two iterations of the 
spectral rebalancing and matched filtering steps. Differences of a few percent in the de-shadowed spectra were 
found (Figure 6); this effect is too small to be noticed in the images, however. 
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Figure 5. De-shadowed image ignoring the sky illwnination. 
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Figure 6. Shadowed vegetation pixel in the White Mountains scene before (original) 
and after de-shadowing (I and 2 iterations). 

3.2. HyMap Scene 

An atmospherically corrected HyMap image of downtown San Francisco from the archives of Analytical 
Imaging and Geophysics LLC was kindly provided to us by the Boeing Company. Special handling was needed to 
process this data cube because of what appears to be a sizable baseline of residual atmospheric scattering. To 
minimize its effect on the shadow detection, the matched filter was restricted to wavelengths from 1.4-2.5 !Jlll. 
While we did not attempt to create a full de-shadowed data cube, we were able to generate a good de-shadowed true
color image by baseline-subtracting the displayed red, green and blue channels, using their minimum values as the 
baseline, and by increasing the green and blue sky-to-sun spectral ratios relative to the N=2 predictions (this might be 
compensating for an especially clear sky, dominated by Rayleigh scattering). 

The results from a portion of this scene are shown in Figure 7. The removal of the building shadows is quite 
striking and gives the scene a strangely flat appearance. The water is brightened, as usual, but otherwise there appear 
to be no major problems. There is a tendency for under-correction in the deepest shadows, next to and between tall 
buildings, where there would be less than the usual amount of skylight. Even so, the shadow removal is sufficient to 
discern a wealth of new detail. 
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Figure 7. HyMap scene of San Francisco before (left) and after (right) de-shadowing. 

4. CONCLUSIONS 

A simple de-shadowing method based on iterative matched filtering has been developed for atmospherically 
corrected spectral imagery. In initial tests with a handful of data cubes, generally realistic and quantitative de
shadowed images and spectra have been obtained for non-water surfaces. The method has the basic shortcomings 
inherent in a purely spectrally-based approach, which does not take advantage of spatial context or ancillary 
information that might distinguish between shadowed and fully lit surfaces that are spectrally similar. In addition, 
the assumption that all of the shadows are illuminated by a uniform skylight spectrum is not very realistic, and can 
cause problems in very deep shadows as well as in shadows that are lit by sources other than the sky, such as a 
transmissive plant canopy. Nevertheless, this simple model for shadow illumination provides a dramatic 
improvement over ignoring the illumination completely, as is done with standard linear unmixing. Although the 
initial applications have involved removal of cast shadows, the de-shadowing method also has potential for terrain 
"flattening," which we hope to explore in the future. Further work is needed to test the algorithm on additional data 
and against other algorithms such as those of Davenport and Ressl (1999) and Portigal (2002). 
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VALIDATION OF WATER QUALITY PARAMETERS RETRIEVED FROM 
INVERSE MODELING 

Sima Bagheri,1 Knut Stamnes/ Shigan Jiang/ Wei Li/ and Ting Yu1 

1. INTRODUCTION 

Understanding the relationship between reflectance, absorption and backscattering of water is 
essential for developing the analytical and multitemporal algorithms necessary to use remote sensing as a 
management tool in the estuarine/coastal environment. The objective of this paper is to demonstrate 
utility of bio-optical modeling and retrieval techniques to derive the concentrations of important water 
properties (chlorophyll, color dissolved organic matter, etc.). This is a prerequisite to retrieve water 
quality parameters from the AVIRIS data acquired in July 13th 2001 over the Hudson/Raritan Estuary of 
NY-NJ. Atmospheric correction algorithm, coupled atmosphere ocean (CAO) system based on discrete 
ordinate method (DISORT) is applied to compensate for the atmospheric effects and to infer the water
leaving radiance. We used the linear matrix inversion model developed by Hoge and Lyon (1996) for 
retrieval of the inherent optical properties (lOPs) from which the water constituent concentrations are 
obtained. Validation was performed using the insitu measurements collected simultaneously with the 
A VIRIS overflight. 

The study area is the Hudson/Raritan Estuary located south of the Verrazano Narrows and 
bordered by western Long Island, Staten Island and New Jersey (figure 1) Fresh water flows into the 
estuary mainly from the Hudson and Raritan Rivers and ocean waters enter tidally across the Sandy 
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Figure l. Map of the study area and locations of the sample points surveyed on 7/13/01 
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Hook-Rockaway transect. The tidal water is m1xmg with fresh water inflows, in highly dynamic 
environments where there are major conflicting interests on the use of these waters. This shallow ( < 8 m) 
and eutriphicated interface of the Hudson and Raritan Rivers and Atlantic Ocean was cruised during the 
field seasons in 1998-2001 with RV Walford and Blue Sea (MAST). 

2. RESEARCH MATERIALS AND METHODS 

2.1 AVIRIS 

On July 13th, 2001, the A VIRIS, was flown over the study area. The AVIRIS images the earth's 
surface in 224 spectral bands approximately 10 run wide covering the region 400-2500 run from a NASA 
ER-2 aircraft at an altitude of 20 km. The ground resolution is 20m*20m. A geometric correction 
algorithm is applied to the A VIRIS data for correlation with in situ measurements. Atmospheric 
correction is required for retrieval of the inherent optical properties (lOPs) from which the water 
constituent concentrations are obtained. 

2.2 Spectroradiometer 

An OL 754 scanning, submersible spectroradiometer was deployed at six sampling stations as 
marked in figure 1 simultaneously with the A VIRIS overflight. It uses a double monochromator for low 
stray light and measures spectral data from 300 run to 850 run. Upwelling (Eu (A.)) and downwelling 
(Ed(A.)) irradiances are measured and used to calculate the subsurface irradiance reflectance R(O-) for 
comparison with modeled reflectances. Figure 2 depicts the reflectance spectra recorded by the OL-754 at 
stations 2-6 on Jul. 13th, 2001. (Note that the reflectance data from Station 1 is not included due to 
pronounced effect of wave propagation.) 

Cl 
0 
c: a -0 
Cl 
s;: 
Cl 
a:: 
;F. 

0.06 

0.05 

0.84 

0.03 

0.02 

0.01 

0 

380 

Reflectance vs Wavelength 

(7/13/01) 

480 580 688 
Wavelength jnm) 

780 

__,__ Ambrosa Chmne (st2)1 

-Raritan Rlver(st4) 

__,._Great Kills(st3) 

--Point Colllfort(st5) 

----Sandy Hook Bay(lt6) 

Figure 2. The reflectance spectra recorded by the OL-754 at designated sampling stations 

2.3 Attenuation-absorption meter 

Measurements of spectral absorption and beam attenuation coefficients were made using the ac-9 
instrument. The ac-9, with one absorption flow tube and one attenuation flow tube, measures beam 
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absorption (a) and attenuation (c) coefficient at 9 wavelengths (412, 440, 488, 510, 532, 555, 650, 676, 
715 run). The scattering coefficient (b) is obtained from a and c, since b = c - a. Use of the ac-9 has 
enabled us to model the backscattering coefficient ~), which is an important input parameter for 
establishing the lOPs of the estuary (in preparation). Figure 3 shows the absorption spectra recorded by 
the ac-9 at station 5 (Point Comfort) on July 13, 2001. 
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Figure 3. The absorption spectra for 9 wavelengths recorded by the ac-9 at station 5 

2.4 Shipboard sampling 

Water samples were collected (0.2 to 0.5 m depth) from selected sample stations as marked in 
figure 1 for laboratory analysis. Standard procedures were used to determine the concentrations of total 
chlorophyll_a (TCHL) (as indication of concentration of phytoplankton) and total suspended matter 
(TSM) (NEN 6520 (1981 )) and NEN 6484 ( 1982)) respectively. The samples were analyzed for their 
lOPs as well as the identification/enumeration of the phytoplankton species. This was done to 
demonstrate the variety and composition of phytoplankton populations for input into library spectra ofthe 
estuary, which is currently in progress (Bagheri et al., 1999). The most abundant organisms identified 
were the Diatoms; Skeletonema sp. in high/moderate counts (7520-540 cells/ml). Also present in low 
counts were Flagellates; Eutreptia sp. (60 cells/ml) and Prorocentrurn minimum (60 cells/ml). The TCHL 
concentrations varied between 73mg m·3 and 17 mg m·3 indicating that the measurements did not coincide 
with any major outbreaks of phytoplankton blooms. Likewise, the TSM ranges (23-5 g m·3

) were within 
the expected values for the time of year when the measurements taken. 

3. DATA ANALYSIS and MODEL DEVELOPMENT 

3.1 Atmospheric correction of the A VIRIS data 

The remote sensing signal received by the A VIRIS is the sum of the water-leaving radiance and 
contribution from atmospheric aerosols and molecules. Comparison of the A VIRIS measured radiance 
and in-situ reflectance measurements reveals the effect of the atmosphere on the total upwelling spectral 
radiance measured by A VIRIS (Green et al., 1996). In atmospheric correction, the most challenging issue 
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is to remove the impact of the highly variable aerosol component on top of the atmosphere (TOA) to 
convert remote sensing measured radiance into normalized water leaving radiance. This is the required 
input to algorithms designed to retrieve phytoplankton pigments or suspended solid concentrations. The 
aim is to calibrate the A VIRJS data spectrally and radiometrically to radiance/reflectance for bio-optical 
and inverse modeling and generation of thematic maps of water quality parameters. We use a 
comprehensive radiative transfer model for the coupled atmosphere-ocean (CAO) system based on the 
discrete-ordinate method (DISORT) to compute the radiance within and backscattered from the 
atmosphere-ocean system (Jin and Starnnes, 1994; Thomas and Starnnes, 1999). This CAO-DISORT 
model, in which multiple scattering by ocean particles are properly treated, is also suitable for 
constructing an atmospheric correction algorithm (Starnnes et al., 2002), and it can be used to calculate 
the amount of light incident above the water surface (downwelling irradiance) for a given geographic 
location and a chosen atmosphere. 

Algorithms for retrieving the chlorophyll concentration from space have been developed for 
sensors such as CZCS (coastal Zone Color Scanner), SeaWiFS (the Sea-viewing Wide Field-view 
Sensor), MODIS (the Moderate-Resolution Imaging Spectroradiometer) and others. However, most of 
these algorithms have been applied mainly to the case I water. These algorithms usually include two 
steps. The first step is atmospheric correction, which is applied to separate the atmospheric radiance from 
the radiance that comes from the ocean. The next step is based on a bio-optical model to relate the water
leaving radiance to the chlorophyll concentration. Because the water-leaving radiance typically comprises 
at most about I 0% of the total radiance at the TOA, the key to reliable retrieval of the water-leaving 
radiance from the measured total radiance is an accurate correction of the effects of aerosol scattering and 
absorption. 

Based on the CAO-DISORT radiative transfer model for the coupled atmosphere-ocean system 
(CAO-DISORT, Starnnes et al., 1988; Jin and Starnnes, 1994; Thomas and Starnnes, 1999) and a 
complete bio-optical model of Case I waters (Li and Starnnes, 2002), we have developed a new algorithm 
for SeaWiFS data processing (Starnnes et al., 2002). The CAO-DISORT code computes multiple 
scattering effects in a rigorous manner, and automatically and accurately takes into account the 
anisotropic behavior of the water-leaving radiance. The SeaWiFS channels 765 nm and 865 nm are used 
for retrieval of aerosol optical depth and aerosol model due to the small contribution from the case I water 
in the NIR. Then, the retrieved aerosol model and optical depth are used to predict the water leaving 
radiance in the visible, and subsequently to retrieve the chlorophyll concentration from the SeaWiFS 
channels at 490 nm and 555 nm. This approach provides simultaneous retrieval of atmospheric aerosol 
properties and chlorophyll concentrations in Case I waters. This new algorithm has been tested on 
synthetic datasets as well as match-up data. The results show that our new algorithm provides self
consistent and accurate retrievals. 

Now this algorithm is being modified for use with the A VIRJS data to retrieve marine parameters 
for coastal waters. The A VIRIS data should be ideal for coastal water retrieval due to the many spectral 
channels available, and the wide spectral range from 400 nm to 2500 nm. The channels at 765 nm and 
865 nm are no longer suitable for aerosol retrieval in the coastal water, because of the strong scattering of 
coastal water. The longer wavelength channels, such as 1 040 nm and 1240 nm, will be selected to retrieve 
aerosol properties. In contrast to Case I waters where the optical properties are assumed to covary with 
the chlorophyll concentration, a bio-optical model for coastal waters must include other parameters. At a 
minimum we should include 3 different components: chlorophyll (CHL), color dissolved organic matter 
(CDOM) and total suspended solids (TSM). Because the different components have different spectral 
scattering/absorption characteristics, the wide spectral range of the A VIRIS instrument provides a good 
opportunity for retrieval of multiple components. Feasibility studies based on a three-component model 
(Frette et al., 1998; Frette et al., 2001) show promising results. Based on the field measurements obtained 
over the Hudson/Raritan Estuary area (Bagheri et al., 1999, 2000 and 2001). We have used a three
component bio-optical model in conjunction with the CAO-DISORT code to compute the radiance both at 
the surface and at the top of the atmosphere. Figure 4 shows comparison of reflectances measured and 
computed from CAO-DISORT code using a bio-optical model consistent with the measurements. 
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Building such bio-optical models for special coastal locations will be very important step for developing 
reliable algorithms to retrieve the coastal water parameters. The high spatial resolution of the AVIRIS 
data will also be very advantageous for coastal water property retrieval, because coastal waters usually 
have high spatial and temporal variation. Thus, the A VIRIS data has suitable resolution data for coastal 
water quality estimation. 

3.2 Bio-Optical and Inverse Modeling 
The ongoing research is based on imaging spectrometer data from A VIRIS, field 

spectroradiometer and water samplings. Based on these measurements optical water quality models are 
constructed linking the water constituent concentrations to (i) the inherent optical properties (lOP), using 
the specific inherent optical properties (SlOP), and (ii) to the subsurface (ir)radiance reflectance (Bagheri 
and Dekker, 1999 and Bagheri et al., 2000 and 2001). 

The subsurface irradiance reflectance R(O-) are generated from the constituent concentrations 
using the linear backscattered albedo model based on the work of Gordon et al. ( 1975): 

Where: 

bb 
R(O-)=r·--

a+bb 

a is the total absorption coefficient 
bt, is the total scatter coefficient 
r is a factor based on the geometry of incoming light and volume scattering in the water body. 

(l) 

This model is then validated with the R(O-) measured in the study site (figure 4). The validation 
of subsurface irradiance reflectance measured by the spectroradiometer is an important step for 
establishing the optical properties of the waters of the study site. Modeling of reflectance spectra based on 
the lOP will explain the variability in water quality concentrations and inverse modeling can be used for 
monitoring water quality conditions in the estuarine waters using remotely sensed data. 
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Figure 4. Modeled, Measured R(O-) and CAO-DISORT R(O) computed for Stations 2&3 (5115/2000) 

The linear matrix inversion developed by Hoge et al. (1996) was applied to in situ measurements 
collected simultaneously with the A VIRIS overflight. The radiance models describe the generation of 
upwelled water-leaving spectral radiance caused by backscatter and absorption of incident downwelling 
solar irradiance (Hoge et al., 2001 ). The algorithm was then applied to the atmospherically corrected 
AVIRIS data acquired over the study area to retrieve the lOPs (from which the constituent concentration 
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are obtained). The linear matrix inversion for retrieval of lOPs was based on the work of Gordon et al. 
( 1988). 

The inversion matrices (2) are used for solving for three unknown a ph (A,) , ad (A,) and 

b01 (A,) at any wavelength A.; : 

where: 

[-S(~-,1,)] e 

A.1= A.g----peak. wavelength for Gaussian phytoplankton absorption model (nm) 

A.l=440, A.2 = 500, A.3 =560 nm 

S = 0.025, n = 1.2, g = 30 

V --- a factor to separate absorption and scattering components of water 

The a ph (A;), ad (A;) and bb, (A.;) at all wavelengths are computed using the following: 

( 
1 _) = ( 1 ) . [(A;-A../ /(-2g

2
)] a ph A, a ph A g e 

(2) 

(3) 

(4) 

(5) 

The results of the linear matrix inversion were input into Equation (1)-- the bio-optical model of 
the estuary for retrieval of water quality parameter concentration (figure 5). 
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4. DISCUSSION AND CONCLUSION 

Atmospheric correction of ocean color imagery is commonly based on the assumption that the 
water-leaving radiances at NIR are negligible. Over the open ocean an aerosol model and aerosol optical 
depth can be derived from the NIR channels. The aerosol information can be extrapolated into the visible 
range for retrieval of the water leaving radiance and the estimation of the chlorophyll concentration. 
Unfortunately, these algorithms cannot be used in case 2 waters because the suspended material in case 2 
waters have strong scattering in the NIR part of the spectrum. Development of a robust algorithm for 
simultaneous retrieval of atmospheric aerosol optical properties, chlorophyll concentration and colored 
dissolved organic matter is a very challenging task. Nevertheless, such an algorithm is needed to make 
progress in this area. 

The A VIRIS is capable of measuring hydrologic optical properties at a level of detail unmatched 
by any existing satellite instrument. The A VIRJS hyperspectral data provide us with an opportunity to 
develop such algorithms based on the different spectral reflectances characterizing aerosol and ocean 
particles. This can be used as a basis for distinguishing between atmospheric and oceanic effects and to 
set the estimated turbidity for each region within the image for retrieval of water constituents. The 
methodology described here provides a baseline for better understanding of how sunlight interacts with 
estuarine/coastal water necessary in establishing the lOP characterization of the estuary and setting a 
foundation for the future research. The products of remote sensing data derived from A VIRIS analysis in 
forms of thematic maps representing the spatial/temporal distributions of water quality parameters are 
important input into a GIS for better management of the water resources of the study site and other 
estuaries nationwide. 
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1.0 INTRODUCTION 

Remote sensing of soils plays a major role in both soil survey and soil mapping applications. 
Traditional methods such as air photos and satellite images suffer from low spectral resolution 
and, thus, provide only limited spectral information about the targets explored. For soil survey 
applications, high-resolution imaging spectroscopy may be a key factor in implementing 
accumulated spectral-soil knowledge. Because the IS technology provides a near-laboratory
quality reflectance and emittance spectrum for each single picture element (pixel), it allows the 
identification of objects based on the spectral absorption features of the chromophores (Goetz et 
al. 1985, Clark and Roush 1984). In this regard it can be used to assess mineral changes on the soil 
surface and to better provide spatial view of pedogentic processes. One of the fundamental 
pedogenesis processes taking place along the coastline of Israel is the soil rubification of the sand 
dunes. The soil rubification is defined as a pedogenesis stage in which iron is released from 
primary minerals to form free iron oxides that coat quartz particles with a thin reddish film (Buol 
et al., 1973). The Fe in the free iron oxides is active across the VIS-NIR region via the electron 
transition of (6Al ~4Tlg between 0.75-0.95J.1Ill and 6Al ~4T2g between 0.55-0.651J.I11) and is 
responsible for the red soil color. We thus applied a careful study to account for the iron oxides 
content on the sand dune surfaces using spectral information both from laboratory and airborne 
sensors. This was done in order to demonstrate that rubification processes on costal environment 
can be done using imaging spectroscopy technology. 

2.0 MATERIALS AND METHOD 

In October 1999 the CASI 48 channel sensor (covering the VIS-NIR) was mounted onboard an 
Piper Aztec two-engine aircraft and acquired data from an altitude of 10,000 feet over the area of 
Ashdod City, Israel. Two flight lines were acquired from south to north, each having a spatial 
swath of 1.2 km and ground resolution of about 2 meters. During the flight coverage, ground truth 
data were collected. These data included atmospheric conditions (optical depth, humidity and 
water vapor content) and soil sample coUections for laboratory measurements. The soils were 
dried and measured for reflectance in the laboratory, using a LICOR spectrometer. For each soil 
sample, two replications were used for the DCB extraction (Mehra and Jackson 1960). The 
radiance CASI data were atmospherically rectified into reflectance using the EL calibration 
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method (Roberts et al., 1985), using 5 selected targets. Validation of this correction was performed 
using samples that were not incorporated in the EL process, and by comparing the similarities 
between the imaging spectra and the laboratory spectra. Geometrically correction took place using 
image the image correction technique that extract about 160 GCP from ortho-photo of the area. 

3.0 RESULTS AND DISCUSSION 

a. General 
The sand material is brought to the Israeli coast from the Nile delta by the west-east circle stream 
along the east bank of the Mediterranean Sea. The study area located near the city of Ashdod, 
consists of a dune mass of about 350,000 m3 /year as received from the above stream. The resulting 
dune strip at the selected areas is about 5 km in width. Viewing historical air photos (taken over 
the past 60 years) shows that a significant diminishing of dune area coverage is occurring. These 
changes, significantly observed in the north, are due to the massive urbanization activity. Careful 
measurements of the entire sand dune area show that the sand dunes occupied an area of about 40 
km2 in 1945 and diminished to 25 km2 in 2001. The sand motion envelope as identified by the 60-
year air photo archive showed that the dune masses have tended to significantly diminish over the 
years, from 2.7 rnlyear in 1945 to 0.6 rnlyear in 1997. Based on this finding, we selected soil 
samples (for spectral and chemical analyses) that were allocated on the cross section that best 
represents the southwest to northeast dune development. As can be observed from both the 
satellite image and the ground observations, no significant natural reddish chrome occur at the 
selected west-east cross sections, except in several discrete pockets (vegetation surrounding area). 
For the most part, the absence of a reddish color on the rest of the dune area is based on the fact 
that the dune stabilization process is rather young (about 50 years) and the climate conditions (500 
mm of annual precipitation) do not effectively permit a massive extraction of free iron oxides in 
those areas during this time period. The free iron oxide content (DCB-Fe) that was chemically 
measured in the laboratory, showed relatively low iron oxides amount (0-0.03 %) that agrees with 
the previous observation that showed no red color sequence in the study area. The first step 
toward adopting the spectral information to account for the DCB-Fe content was to examine the 
laboratory spectral information and then to apply it on the image data. 

b. Laboratory (Field) Dune Spectra 
In this stage, the original laboratory spectra was resampled into the CASI spectral configuration 
(consisting of 48 bands) and then used to extract the iron absorption parameters after applying the 
continuum removal (CR) algorithm. As can be seen in Figure 1a,b, a spectral sequence exists 
between the selected samples (for both laboratory (a) and air (b) domains), which calls for the 
extraction of the quantitative relationship between the entire DCB-Fe sand sample, using spectral 
parameters. The two selected spectral parameters were 1) the slope between 590 and 511 run 
(termed as [SLOP] and 2) and the absorption peak at 499 run after applying the CR treatment 
(termed as ABS). The above-mentioned spectral parameters provided correlation values (r) of 
0.79 for the SLOP 0.88 for the ABS parameters. Examining the slope and aspect effects showed 
that significant variation occur within close areas as a result of the micro-topography variation. 
Also, non-lambertian effects, especially in the low incidence angle, were found to be significant. 
Correction for those eff~cts (using DEMand Minnaret correcting factor respectively) still 
provided errors in the spatial domain, suggesting that BRDF effects may be introduced within the 
data. To remove these effects, a second polynomial curve fit, between the spectral differences of 
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the laboratory and the image reflectance data, for each ground point, across the entire spectra 
region, was employed. As the ground sampling were taken across track the flight lines, the 
correction for the BRDF effects was found to provide a sufficient solution for the entire sensor's 
FOV. Validation data confirmed the previous corrections, allowing us to move forward to the next 
quantitative stage. 

c. Quantitative Mapping of the Rubification Process using the Image Spectra 
Assuming that each spectral parameter describes a different mechanism, and that all of the 
external effects were removed, we prepared a multiple correlation using both SLOP and ABS 
parameters to extract the following equation: 

(I) Fe= 0.80929 + 0.00975(SLOP) ~ 0.86681 (ABS) r2=0.88 

Applying this equation on a pixel-by-pixel basis produces a gray scale image, in which the 
intensity level of each pixel refers to the iron concentration. Figure 2 shows the two georectified 
flight lines after applying the above equation and after the gray scale image was encoded with a 
color table that represents the iron oxide occurrences in a natural view, i.e., reddish pixels 
represent high, and white pixels represent low DCB-Fe content. In contrast to the manipulated 
DCB-Fe image, areas in the gray scale image that are not characterized as dune or soil were not 
encoded with the selected color table, because their calculated values lie outside the DCB-Fe 
calibration scale. From the DCB-Fe images, it can be seen that the reddish chroma increase while 
going from the coastline (west) toward the inner land (east), whereas the greatest amount of 
reddish chroma occurred at the southeastern boarder of the sand dune area. Because the direction 
of the wind regime in the study area is WSW to ENE, and there is a decreasing wind gradient 
toward the east, sand particle movement decreases while going east, resulting of sand stabilization 
processes. At the reddish locations, the sand particles are more stable and are exposed more to 
soil-forming factors than at the light locations, forming the free iron oxides that coat the quartz 
particles. It is interesting to note that the reddish spots observed previously (exposed paleosol and 
vegetation pockets) were also encoded a strong red in the processed DCB-Fe image. 

4. SUMMARY AND CONCLUSIONS 

Reflectance spectroscopy offers new insight into the pedogenesis process, long before it is visible 
to the naked eye. The imaging spectroscopy technique, which provides near-laboratory-quality 
reflectance information, also has the capability to observe nonvisible information and thus to 
produce a special view of the pedogenesis processes in large areas. Caution must be paid however 
to micro topographic and non-lambertian effects as well as to BRDF effects in spectral imaging 
sand dunes ecosystem. We can conclude that spectral information from field or air domains can 
provide valuable information regarding the premature stages of the rubification process. This 
information can also shed light on sand dune stabilization as well as on possible obstacles that 
might control dune development. 
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Figure 1: The reflectance spectra of three selected sand samples, with relative high, moderate and low DCB-Fe 
content before and after applying the continuum removal algorithm. Both the field (a) and airborne (b) measurements 
are provided. 
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COMBINING S-SPACE AND IMAGE SPATIAL INFORMATION FOR CHARACTERIZATION 
OF LAND-COVER ELEMENTS USING A VIRIS DATA 

Conrad M. Bielski 
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4800 Oak Grove Dr., Pasadena, California 91109 
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Abstract: Imaging spectroscopy data provides information that is both spatially and spectrally rich. However, 
hyperspectral classification and identification procedures are generally based solely on the spectral data. The S
space concept treats the spectrum as a 'spatial' dimension thereby facilitating the exploration of a relationship 
between the spectral and spatial image domains. This paper presents the ideas that will be researched as well as 
some preliminary results. 

1. Introduction 
Imaging spectroscopy data is becoming more available to the remote sensing community due to the 

increased number of sensors put into commission over the last few years. This is favorable news for the land-cover 
community because the increase in potential information that can be obtained from such data is promising. 
However, the tools currently available are generally based solely on the spectral signature even though the spatial 
content can provide a significant amount of information. A reason for not combining the two types of data into the 
information extraction process is the unknown relationship between the spatial and spectral dimensions. For 
example, the standardized Airborne Visible/Infrared Imaging Spectrometer (A VIRIS) Processing Methodology 
(Kruse, 1999) proposes calculation of the Pixel Purity Index and N-dimensional Visualization for endmember 
definition, which are solely based on the spectral signature at each measured location. 

This paper introduces the ideas that were put forth for post-doctoral research with the A VIRIS lab at the Jet 
Propulsion Laboratory. These ideas were based on the observation that a spectral signature resembles quite closely 
many other spatial-type measurements. Even though the electromagnetic (EM) spectrum itself is not considered as a 
spatial domain, this similarity to the spatial dimension could be explored and more easily associated to the spatial 
dimension. A first attempt at examining the spectral variability of imaging spectrometer data using geostatistical 
tools is presented. Geostatistics is concerned with the study of phenomena that fluctuate in space (Olea. 1991) and 
has been widely applied in the remote sensing context to understand and model the spatial variability inherent in 
remote sensing scenes. One example is Curran and Dungan's (1989) work on estimating the per-band signal-to
noise ratio in A VIRIS data, using the semivariogram model nugget information. 

Four sections make up the remainder of this paper. Section 2 introduces the S-space concept, followed by a 
section dedicated to describing the quantification of the spectra using the semivariogram. The next section presents 
examples and preliminary results based on A VIRIS imaging spectrometer data. The final section describes some 
ideas and future work. 

2. Spectral Space or S-Space 
As mentioned above, the spectral signature recorded by an imaging spectrometer very closely resembles 

other types of spatial measurement. In figure 1, a comparison was made between a measure of soil pH along a 
transect (Figure l, left side) and a hypothetical measure of radiance or reflectance taken at different wavelengths 
(Figure l, right side). Envisioning the spectral signature in this manner gives one the spatial sense of the EM 
spectrum. Furthermore, the idea that measured point B is closer to point A than point C reinforces this idea of 
'spatial distance.' In order not to confuse this type of space with spectral space that can also mean spectral feature 
space, S-space was coined in order to differentiate the two (Bielski et al., 2002). The spatial measures in S-space are 
wavelengths or frequency. Since S-space is one dimensional, distance between measurements are analogous to the 
difference in wavelength or frequency. 
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Figure 1 - S-space illustration: a theoretical profile was compared with a sampling transect in order to show 
similarities between geographical space and S-space. Point A is closer to point B, both in S-space and geographical 
space when compared with point C. 

3. Quantifying Spectral Variability 
The variability in S-space was computed using the variogram, a geostatistical tool. Previous work has 

demonstrated the applicability of the semivariogram for the quantification of the spatial variability inherent in 
remotely sensed imagery (Curran, 1988; Woodcock et al., 1988a,b; Jupp et al., 1988). The experimental 
semivariogram is a Wlivariate statistic that measures the average dissimilarity between data separated by a lag h. The 
lag inS-space was considered to be the spectral distance between image bands. Mathematically, the semivariogram 
is computed as half the average squared difference between the components of every data pair: 

1 N(b) 

y(h) = ~)z(ua)- z(ua +h)] 
2N(h) i=t 

where z is the radiance or reflectance at the spectral space location u, and N(h) is the number of data pairs at a 
spectral distance h apart. In the two-dimensional case, location pairs are found by jumping the necessary h pixels 
apart for each lag (Figure 2). Since the spectral signature is one dimensional, the semivariogram is computed along a 
transect, as in Figure 2. This method of computing the S-space semivariogram was used as a means of generating 
initial results even though in reality imaging spectroscopy data does not necessarily provide equidistant bandwidths. 
The bandwidths making up A VIRJS imagery are not equidistant and should therefore be taken into accoWlt in the 
computation of the experimental semivariogram. 

Figure 2 - Computing the experimental semivariogram along a transect of pixels. Each arrow designates a different 
size h. In S-space, the varying bandwidth must be taken into accoWlt. 
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Computing the experimental semivariogram is but the first step. Since the data acquired by the sensor does 
not have infinitely small distances between samples, the second step is to fit a mathematical model to the 
experimental model. The modeled semivariogram will then have variance values for any lag h, which is necessary 
for solving interpolation equations (e.g., kriging). Another reason for modeling the experimental semivariogram was 
to diminish the number of resulting bands even further. A modeled semivariogram (single model) is made up of 
three parameters: the nugget, sill and range (Figure 3). The nugget is a description of the unknown variability 
between the smallest sampling interval. The sill is the plateau of the variance and the range is the distance at which 
the sill is attained. 

The expected shape of a typical semivariogram is that variances at shorter lags are smaller because objects 
that are closer together tend to be more s,imilar. As the distance increases between pairs of points, objects become 
less similar, thereby increasing the variance. A horizontal semivariogram indicates no spatial variability because the 
variance of close data pairs is the same as with data pairs further apart. 

-- sill 

nugget 

range 

Distance --·--- - ---- .. 

Figure 3 -The ideal semivariogram. Three parameters modeling a single model semivariogram: the nugget, sill and 
range. 

4. Results of Initial Experiments 
This section presents results of computing the experimental semivariogram on A VIRIS imagery acquired 

on October 9, 1998 (Figure 4). The image is of an experimental agricultural field in the Salinas Valley region of 
California. The image shows rows of broccoli at different stages of growth as well as lettuce and senescent corn. The 
perfect rows of planted vegetation were easily discerned and also have a distinct spatial pattern that was easily 
observed in the computed experimental variogram. 

A set of two-dimensional semivariograms was computed on ten bands of the A VIRIS data set. The first 
semivariograms were computed for band 20 and then for every 20th band after that. Three directional 
semivariograms were computed from top/bottom, at a 45° angle and side/side. The results are shown in Figure 5 and 
presented an interesting view of how the bands differed spatially. The close resemblance between the top/bottom 
and 45° angle semivariograms was due to the fact that the rows do not exactly run at a 45° angle and therefore had a 
similar spatial variability as the top/bottom semivariogram. The side/side semivariogram (Figure 5, right side) 
showed that a sill was reached and then the pixel pairs began to resemble each other again at increasing lags. This 
was most likely due to the fact that the most mature vegetables were found at the sides of the image where the 
largest lags would reach. 

The one band that had the same semivariogram shape across all three plots was band 160. This band 
continuously produced an almost horizontal plot in all three cases. As mentioned previously, this occurs when there 
is a lack of quantifiable spatial variability. It turns out that the A VIRIS band number 160 was within a water vapour 
absorption band. 

Figure 6 presents the actual images from which each of the above semivariograms was computed. The 
bands with the well-defined semivariograms did have an obvious spatial component. However, band 160 did not and 
this resulted in a horizontal experimental semivariograrn. 

The images in Figure 6 also showed the variability inherent spectrally for each of the row crops. It is 
precisely this variability that needs to be harnessed and related to the spatial dimension. 
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Figure 4 - AVIRIS image of Salinas Valley agricultural field taken October 9, 1998. Shown are mature broccoli, 
bare soil, senescent com and lettuce. 
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FigureS- Computed semivariogram in three directions: top/bottom (left), 45° angle (center) and side/side (right) 
for 10 A VIRIS spectral bands. 
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Figure 6- The bands corresponding to the computed two-dimensional semivariograms in figure 5. 

S-space was first explored with a simple computation of the average spatial variability across the entire 
Salinas image. Specifically, the experimental semivariogram was computed in the z-direction (i.e., along the 
spectrum) and averaged across all the pixels within the image. This resulted in a single plot (Figure 7). A quick 
analysis of the computed semivariogram over the entire spectrum recorded by A VIRJS showed that as the distance 
between bands increased, so did the S-space variability. This first analysis also showed that there was spatial 
variability in S-space. Upon closer examination, three distinct features were observed. A nugget effect was present 
but very small, and around lag 20, a small but evident plateau was observed that indicated small-scale variability 
between lags 0 and 20. A second plateau was observed between lags 40 to 45 that indicated a second scale of S
space variability. 

S-space vario. for Salinas image 
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Figure 7 - The semivariogram computed inS-space (z-direction) for the Salinas Valley image. 

Averaging all the spectral signatures over the entire image lost many details. Subsequently, four pixels were 
chosen from different land-covers for a more detailed look at the S-space variability. A single pixel from each of 
mature broccoli , bare soi l, senescent com and lettuce were chosen. Their spectral signatures are presented in 
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Figure 8. The S-space experimental semivariogram was computed based on these four spectral signatures (Figure 9, 
top). The first observation noted the very high variance for all of the computed semivariograms. This was due to the 
fact that radiance measures were used in the computation. Another interesting result was the relationship between 
the S-space variability and the resulting experimental semivariogram. Those spectral signatures with large variations 
produced the highest sills, i.e., broccoli and lettuce. The lower plot in Figure 9 showed the normalized 
semivariograms. The shapes of these semivariograms were more defined, with broccoli and lettuce having larger 
bumps than the senescent com and soil. 
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Figure 8- Four pixels representing mature broccoli (orange), bare soil (pink), senescent com (green) and lettuce 
(blue) and their associated spectral signature (left plot). 
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Figure 9- Computed experimental semivariogram (top) and normalized experimental semivariogram (bottom) 
based on the four spectral signatures in Figure 8. 
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5. Future Directions 
The above results were preliminary and served to provide insight into the use of geostatistical tools to 

quantifY S-space. An important result was that the spectral signatures did in fact have quantifiable spatial variability. 
This fact alone is interesting enough to continue the investigation further. One possible use of modeling the spatial 
variation is to interpolate the spectral signature in areas where there is no data available or the data has been 
corrupted. 

Ultimately, the direction of this research is to study the relationship between the spectral component of 
remotely sensed imagery and that of the spatial component. While both are distinct, they are the most important 
components making up a remotely sensed image for information extraction purposes. Combining the two types of 
information should increase the performance of automatic classification algorithms. 
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SYNTHESIS OF MULTISPECTRAL BANDS FROM HYPERSPECTRAL DATA: 

VALIDATION BASED ON IMAGES ACQUIRED BY 

A VIRIS, HYPERION, ALI, AND ETM+ 
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1. INTRODUCTION 

More systematic studies are needed for a better understanding of how multispectral data properties such as 
ground sample distance (GSD) and spatial resolution, extent and shape of spectral bands, signal-to-noise ratio 
(SNR), data quantization, and band-to-band registration affect performance of remote sensing imagery in real-world 
applications. However, because the number of available multispectral data sources is still limited, parametric studies 
with varying image properties are difficult to conduct. In the case of panchromatic imagery, the amount of data 
collected at various scales and other parameters facilitated development of the General Image Quality Equation 
(GIQE) that allows predicting values ofGSD, edge response, and SNR necessary to detect and identify objects of 
interest (Leachtenauer et al., 1997). To support systematic studies of multispectral data requirements, the 
Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software 
provides the capability to generate simulated multispectral images with predefined properties from data acquired by 
existing sensors with higher spatial and spectral resolution. Multiple datasets simulated with key data characteristics 
varied parametrically can be then evaluated by potential end-users for utility in real-world applications. 

Spectral band synthesis is a key step in the process of creating a simulated multispectral image from 
hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an 
approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has 
not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band 
synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an 
example of its application. Using spectral responses of A VIRJS, Hyperion, ALI, and ETM+, the following section 
shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation 
accuracy based on results ofMODTRAN modeling. In the final sections of the paper, simulated images are 
compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an 
A VIRJS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-I satellite 
are used to simulate multispectral images from the ALI and ETM+ sensors. 

2. SPECTRAL BAND SYNTHESIS ALGORITHM 

Equations governing the spectral band synthesis process are shown here for completeness of the 
presentation. Although the band synthesis process has been proposed and applied previously, it is not clear if the 
applied formulae were the same as in the current work (Anderson et a!., 2000). Band synthesis, applying an 
algorithm that compares more closely to the one presented here, was conducted during a cross-calibration of a 
satellite multispectral instrument with A VIRJS (Green and Shimada, 1997), as well as in simulations of future 
sensors (Esposito et al., 1999). In all the methods, each band of a multispectral image is simulated by a weighted 
sum of the hyperspectral image bands. Differences between the methods are in the ways the weights are determined. 
In the current approach, calculation of the weights is based on finding the best approximation of a multispectral 
response by a linear combination of the hyperspectral responses. This method is consistent with the goal of 
accurately modeling a sensor with a predefined spectral response. 

1 Lockheed Martin Space Operations, Stennis Space Center, Mississippi (sblonski@ssc.nasa.gov) 
2 NASA Earth Science Applications Directorate, Stennis Space Center, Mississippi 
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Consider a multispectral instrument (MSI) with NMsJ bands and a hyperspectral instrument (HSI) with NHsJ 

bands. mectral response of the 1-th MSI band R;MSI is defined at n wavelengths A. •. Spectral response ofthe/h HSI 
band RJ 51 is also known for these wavelengths. The linear combination coefficients cij are derived by solving in the 
least-squares sense the following set of band-synthesis equations: 

NfJ 
MS/(1 HSI 1 fi R; /L•)= C;JRJ (/L,) or k=1, ... ,n; i=1, ... ,NMSI 

)=I 

Spectral responses of existing hyperspectral instruments such as A VIRIS and Hyperion are accurately 
approximated with Gaussian functions. For the HSI bands with the Gaussian shape and full width at half-maximum 
AJ, the coefficients cij are used in the following weighted-sum formulae to calculate (for each pixel) spectral radiance 
of the synthesized multispectral image bands Lt51 from the hyperspectral radiances L/51

: 

for i = 1, ... , N MSI 

An example of the band synthesis is shown in Figure I for the case of Landsat 7 ETM+ Band I simulation 
from A VIRIS 1999 data. The figure also illustrates that although the synthesized bands and the actual bands closely 
overlap, some artifacts such as ripples at band plateaus, shoulders at band edges, and negative values outside bands 
do occur. Evaluation of effects of those artifacts on simulation results is presented in the following section. 
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Figure I . Comparison of actual and simulated spectral response of Landsat 7 ETM+ band 1: 
hyperspectral components used in the band synthesis are shown as dotted lines. 

3. MODTRAN MODELING 

To evaluate effects of differences between actual and synthesized spectral bands, extensive atmospheric 
radiative-transfer modeling was undertaken using the MODTRAN4 software (Berk et al., 1998). The calculations 
included the correlated-k option and the Isaacs approximation for the multiple scattering. About 30,000 MODTRAN 
calculations were conducted for each sensor: AVIRIS, Hyperion, ALI, and ETM+. The calculations were based on 
I ,287 surface reflectance spectra selected from the ASTER library, which comprises spectra collected at Johns 
Hopkins University, the NASA Jet Propulsion Laboratory (JPL), and U.S. Geological Survey (USGS) (Hook, 1999), 
as well as from the USGS Spectroscopy Lab collection (Clark et al., 1993). The selected spectra were measured 
mainly for minerals, but vegetation, soils, and man-made materials such as concrete were also included. For each 
reflectance spectrum, 24 MODTRAN calculations were conducted, i.e., for 6 atmospheric models combined with 4 
aerosol conditions. The atmospheric models spanned a wide range of climates and seasons: 
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• tropical at 30°N on June 22 • mid-latitude winter at 45°N on Dec. 22 
• tropical at 30°N on Dec. 22 • sub-arctic summer at 60°N on June 22 
• mid-latitude sununer at 45°N on June 22 • sub-arctic winter at 60°N on Dec. 22 

The aerosol models were diverse as well, using the specified values of the meteorological range parameter (VIS): 
• rural, VIS = 23 km • urban, VIS = 5 km 
• rural, VIS = 5 km • tropospheric, VIS = 50 km 

For all the sensors (even AVIRIS), the calculations were performed with the nadir viewing geometry from space 
with sensor altitude set to 100 km and ground at sea level. Solar illumination was specified by longitude of0° and 
acquisition time at 10:00 UTC. To generate in-band mean spectral radiance values, convolution of the calculated 
atmospheric radiance spectra and the instrument spectral response functions was conducted internally within 
MODTRAN. The same convolution procedure was applied for the multispectral sensors, ALI and ETM+, and the 
hyperspectral sensors, A VIRIS and Hyperion. The calculations were based on spectral response functions obtained 
from existing data on spectral calibration of the instruments. Results of the MODTRAN calculations for the 
hyperspectral sensors were further processed with the band synthesis algorithm to simulate response of the 
multispectral sensors. Radiance values generated by the band synthesis were compared with those created directly in 
the MODTRAN modeling for the same surface reflectance and atmospheric conditions. 

Synthesis of Landsat 7 ETM+ band data has been conducted from the A VIRIS and E0-1 Hyperion 
hyperspectral bands. The Hyperion bands were also used to synthesize the E0-1 ALI band data. Results of the band 
synthesis for all three cases are shown in Figure 2. In this figure, the graphs comparing the actual and synthesized 
spectral responses are set against scatter plots created from the MODTRAN generated data. Despite the artifacts 
occurring in the synthesized spectral responses, almost all the scatter plots display very high correlation between 
radiance values simulated from hyperspectral data by band synthesis and those generated directly in the MODTRAN 
modeling. Although the figure shows only data for bands 2 (green) and 4 (NIR), results for the other bands, not 
shown here due to limited space, are very similar to the best ones presented. The least accurate band synthesis 
occurs for the ETM+ band 2 simulations from Hyperion data; dispersion of points on the scatter plot suggests the 
possibility of 10 to I 5% radiometric errors. This is in clear contrast to the very accurate simulations of the same 
ETM+ band from the 1999 A VIRIS data, and it is an illustration of possible effects of spectral aliasing. Although 
synthesis of the ALI band 4 is more challenging because of its narrow width, the respective scatter plot proves that 
the simulation is still quite accurate. 

4. IMAGES 

The A VIRIS image used for the band synthesis experiment presented in this paper was obtained from the 
JPL archive as a radiometrically calibrated, but not geometrically corrected, image product. The image was acquired 
from the high-altitude platform (ER-2) over a Maryland area at 15:35 UTC on May 1 I, 2000. GSD of the image was 
estimated to be approximately I 8 m. A relatively cloud-free area of 592 x 656 pixels was selected from the A VIRIS 
image for the comparison with the Landsat 7 ETM+ image acquired near coincidentally. The ETM+ image was 
acquired for the Worldwide Reference System (WRS) path 15 and row 33 at 15:38 UTC on the same day as the 
A VIRIS image. The image was obtained from the USGS EROS Data Center (EDC) on level OR and processed in
house to level 1 G using the LPGS-lite software with the following parameters: UTM projection, GSD of 30 m, and 
cubic-convolution resampling. An area of 353 x 372 pixels, having the same extent as the A VIRIS image subset, 
was selected from the Landsat image. 

EO-I images selected for the presentation were obtained from NASA Goddard Space Flight Center. Both 
ALI and Hyperion images were only radiometrically corrected (level IR). The first pair of the images was acquired 
over an Arizona area (WRS path 35, row 38) at 17:42 UTC on March 23, 2001 (day 82). The second pair was 
acquired over a New England area (WRS path 12, row 31) at 15: 17 UTC on May 9, 2001 (day 129). Respective 
Landsat 7 ETM+ images were acquired one minute before the E0-1 data. Those Landsat 7 images were obtained 
from the EDC on level OR as well, but they were processed only to level 1 R using the LPGS-lite software. Areas of 
overlap between the Hyperion, ALI, and ETM+ images were selected from the images. Due to small GSD 
differences between the instruments, pixel sizes of the image subsets are slightly different, for example, 197 x 6094 
pixels for Hyperion and 201 x 6234 pixels for ALI. 
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Figure 2. Comparison of spectral band synthesis results and actual spectral responses for band 2 (top row of the 
upper panel) and band 4 (top row of the lower panel) of the ALI and ETM+ instruments. Scatter plots created from 
the MODTRAN-generated data (bottom rows ofboth panels) show moderate effects of the band synthesis artifacts 
on the simulated images. 

36 



5. AVIRIS-BASED ETM+ SIMULATIONS 

An image with the Landsat 7 ETM+ bands synthesized from the A VIRIS data is shown in Figure 3 together 
with the actual ETM+ image. Because of the GSD difference, only histograms of the images are compared in Figure 
4. Despite the GSD difference, the histograms of the actual and simulated data still agree. Not only are the shapes of 
the histograms generally the same, but also the positions of the peaks closely match. 
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Figure 4. Histograms ofradiance values for the actual Landsat 7 ETM+ image and for the image simulated by 
spectral band synthesis from the A VIRJS hyperspectral data. 

6. HYPERION-BASED ALI AND ETM+ SIMULATIONS 

EO-I Hyperion data from Arizona and New England were used to simulate both Landsat 7 ETM+ and EO
I ALI images. Examples of the actual and simulated images are shown in Figure 5 (New England) and Figure 6 
(Arizona) . The VNIR images demonstrate very good qualitative agreement between the actual and simulated data. 
Radiance histograms presented in Figure 7 allow for quantitative comparisons of the images. The best agreement is 
achieved for the simulations of bands 2 and 3 of the ALI images. Only small radiometric differences occur for the 
other VNIR bands. While actual ETM+ data in the VNIR bands differ a little more from the Hyperion-derived 
values than the ALI data, shapes of the histograms still match very closely. Hyperion-derived data diverges more 
significantly from the original ALI and ETM+ images in the NIR band 4, but the difference is still quite moderate. 
Decisively, large differences occur solely for the SWIR bands 5 and 7. Although the relative differences are close to 
20-30%, the huge discrepancy observed for band 5 of the ALI image from Arizona seems to be a result of some 
accidental error during ground processing of that image. 
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Figure 5. True color Landsat 7 ETM+ image of the New England swath (left), full-scale subsets of the ETM+ image 
(center) and its simulation from the EO-I Hyperion data (right). 
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Figure 6. Color IR E0-1 ALI image of the Arizona swath (left), full-scale subsets of the ALI image (center) and its 
simulation from the EO-I Hyperion data (right). 

7. DISCUSSION 

Overlap area of the New England images stretches from Boston, Massachusetts, to Rhode Island Sound in 
the Atlantic Ocean (see Figure 5). The coverage includes many urban areas, abundant vegetation (both forests and 
agriculture), and an extensive seawater surface. Overlap areas of the Arizona images cover mainly desert with 
mountains (minerals) and sparse vegetation (see Figure 6). Therefore, the two images represent quite different 
environments and allow for the band synthesis algorithm testing with various spectral features. Surface constituents 
of the Arizona images are similar to the ones used in the MODTRAN modeling. Based on the MODTRAN results 
presented above, a very good agreement between the actual and simulated data has been expected for the Arizona 
images. Although such an agreement occurs only for some spectral bands, these results and those from the A VIRJS
based simulations fully validate the presented band synthesis method. 
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Differences observed for the other spectral bands do not contradict the band synthesis method, but only 
suggest that radiometric calibration of the sensors needs to be improved. Similar results have been reported by 
others (Jarecke et a!., 2001; Barry and Ong, 2001 ). 

The simulations of the Landsat 7 ETM+ image using A VIRJS data acquired near-coincidently (within 
minutes of each other) from a high-altitude aircraft show that a very satisfactory radiometric agreement can be 
achieved even without applying corrections for effects of atmospheric radiative transfer processes occurring above 
the airplane altitude. However, in most cases the corrections will need to be applied to account for differences in 
viewing geometry, solar illumination, and atmospheric conditions. This becomes especially important when data 
from a hyperspectral instrument acquiring images from a low-altitude aircraft are to be used in modeling of satellite 
multispectral sensors. 

8. CONCLUSIONS 

A spectral band synthesis algorithm for simulations of multispectral images from hyperspectral data has 
been formulated and implemented in the Applications Research Toolbox software package. High correlation 
achieved between the simulated images and the data acquired near-coincidentally by actual remote sensing 
instruments has validated the algorithm. Validation has been supported by results ofMODTRAN modeling 
conducted with an extensive set of surface reflectance spectra and atmospheric conditions. The modeling has also 
shown that band synthesis may be less accurate, in some cases, due to spectral aliasing. Nevertheless, the band 
synthesis algorithm can be effectively applied in modeling of multispectral sensors in the remote sensing 
applications research and development area. The same algorithm can be used as well for cross-calibration of 
hyperspectral and multispectral instruments (e.g., EO-I Hyperion and ALI vs. Landsat 7 ETM+). 
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This tutorial is designed to help others understand how we calibrate terrestrial imaging spectroscopy 
data. This paper, along with the full resolution images can be found at: 

http://speclab.cr.usgs.gov/PAPERS.calibration.tutoria/ 

1. Introduction 
Remote sensing data are routinely used to characterize vegetation, minerals and other materials 

on the surface of the Earth. The demands for better characterizations have increased as the technology of 
remote sensing, the complexity of biophysical models, and the sophistication of scientific studies and land 
management applications have advanced. As a result, there is a need for accurate correction of 
atmospheric effects and conversion from radiation measured at the sensor to reflectance arising solely 
from the imaged surface materials. Sensors known as imaging spectrometers have the capability of 
resolving the intensity of atmospheric absorption features and the shapes of scattering curves and, thus, 
allow for a better correction of remotely sensed spectra to values of reflectance. 

Calibrating imaging spectroscopy data to surface reflectance is an integral part of the data 
analysis process, and is vital if accurate results are to be obtained. The identification and mapping of 
materials and material properties is best accomplished by deriving the fundamental properties of the 
surface, its reflectance, while removing the interfering effects of atmospheric absorption and scattering, 
the solar spectrum, and instrumental biases. Calibration to surface reflectance is inherently simple in 
concept, yet it is very complex in practice because atmospheric radiative transfer models and the solar 
spectrum have not been characterized with sufficient accuracy to correct the data to the precision of some 
currently available instruments, such as the NASA/JPL Airborne Visible and Infra-Red Imaging 
Spectrometer (A VIR IS, see Green et a/., 1998 ). 

The objectives of calibrating remote sensing data are to remove the effects of the atmosphere 
(scattering and absorption) and to convert from radiance values received at the sensor to reflectance 
values of the land surface. Figure Ia shows a samp le radiance spectrum from an imaging spectrometer. 
The overall level and shape of this radiance spectrum is strongly a function of the solar illumination and 
absorption by atmospheric gases. The advantages offered by calibrated surface reflectance spectra (e.g., 
Figure 1 b) compared to uncorrected radiance data include: 1) the shapes of the calibrated spectra are 
principally influenced by the chemical and physical properties of surface materials, 2) the calibrated 
remotely-sensed spectra can be compared with field and laboratory spectra of known materials, and 3) the 
calibrated data may be analyzed using spectroscopic methods that isolate absorption features and relate 
them to chemical bonds and physical properties of materials. Thus, greater confidence may be placed in 
the maps of derived from calibrated reflectance data, in which errors may be viewed to arise from 
problems in interpretation rather than incorrect input data. 

The consequences of poor surface reflectance calibration can be costly. For example, an artifact 
in the calibration could be seen as a dip in the derived surface reflectance spectra, and that dip might be 
interpreted as representing a material that does not really exist at that location. Such an error could have 
serious implications, for example, if the misidentified material has hazardous properties indicating a need 
for environmental cleanup, or if it indicated a new mineral deposit discovery. Investigating such a false 
lead could result in wasted time and money. 
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Figure I. A typical radiance spectrum of a non
vegetated area (Figure I a) is strongly influenced by the 
solar function and absorption features caused by 
atmospheric gases. After calibration to surface 
reflectance, the spectrum (Figure I b) reveals the 
absorption feature(s) caused by minerals on the surface. 
Subsequently, lab spectra of minerals can be examined 
to identify the mineral(s) causing the absorption 
feature(s) , in this case hematite and montmorillonite. 
The water features in the radiance spectrum in (A) is 
due to gaseous atmospheric water, while that in the 
surface reflectance in (B) is due to liquid water in the 
soil. The gaps in (B) are where the Earth's atmosphere 
is too opaque to derive surface reflectance in from the 
radiance spectrum in (A) . 

The following tutorial documents the 
methods used by scientists at the USGS 
Spectroscopy Lab to provide the best calibration 
given the technology available. This tutorial is 
based on methods and experience developed from 
calibrating dozens of A VIRIS data sets. While the 
discussion here is focused on the calibration of 
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A VIRIS data, the concepts apply to other sensors as well. Because A VIRIS data are delivered to the 
investigator calibrated to radiance at the sensor, instrumental biases are already removed and will not be 
discussed in this tutorial. 

2. Review of Calibration Approaches 
Many approaches have been developed for atmospheric correction and calibration to surface 

reflectance of imaging spectroscopy data. These approaches may be grouped into four broad categories: 
scene-derived corrections, radiative transfer models, ground-calibration methods, and hybrid radiative
transfer-ground-calibration procedures . 

2.5 

The appeal of the scene-derived and modeling approaches is the potential ability to 
atmospherically-correct remote sensing data without the dependence on external information or 
measurements. The Internal Average Reflectance (IAR) approach of Kruse (1987) uses the mean radiance 
of all the pixels in the image as a correction factor. The individual radiance values in each pixel are 
divided by this mean radiance to estimate reflectance . The flat field correction method (Roberts eta/., 
1986, and Carrere and Abrams, 1988) assumes that there is an area in the scene that is spectrally neutral 
(no variation in reflectance with wavelength). The average radiance of this "flat field" may then be used 
as an estimate of irradiance. As with IAR, this average radiance is used as a correction factor to convert 
the radiance in each pixel to reflectance. While essentially independent of external information or 
measurements, these approaches rely on assumptions about the surface materials in the scene which are 
rarely encountered and, thus, result in apparent reflectances which show deviations from spectra of 
comparable materials measured in the field or laboratory (Clark and King, 1987, and Kruse, 1987). 

The calibration of remote sensing data using physics-based radiative transfer models has been the 
subject of vigorous research efforts. Theoretically, models may be developed which describe the radiative 
transfer of sunlight in its physical interaction with the gases and particles in the atmosphere, its interaction 
with the surface, and its transmission along a different path upward through the atmosphere to the sensor 
(e.g., Gao eta/., 1993, Leprieur eta/., 1995, Zagolski and Gastellu-Etchegorry, 1995, Adler-Golden eta/., 
1999, Schlapfer eta/., 2000, and Qu eta/., 2000). These models describe the solar irradiance function, 
the absorption and scattering processes of atmospheric gases, and the reflection from surface materials, all 
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as a function of the wavelength of electromagnetic radiation and the directional angles of the sun and 
sensor with respect to pixels of remote sensing data as they are located on the Earth's surface. The full 
solution of the equations which describe the physics of this radiative transfer problem are complex and, 
thus, numerical models of radiative transfer use simplifying assumptions to achieve results in reasonable 
computation times. 

Although theoretically well-described, the methods of radiative transfer calibration produce 
apparent surface reflectance values which show residual atmospheric absorptions and scattering effects . 
These residual errors may affect the identification, characterization, and/or mapping of surface materials . 
Indeed an examination of the results of radiative trans fer models show errors in the calculated reflectance 
(see Clark eta/. , 1993 and 1995). These errors arise from inadequate definition of the solar irradiance 
function , variations in the source illumination, and simplified assumptions in the physics that describe 
absorption by atmospheric gases. While the models have been steadily improving with time, they are not 
yet at the level where artifacts are smaller than sensor noise . 

The use of field and/or laboratory measurement of reflectance from surfaces and materials within 
an image of remote sensing data represents another approach to atmospheric correction and calibration. 
The need for such measurements to be made during a field survey of the study area places demands on the 
conduct of a remote sensing study. The field measurements require the availability of an appropriate field 
spectrometer and a field crew to use the instrument to measure an area of ground within the image at the 
time that the remote sensor passes overhead, or, at least, at a time close to the overpass. The empirical 
line calibration (Cone! eta/., 1987) was applied to an early imaging spectrometer, the Airborne Imaging 
Spectrometer (AIS). This approach uses field measurements of two or more areas within an image in 
order to correct the radiance data using a linear equation. The average field measurements of reflectance 
for the calibration areas are used in a linear relationship with the corresponding average radiance values 
over the calibration areas in order to derive additive and multiplicative correction factors. Cone! eta/. 
( 1987) describe the application of the procedure using calibration areas of differing albedo, at least one 
bright target and one darker target. 

A similar approach, but using only a single calibration site, described by Clark eta/. ( 1988, 1993, 
and 1995) has been applied to Airborne Visible/InfraRed Imaging Spectrometer (A VIRIS) data over a 
wide range of study sites. This approach uses both an additive correction factor (an estimate of path 
radiance) and a multiplicative correction factor derived from the ground measurements of reflectance of 
the single calibration site. These empirical approaches based on field measurements result in well
calibrated surface reflectance values near the calibration sites. The drawbacks of these methods include 
the increase in atmospheric residual absorptions for pixels remote from the calibration site and for pixels 
with different path lengths through the atmosphere as caused by a changing scan angle of the sensor. 

This paper describes a hybrid approach that uses ground measurements and radiative transfer 
models. First described by Clark eta/.( 1993 and 1995), this method uses a combination of the 
ATmosphere REMoval Program (ATREM; CSES, 1997) and field spectral measurements of a single 
ground calibration site. The use of the A TREM model allows better atmospheric correction at elevations 
that are different from the calibration site, while the ground calibration removes the residual errors 
common with most radiative transfer approaches. We have termed this method "radiative-transfer
ground-calibration (RTGC)." In a comparison of several methods, the use of field measurements in 
conjunction with radiative transfer models has been found to give the best calibration results for imaging 
spectrometers by Clark eta/. (1993 and 1995). 

3. Method Summary 
Our calibration process involves two steps. In the first step, the flight data are corrected using a 

radiative transfer algorithm that examines the imaging spectroscopy data pixel by pixel, adjusting 
atmospheric absorptions in the model and removing the absorptions from the data. This step also includes 
characterizing and removing the effects of Rayleigh and aerosol scattering in the atmosphere (called "path 
radiance") and a correction for the solar spectral response relative to wavelength. However, the resulting 
surface-reflectance-corrected spectra have residual artifacts due to imperfect radiative transfer models, 
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and the imperfect knowledge of the detailed spectral response of the sun. A second step is necessary to 
remove these artifacts. 

The second step requires in situ spectral characterization of an area that is also measured by the 
sensor, i.e. a ground calibration site. The reflectance of a ground calibration site may be characterized 
using a field-portable spectrometer and/or the careful collection of samples of the materials covering the 
surface of the site and their subsequent measurement with a laboratory spectrometer. A comparison of the 
field or lab spectral measurements with the corresponding spectra from the imaging spectroscopy flight 
data may show differences which indicate that additional corrections are necessary. On the basis of this 
comparison, a set of multipliers (a multiplication factor for each spectral channel) can be derived. When 
the correction is applied to the data, the resulting spectra are similar in quality to laboratory reflectance 
spectra. Additional areas in the data set can be used to verify and further refine the accuracy of the 
multipliers and to derive any residual path radiance correction. 

Achieving a high quality calibration is difficult. It requires careful planning, multiple visits to the 
field, time to reduce field and laboratory data, examination of flight data and comparison to the field data, 
and verification ofthe results. Our experience has shown that the high signal-to-noise of recent AVIRIS 
data (since 1995) typically requires I to 2 person months per study site to achieve a quality calibration. 
Table l shows a summary of our calibration steps, and the following presentation shows how a quality 
calibration can be achieved . 

a e . T bl 1 S ummary o a ra on f c lib ti s teps 

Planning for calibration. 

Include at least one calibration site as part your flight data set. 

Near the time of data acquisition, characterize the calibration site using field portable spectrometers. 

Collect samples and measure their spectra in the laboratory to back up the field data. 

Numerically convolve field and lab spectrometer data to the bandpass and sampling of the 
flight data. 

After data receipt, remove solar and atmospheric response using a radiative transfer algorithm. 

Derive residual path radiance correction and subtract it from the flight data. 

Trick: Use vegetation in shaded areas to determine residual path radiance issues. 

Derive a set of multipliers as a function of wavelength to correct residuals from the radiative transfer 
algorithm. 

Apply the offset correction and multipliers to the flight data set. 

Examine spectra and large averages of spectra from the flight data set for artifacts. If artifacts are 
discovered, trace their origin and repeat the above analyses. 

4. Planning for Calibration 
An important preliminary step, before the calibration process is even started, is in planning for the 

acquisition of the imaging spectroscopy data. The planning should be conducted with these important 
considerations in mind in order to select good calibration sites . 

I) It is important to visit the study area before establishing the exact location of the flight lines to 
ensure inclusion of at least one suitable calibration site. 

2) If at all possible, the region of data coverage should include some spatially uniform, "spectrally 
bland" area. A spectrally bland area is one that does not have strong absorption features in the wavelength 
region to be measured. 

3) High reflectance level is required. A high reflectance gives the best sensitivity to multiplicative 
corrections. A target with low reflectance will be more sensitive to additive offsets such as atmospheric 
scattering (which will be discussed later). 
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4) The site should be large enough so that many sensor pixels cover the site; thus, many spectra 
can be averaged to minimize noise in the flight data calibration. Regardless of the number of pixels 
averaged, some noise will remain in the average spectrum. The larger the calibration site, the more pixels 
that can be averaged to reduce that noise level. The noise decreases as the square root of the number of 
pixels averaged. So, for example, averaging 16 pixels results in a fixed pattern residual noise of !/4th of 
the noise in any one pixel. A 100 pixel average reduces the pattern to I I I Oth of the pixel noise. The high 
signal to noise of A VIRIS data since 1995 requires at least 25 pixels in the average for good corrections, 
and many more is certainly better. This many pixels implies large, spatially uniform calibration sites for 
accurate A VIR IS calibration . 

5) The site should be accessible to a ground crew. 
6) The site should be at a similar elevation to the prime study area. 

The considerations of high reflectance and large area for the calibration site affect the overall signal-to
noise of the spectra that will be used to derive a set of multipliers, one for each spectral channel, to correct 
the flight data to surface reflectance (examples will be shown below). This set of multipliers will be 
applied to each pixel in the imaging spectroscopy data set. A residual noise pattern in the calibration site 
reflectance spectrum will propagate into the set of multipliers which are derived from the field data. 
Because the same set of multipliers are applied to the spectrum for each pixel, the noise pattern will 
impart a fixed residual pattern into the entire final data set. Thus, care must be taken to minimize noise, 
and that can be best achieved by averaging numerous measurements. 

We have used playas, salt flats, dam faces, dirt or gravel parking lots, rock outcrops, sand 
beaches, building construction sites, rock talus slopes, plowed fietds (free of vegetation), building roofs, 
and dry grass fields as calibration sites, with varying degrees of success (the list is in approximate order 
of best to worst in our experience). Figures 2a-n show some of these sites. 

5. Atmospheric Correction Using A Rad.iative Transfer Model 
Because imaging spectroscopy data sets are typically large, organization for easy use is an 

important preliminary step. We divide the data into manageable chunks to fit on our removable optical 
media. For AVIRIS studies, we divide the data into 1024-line Vicar-format data cubes which are 282 
megabytes in size (Appendix A). 

We assume in this report that the flight data are delivered to the user already calibrated to 
radiance (e.g. Figure 3). If that is not the case, the data must be corrected to radiance before radiative 
transfer calculations are performed. 

The next step in calibrating imaging spectroscopy data is to remove the solar spectral response, 
atmospheric absorptions and atmospheric scattering using a radiative transfer program. Initially, the 
calibration is applied to the 1024-line data cubes that contain the ground calibration site(s). Currently we 
are using AT REM (Gao eta/ .. 1990, 1992, 1993) from the University of Colorado, with custom 
modifications to read Vicar headers, to perform this radiative transfer calibration step. ATREM estimates 
the average 0 2, C02, ozone and others gases in the scene, but does not adjust the amounts on a per-pixel 
basis. Thus as the atmospheric path length changes with elevation, residual features caused by these gases 
will be observed in the A TREM -corrected data . 

Once the data are radiative transfer corrected, spectra from the AVIRIS data set are extracted 
from pixels over the ground calibration site covering the same area as was measured with the field 
spectrometer (e .g. Figure 4 ) . These A TREM-extracted pixels are averaged (Figure 5) and compared to the 
average field spectrum (Figure 6). Because the solar irradiance function has not been modeled with 
sufficient accuracy to correct imaging spectroscopy data to surface reflectance, and because the radiative 
transfer corrections are imperfect, the A TREM-corrected data contain significant artifacts (Figure 6). The 
magnitude of residual features caused by imperfect water corrections by ATREM depends on the 
wavelengths selected to characterize the 0.95 and 1.15 micron water absorptions in the ATREM user 
command file. We use a different set of wavelengths in our A TREM corrections which give a more 
consistent correction than the wavelengths in the command file distributed by the University of Colorado. 
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Figure 2a- Cuprite Calibration. Stonewall Playa, located southeast of the main hydrothermal centers at Cuprite, 
Nevada, is very large and uniform and provides an excellent calibration site, but must be characterized well because 
of weak Fe1

• absorptions in the visible and a weak montmorillonite absorption at 2 .2-microns . 2b- Salt Flat 
Calibration A. The shores of the Great Salt Lake provide for excellent calibration sites. This area, located next to 
Old Saltair west of Salt Lake City, Utah, is very large and uniform. High reflectance and no significant absorptions 
make this one of the best calibration sites we have encountered. Eric Livo is in the distance with the field 
spectrometer, walking a grid over the calibration area and obtaining hundreds of spectra . 2c- Salt Flat Calibration 
A. Close up of the Old Saltair salt flat The surface is so uniform that field sampling and measurement of the 
samples on a laboratory spectrometer should be able to give a good representation of the surface. Contrast this 
surface to the Deer Creek dam face. 2d- Deer Creek Dam Calibration A. The Deer Creek dam, southeast of Salt 
Lake City, Utah, provides an excellent calibration site, if it can be characterized well. 2e- Deer Creek Dam 
Calibration B. Close up of the Deer-Creek dam face. One can see large variations from rock to rock, making it 
difficult to collect rocks in the correct proportions for measurement on a laboratory spectrometer. A field 
spectrometer is required to accurately characterize the site. 2f- JordaneDe Dam Calibration A. The Jordanelle 
dam face, located east of Salt Lake City, Utah , is much larger and appeared to be more uniform than the Deer Creek 
dam face. 2g- JordaneUe Dam Calibration B. The toe of the Jordanelle dam appears excellent as a calibration 
site. The rocks are bright. The area is just barely large enough for AVIRIS coverage, giving only about 10 pixels on 
the toe. D espite appearances in the field, and with the field spectrometer, it turned out that the reflectance levels 
from spectrum to spectrum and weak absorptions in the field spectra were quite variable. Also, the spectra of the toe 
and dam face were slightly different. Thus, the Deer Creek dam face turned out to be a better calibration site than the 
Jordanelle dam face. 2h- Piute Parking Lot Calibration A. An example of a gravel parking lot calibration site: the 
Piute reservoir boat launch parking lot in central Utah. Ray Kokaly (left) walks with Eric Livo (right, with the field 
spectrometer) to provide the Spectralon reflectance standard for re-calibration as soon as the spectrometer calibration 
begins to drift. 2i - Piute Parking Lot Calibration B. Close up of the Piute Reservoir boat launch parking lot in 
central Utah. The average spectrum (in Figure 3) shows the mixture of muscovite in the rocks and the clay 
montmorillonite in the dirt. 
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Figure 2j- Jos hua Tree Calibration. This sm all playa was the most vegetation-free area we found to cal ibrate the 
1995 AVIRIS data. 2k- Yellowstone Calibration. At Yellowstone N a tional Park we used a road constructi on 

gravel s taging lo t for calibration . Ray Kokal y is in the dis tance with the fi e ld spectrometer. While the area is large 

and uniform, the source rock fo r the road construction periodically changes, and thus the s ite mus t be re-measured 

near the tim e of eac h flight. 21- Arches Ca libration A. T he ca libration for the 1995 A VIR IS da ta acquis ition at 

Arches National Park was particularly well planned. This image shows Gregg Swayze collecting a sample of the 
Yellow Cat Flat playa, just outside of the Park boundary, on April27 , 1995 . T he site was well character ized wi th our 

field spectrometer. The fli ght was ten tative ly planned for May to July . 2m- Arches C alibration B . On June , 19, 

1995, the day of the flight , we arrived at the Yellow Cat Flat playa and found that in the previous month and a half, 

weeds had grown a ll over th e playa, rendering it unusable as a ca libra tion site. N earby was the chea tgrass fie ld 
shown here . While the fi e ld was uniform enough to work as a calibration s ite, cheatgrass (see Figure 3) has s trong 

absorptio n fea tures. I f the s ite was no t we ll characterized , residual cheat g rass features would appear in all the 

calibrated AVIRIS data . Because of this potential difficu lty, ad ditional calibration s ites were charac te rized . Gregg 

Swayze is s hown operatin g the field spectrom eter. 2n- Arches C alibration C . The ca libration s ite used fo r the 

Arc hes I 99 5 da ta was th is large outcrop of Moab Tongue Forma tion in Arches Na tiona I Park just north of theW olf 

Ran ch parkin g lo t and along the Delicate Arch trai l (shown). 2o. Closeup of the rock in F igure 2 n. 2p. S ite used 

for A VJRJS animas Colorado ca librat ion . T he rocks are andes iti c and spectrally bl and, mean ing th ey have few 

spectra l features . 2q . Closeup of the rocks in Figure 2p. Whil e the rocks show var iab ility on a small scale, on the 

la rge scale o f many A V IRIS pixe ls, the s ite is re la tively uniform. 
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Figure 3. A typical AVIRIS radiance spectrum . The 
general shape, including the peak near 0 .5 microns 
and the overall decrease toward 2.5 microns, is due 
to the solar spectrum. Major atmospheric water 
absorptions occur at 0.95, 1.1 5, 1.4 and 1.9 microns. 

Ox ygen absorption occurs at 0.76 micron, and CO , 
at 2.0, 2 .08 , and the weak doublet near 1.6 microns . 

The I .9 to 2 .5 micron region is scaled a factor of2 
higher relative to the data at shorter wavelengths to 

better show the details. Sixteen-bit A VIR IS data are 

distributed with this scale factor applied to avoid 
data number (DN) quantization errors . 

Figure 4. The A VIRIS pixels sampled to 
characterize the Deer Creek dam calibration site for 
comparison with the ground field spectra. 
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Note in Figure 6 the difference in reflectance 
level between the field and the A TREM spectra. 
Because the dam face consists of large boulders, 
shadowing plays a significant role. If the field spectrum 
was obtained under lighting conditions different from 
that of the A VIRIS flight, the levels could be different. 
In the case shown in Figure 6, however, the levels 
match closely near 0.8 to 1.1 microns, but differ more 
beyond 1.4 microns. This is due to some calibration 
difference with the A VIRIS and/or the solar spectrum 
used in the A TREM software. For the August 1998 
Utah A VIRIS flight, we observed similar discrepancies 
at all our calibration sites, including those such as the 
Old Salt Air salt flat where shadowing is negligible. 
However, the ground calibration step removes these 
discrepancies . 

Average A VIR IS radiance spectrum 
of Deer Creek Reservoir dam face 

calibration site 

Deer Creek Reservoir dam, Utah 

Red area indicates AVIRIS pixels 
selected and averaged to characterize 
calibration site 

A VIRIS scene f980805t0 1 p02 _ r02 _sO 1 
Image acquired August 5, 1998 
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Figure S.The A TR EM-corrected spectrum sampled from the 
area shown in Figure 4. While ATREM corrects the data to 

approximate surface reflectance, there are too many artifacts 
for detailed surface material identifications and mapping. 
Note the reflectance is negative in the UV (<0.4 micron). 

ATREM overcorrects for the path radiance (described 

below). 
a: 

0.0 A VIRIS AT REM spectrum 
of Deer Creek Reservoir dam face 

(calibration site) 
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Figure 6. The A TREM-corrected spectrum from Figure 5 is 
compared to the edited average field spectrum for the Utah 
Deer Creek dam face. Note the field spectrum is smooth, as 
would be expected for the minerals present in the rocks, as 
compared to the A TREM-corrected spectrum. The ATREM
corrected spectrum has had the over-correction of the path 
radiance fixed using the methods described below. Besides 
the artifacts around atmospheric water absorptions, there are 
many small-scale spikes in the ATREM-derived spectra 
which must be corrected before material identification can 
begin. 

0.25 Edited average ASO field 
spectrum of ca~bntion s.itc 

After seeing the ATREM-derived surface 
spectra, one might ask why use A TREM at all? Water 
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vapor in the atmosphere is highly variable, even over dry desert sites. Changes in elevation result in large 
variations in the atmospheric gas absorption depths. If a radiative transfer program was not applied first, 
the artifacts would be much greater than seen in Figure 6. The artifacts from A TREM are largely 
consistent between all pixels, and include those caused by the imprecisely known solar spectrum, possible 
errors in the AVIRIS radiance calibration, and relatively repetitive errors in the radiative transfer code in 
deriving the atmospheric water absorption profiles. Thus, these artifacts can be satisfactorily removed . Of 
course it would be better to use more accurate models, and we will test them when they become available. 

6. Path Radiance Correction. 
We have found that ATREM overcorrects for the path radiance scattering in the atmosphere at 

blue to UV wavelengths. The atmosphere scatters more light at shorter wavelengths (blue to UV--that is 
why the sky appears blue), so the path radiance portion of the measured signal that a radiative transfer 
routine must correct is largest in the UV. This type of scattering is called Rayleigh scattering and is 
caused by light scattering from molecules and particles much smaller than the wavelength of light. The 
information to derive the necessary correction can be found in the imaging spectroscopy data of a 
spectrally dark target whose reflectance is known. Larger particles, such as dust and water droplets 
(aerosols), cause Mie scattering at UV as well as at longer wavelengths (sometimes there is significant 
scattering in the infrared at 2.5 microns), but such conditions have not been a significant factor in our 
study areas in the western United States to date. 

There is a simple strategy for deriving the UV path radiance levels. The main problem is in 
separating the surface reflectance component from the atmospheric path radiance. An accurate surface 
reflectance level is critical for determining the path radiance component. Ideally, a spot on the ground 
with zero reflectance would give a direct measurement of the path radiance. Traditionally, water has been 
used as a spectrally dark target. However, water also scatters blue light more than longer wavelengths 
(deep water also looks blue), so water is not usually UV-dark. The best UV -dark target we have found is 
green plants. From about 0.4 microns and shorter wavelengths, plant reflectance is very low, about 2% or 
less, and is either flat or decreases toward shorter wavelengths (e.g. Clark e t a/. , 1993, and Figure ?a). 
The north side of a hill or mountain (in the northern hemisphere) will be in shadow or at least lower solar 
intensity, so the apparent reflectance is lower than vegetation in full sunlight. It is common to find 
vegetated north sides of mountains with apparent reflectance in the UV of < 0.2% (Figure 7a&b) . This 
provides an excellent UV dark comparison for the path radiance correction. Such areas are simply found 
by choosing a channel at UV wavelengths from the data (e.g. AVIRIS channel 3) and st retching the image 
brightness to show the da rkest areas. 

In some desert areas, where there is no vegetation in shadow areas in the imaged area, the above 
method cannot be used. In such cases an accurate measurement in the fi eld is required. For example, some 
dark rocks on the north side of a hill might be used. It is important to make such measurements under the 
same lighting conditions as the flight data so th e shadows will be the same. 
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The ATREM-corrected data typically are 
negative in the UV, so the UV spectrum of 
vegetation in shadow is used to estimate the 
ATREM over-correction (Figure 8a). The difference 
between A TREM derived spectrum and the estimate 
(Figure 8a) becomes an offset correction to the 
ATREM data (Figure 8b). The offset correction is 
typically zero at wavelengths longer than about 0.5 
microns (Figure 8b). This is called the "offset 
spectrum." 
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Figure 8b. The derived AT REM offset spectrum : the 
difference of the two spectra shown in Figure 8a. 
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Figure 7a. Vegetation spectra from ATR EM-corrected 
AVIRIS data. Two spectra are shown : one in su nlight, 
and another on the north side of a hill, largely in shadow. 
The reflectance in the UV is low and decreasing toward 
shorter wavelengths. ATREM has overcorrectcd the 
reflectance at wavelengths shorter than about 0.45 
microns, and the data are negative at wavelengths short of 
0.4 microns, which is not physically poss ible. 

Figure 7b. Same two spectra as in Figu re 7a, except 
showing details in the visible and ultraviolet portions of 
the spectrum . 
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Figure 8a. Estimate of a normal vegetation-in-shadow 
spectrum shown in Figures 7a and 7b. This estimation is 
used to remove the effects ofthe ATREM overcorrection 
for path radiance as shown in the un-edited vegetation 
spectrum. 
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7. Correction Using A Calibration Site 
7.1 Calibration Site Surface Reflectance Characterization 

At the time of data acquisition, it is very important to characterize the calibration site with a field 
spectrometer. Examples of field measurement activities at some calibration sites are given in Figures 2a-n 
and Figures 9a-d. A calibration site can change in a relatively short time (e.g. with rain or vegetation 
growth). For example, as a part of our calibration of the A VIRIS 1995 data over Arches National Park, 
we located an excellent playa just outside the park in April. It was a site we had used for calibration of 
previous A VIRIS data sets. While vegetation growth in the region seemed to be at its peak (relatively lush 
for that year), the playa had essentially no vegetation on it, and we had not seen significant vegetation on 
it during our previous visits. We measured it with our field spectrometer and sampled it for measurement 
on our lab spectrometer. However, on the day of the flight in mid-June, we went to the site and found it 
covered with weeds. As a result, it would no longer serve as an adequate calibration site. Fortunately, we 
had backup sites, and scrambled to characterize them. First we characterized a cheatgrass-covered field 
near the Playa (Figure 2m), and a rock outcrop just after the flight (Figure 2n). 

Figure 9a- Salt Flat 
Calibration. Spectralon 
calibration. 

Figure 9b- Deer Creek 
Dam Calibration A. Ray 
Kokaly operates the field 
spectrometer on the Deer 
Creek dam face. 
Obviously, such a 
measurement is tricky 
because walking on large 
boulders is difficult. 

Figure 9c- Deer Creek Dam Calibration B. 
Frequent calibration of the field spectrometer is 
important. The constantly changing atmosphere and 
heat load on the instrument from sun and shadow as 
one moves around making measurements cause 
continual drifts. Here, Ray Kokaly operates the 
field spectrometer while Eric Livo holds the 
Spectralon reflectance standard. Eric hold the 
standard high and away from his body to reduce 
secondary reflections, and tries to position the 
standard so the shadow side of his body is seen by 
the standard. 

Figure 9d- Jordanelle Dam Calibration. Calibration of the reflectance target with the 
field spectrometer is important. Roger Clark holds the target high to minimize 
reflections from clothes, and makes his shadow side face the target. Roger's green 
Gortex hat has distinctive and sharp absorption bands. If any light from the hat 
contributed to the signal, inverse Gortex features would be seen in the spectra of the dam 
face, but no such features are seen in the data. Such checks are important to verify the 
accuracy of the calibration. 

It is also important to characterize the sky conditions at the time of the 
flight. While the water, oxygen, and carbon dioxide contents of the atmosphere 

- - • are derivable from the imaging spectroscopy data, cirrus or other thin cloud 
formations are harder to assess. While clouds might be recorded by the sensor in the image area, clouds 
outside the edges of the imaged area may reflect light into the scene, resulting in increased water features 
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apparent in the data. Thus it is important to record sky conditions (note sky conditions in Figures 2a-n) at 
the time of calibration site field characterization. Also record sky conditions overhead at the time of the 
overflight (e.g. Figure 10). 

Figure 10. This photo shows the AVIRIS ER-2 aircraft flying over Arches National 
Park on June 19, 1995, and illustrates sky conditions at the time of the overflight. The 
rest of the sky was similarly clear. The photo was taken with a tripod-mounted 300 mm 
lens, Fujichrome Velvia (ISO 50) film, by Roger Clark. The aircraft velocity is so fast 
and the airplane is so high that the sound appears to come from about 60 degrees behind 
the plane. A quiet location is required to find the plane in the sky at the time of the 
overflight Listen for the engines, and then, keeping in mind the flight line directions, 
look about 60 degrees ahead of the sound. 

7.2 Spectrally Uniform and Spectrally Bland Sites 
A calibration site is ideally spectrally uniform and spectrally bland. A site that is not spectrally 

uniform requires more thorough sampling. For example, the above discussion regarding the playa 
calibration for the Arches National Park AVIRIS flight illustrates a spectrally non-uniform site: weeds 
with strong green vegetation spectral signatures on a playa spectral background. While it is possible that 
an adequate field spectrometer measurement strategy could have been devised to characterize such a 
variable site, the possibility of residual artifacts is nevertheless increased. 

Imaging spectroscopy pixels are almost always much larger than what you can measure in the 
field, and certainly larger that what can be measured in the lab. For example, AVIRIS pixels are about 20 
meters square (area= 400 square meters). Our field spectrometer has about a 20 degree field of view so it 
measures a spot only about 0.5 meters in diameter from a distance of shoulder height. Such a spot 
corresponds to an area of only 0.2 square meters, or only 0.05% of the area of an A VIRIS pixel. Even if 
one measures 300 spots, the equivalent area covered is only about 15% of an A VIRIS pixel (although the 
field spectra could be statistically scattered over many A VIRIS pixels). Thus, if the calibration site has 
spectral features which vary across the site, even 300 (or 3000) field spectra may not be representative of 
the large area seen by the A VIRIS instrument. 

An improved method of spectrally sampling a calibration site involves the use of a rapid sampling 
spectrometer, which acquires a spectrum every fraction of a second. With such an instrument, hundreds of 
spectra can be obtained during a continuous traverse of the site. For example, at the USGS we use a field 
spectrometer that obtains a spectrum every 0.1 second. We typically configure the field computer to 
average 60 0.1-second integrations before recording the spectrum (6 seconds). Six seconds reduces the 
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often enough for the operator to evaluate data 
quality. During those six seconds, the spectrometer 
operator is traversing the calibration site (note the 
operators in Figures 2a-n). Depending on the 
roughness of the terrain, a person will traverse from 
I to 8 meters every six seconds. Assuming an 
average of 4 meters traversed per six seconds, and a 
0.5 meter spot for the spectrometer field of view, 
one integration covers about 2 square meters. Thus, 
300 field spectra cover about 600 square meters, or 
about 15 0% of an A VIRIS pixel. If those spectra are 

Stonewall Playa Average of Field Spectra 
Cuprite Calibration 1995 A VIRIS data 
(anifacts not edited) spread over the large area of a typical multi-pixel 
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Figure lla- Cuprite. Stonewall playa calibration site 
average field spectrum . 
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reasonable representation of the site has been 
recorded. 
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Figure II b- Salt Flat. Calibration site average field 
spectrum near Old Saltair west of Salt Lake City, Utah . 
The high reflectance and relatively bland spectral nature 
of the salt flat make it one of the best calibration sites we 
have encountered. 
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The characterization of a calibration site 
becomes more difficult with a laboratory 
spectrometer, which measures an area of only about 
a square centimeter(-3xl0"7 oftheareaofan 
A VIRIS pixel). If the ground characterization does 
not exactly agree with the spectral features observed 
by A VIRIS, there will be residual features in all the 
reflectance-calibrated imaging spectroscopy data. 
Such artifacts can produce errors in identification 
and mapping of materials, as mentioned above. 

A spectrally bland calibration site is ideal 
because any spectral features that are not well 
characterized might result in residual spectral 
fearu res added to a 11 pixels in the final calibrated 
data set. For example, montmorillonite (clay) and 
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Figure II c- Deer Creek Dam. Deer Creek dam face 
calibration site average field spectrum. 

2.5 

Figure 11 d- Jordanelle Dam. Jordanelle dam 
calibration site average field spectrum. In the field, the 
dam appeared quite uniform and we thought it would be 
better than the Deer Creek dam site. However, note the 
strong muscovite feature at 2.2 microns, and the strong 
iron Fe3

• absorptions in the visible and NIR regions of the 
spectrum compared to the Deer Creek dam spectrum. The 
Jordanelle dam spectra had more variability than was 
obvious in the field. The Deer Creek dam is the better 
calibration site despite the variability in visual color 
between cobbles (Figures 2d-e). 
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Figure lie- Piute Parking Lot. The Piute Reservoir 
boat launch parking lot calibration site average field 
spectrum. 
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Figure llf- Joshua Tree Playa. Calibration site 
average field spectrum. 
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Figure llg- Yellowstone. Yellowstone National Park 
road construction gravel staging lot calibration site 
average field spectrum. 
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Figure 11 h- Arches A. The Yellow Cat Flat playa 
calibration site average field spectrum acquired on April 
27, 1995, about 2-months before the A V IRIS flight. 
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Figure lli- Arches B. Calibration site average field 
spectrum of cheatgrass field, located just outside of the 
Arches national Park boundary. 

trace iron oxide (or iron hydroxide) are common components of playa surfaces (see Figure II a). If the 
field spectral measurement of the playa does not accurately characterize the site, there could be a residual 
spectral signature imparted to the final calibrated data that is either not enough of a particular absorption 
feature, or too much of a feature . Such residuals are a result of different sampling between the remote 
sensing instrument and the ground study. If the site has no spectral features (e.g. no 2.2 micron 
montmorillonite absorption, and no iron absorption in the ultraviolet or visible), then there would be no 
error in sampling. 

The probability of residual spectral artifacts is reduced if the calibration site spectrum has few or 
no spectral features. If the spectrum is flat, and thus there are no residual features to impart to the data, 
then even a laboratory spectrometer could be effectively used (assuming disturbing the surface to take the 
sample to the lab does not change the spectral characteristics). For the AVIRIS spectral range (0.4 to 2.5 
microns), quartz sand is ideal: it has high reflectance at all wavelengths and no significant absorption 
features. Playas often have high quartz content and usually only weak clay or iron absorption bands, thus 
they are usually spectrally bland. Bright white rocks or sandy areas are often ideal if not covered with 
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vegetation (even sparse vegetation). Feldspar
bearing rocks also have little to no absorption 
features in the AVIRIS spectral range. Figures lla-j 
show spectra of the calibration sites shown in Figure 
2. Note that just because a site appears bright and 
white does not mean it is a good spectral calibration 
site. It may have strong UV or infrared spectral 
features (such was the case with the Jordanelle dam 
spectra, Figure II d). 

A spatially uniform calibration site is an 
area on a scale which can be characterized in the 
field, on the ground and by the remote sensor, where 
the pixel to pixel variations in the reflectance spectra 
are low. If a site is composed of many different 
pebbles, for example, but both the field spectrometer 
and the flight data measurements average many 
pebbles together, the site is most likely acceptable 
and can be considered spatially uniform. Many dam 
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Figure llj- Arches C. Calibration site average field 
spectrum of Moab Tongue Formation in Arches National 
Park. 

faces are composed of large boulders, some larger than a person's head, but a field spectrometer with a 
half-meter diameter spot can average over many boulders, thus providing a uniform site. Such was the 
case of the Deer Creek darn site shown in Figure 2d-e. 

7.3 Field Spectra Verification 
Field spectra commonly have artifacts due to constantly changing conditions. The atmosphere 

and local air temperature can vary with time. Wind, sun, and shadow impacting on the instrument vary as 
the operator moves around making measurements, and battery power constantly decreases. Dark and gain 
levels also vary with time, producing offsets in measured spectra. Atmospheric water vapor varies with 
time resulting in residual water absorptions. The atmospheric path length constantly changes as the sun 
moves across the sky, necessitating continual re-rneasurernents of local reference standards. Given these 
conditions, it is very difficult to keep the field spectrometer in a stable environment and therefore in good 
.., 1 . 10 calibration. Example spectra with typical artifacts 
Ill 

!: Spectrometer are shown in Figure 12. 
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Figure 12: Example sample spectrometer drift over 9 
minutes is shown. The residual features after 9 minutes 
are small in this case because the atmosphere and the 

~=*~~~~~*=~=**=*==~=*=*=~~~ instrument were relatively stable. The features are small 
enough they would be barely noticed on a field 
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spectrometer computer screen. However, when the first 
and last spectra are ratioed, one sees residual features 
several percent in strength. Each spectrum is a six-second 
integration. These residual features must be hand
corrected if present in the final average for the site 
(discussed below). 

There is no simple solution to the above 
problem. Even if the field spectrometer remained in 
perfect calibration, the atmosphere will not remain 
constant. The best conditions in which to make field 
measurements are clear skies, near solar noon, at 
temperatures that do not stress the instrumentation 
(no extreme heat or cold). A field spectrometer that 



measures a reference spectrum to provide continuous corrections to varying atmospheric conditions at the 
same time as measuring the surface is needed to avoid some of these problems, along with low sensitivity 
to temperature and power fluctuations. 

Another way to reduce atmospheric effects is to use an artificial light source, powerful enough to 
measure a large spot in an enclosure to minimize solar and atmospheric effects. However, batteries to 
power lights and the spectrometer, which last long enough to measure many spots, would be cumbersome 
to carry, especially on rough terrain. 

So how does one determine if a spectral feature in a calibration site spectrum is real or a field 
spectrometer artifact? One solution to this difficulty with field measurements is to sample the surface 
materials and measure their spectra in the laboratory. We have found that for some calibration sites, the 
laboratory spectra of field samples usually measure enough of the site's spectral characteristics to enable 
determination of what are artifacts and what are real features in the field data. Thus, the laboratory spectra 
provide a secondary check to establish the quality of the in situ field data (e.g. Figure 13). Multiple 
calibration sites also help answer this question. When compared to the airborne imaging spectroscopy 
data, multiple calibration sites should indicate the same residual differences between the flight data and 
the calibration site spectra. Ideally, those differences are zero for the flight data converted to surface 
reflectance and the field reflectance data. 

Once artifacts are identified, the spectrum is corrected by numerous methods depending on the 
artifact. An offset in the spectrum might be corrected by multiplying one part of the spectrum by a 
constant to adjust the level. If the correction can be determined to be a zero-level error, a constant could 
be added or subtracted. Spikes and residual features can be interpolated across, or other the correct values 
can be estimated from a graph and the data values edited by hand. Laboratory comparison spectra are 
sometimes spliced into the field spectrum, most commonly where the terrestrial atmosphere is nearly 
opaque around the 1.4 and I . 9 micron water absorptions. There are no simple software packages for these 
manipulations. We commonly use the tools available in the SPECPR package (Clark, 1980, 1993). 
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Figure 13. Example calibration site spectra and the 
correction of artifacts. Spectra are offset for clarity. The 
average field spectrum from the Deer Creek dam 
calibration sire is shown (middle). Artifacts include 
residual atmospheric water features at 1.15, 1.4, I . 9, and 
2.5 microns, and residual C02 features near 2 microns. A 
weak offset at I micron (a grating and detector change in 
the instrument) is also present but at a level too small to 
appear in this graph. Spectra of rock samples from the site 
were measured in the lab (lower spectrum) to confirm 
spectral features. Note the difference in the 2.2-micron 
feature depth between lab and field spectra. This is due to 
variation in the proportions of materials sampled in the 
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WAVELENGTH (J.Lm) regions of atmospheric water , and was used to 
fix/interpolate the average field spectrum across the 

regions of atmospheric artifacts. The final edited spectrum is shown at the top. The quality of the final spectrum 
shows that field spectra can be of laboratory quality. This is the quality we try to achieve at each of our calibration 
sites. 

7.4 Spectralon Correction. 
Spectra obtained by both the field and laboratory spectrometers must be fully corrected to 

absolute reflectance before any analysis can be performed. Laboratory and field reflectance measurements 
are made relative to a "white" reference material, such as Spectralon (available from Labs ph ere, a 
commercial derivative of the reflectance standard developed by the National Institute of Standards and 
technology, NIST: Weidner and Hsia, 1981 ). However, no currently known material has a I 00% diffuse 
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reflectance in the UV to near infrared (0.3 to 2.5 microns). The reflectance ofSpectralon is shown in 
Figure 14, derived according to methods similar to that used by Clark eta/ .. (1990) to derive the 
reflectance of Halon. It is obvious from Figure 14 that Spectralon has a several percent absorption feature 
near 2.13 microns. Because reflectance with a field or laboratory spectrometer is derived by the ratio of 
sample I reference, the result with a Spectralon reference will result in a spectrum with a positive feature 

near 2.13 microns . Thus, the corrected reflectance, Rabsrcris : 

Rabsrcf = (Isamplc J lrcf) Rrel> 
where I,amplc is the light intensity measured by the instrument from the sample, l,cris the light intensity 
measured by the instrument from the reference under the same incident lighting conditions, and R,cr is the 
absolute reflectance of the reference material (e.g. Figure 14 if Spectralon ). 
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Figure 14. The reference used with the field 
spectrometer, Spectralon, is not a perfect I 00% 
reflectance standard. The spectral fearures of the field 
reference standard must be removed, or residual reference 
material spectral fearures will be propagated into the 
imaging spectroscopy data. 

7.5 Spectral Convolution. 
0.94 Before actual comparisons are done between 

2_5 different spectrometers, the field spectra to be used 
in the comparisons should be convolved to the 
bandpass and sampling of the flight instrument. If 

there are absorption features in the spectra that are on the same order or less in width than the bandpass of 
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the spectrometer, the spectrometer will broaden the feature and give a width wider by approximately the 
sum of the squares of the widths of the feature and the spectrometer. The measured width, W m is 

W m = (W / + W /)0.5' 
where W r is the width of the feature and W, is the bandpass width of the spectrometer. Thus, the field 
and/or lab spectrometer should have narrower bandpasses than the flight instrument. Note, however, that 
if the spectra being compared have no spectral features, then all spectrometers will give the same answer. 
Spectral convolution software that tracks the finite bandwidth of spectrometers is available in the 
SPECPR package (Clark, 1980, 1993). 

The variation of wavelength accuracy between instruments will result in disagreements between 
spectra measured by those instruments. Because field instruments get rough treatment relative to 
laboratory instruments that remain in the lab, the wavelength accuracy should be monitored often in the 
field and confirmed in the laboratory. We measure mylar plastic in the field with our field spectrometers 
and confirm the wavelength position of the mylar absorption features with our Fourier Transform 
laboratory spectrometer. The bandwidth of the spectrometer can also be monitored by use of the mylar 
absorption features and the above formula . The narrowest features in a spectrum provide for the highest 
accuracy when determining wavelength accuracy and bandwidth. 

7.6 Multiplier Correction. 
The offset spectrum (e.g. Figure 8b) is subtracted from ATREM-corrected data (e.g. Figure 5) 

from the ground calibration area. The edited field spectrometer average of the ground calibration site 
(Figure 6) is spectrally convolved to the A VIRIS sampling and bandpasses and ratioed to the offset
corrected ATREM data. This ratio becomes the multiplier for the A TREM data cube to correct the data to 
surface reflectance (Figure 15 ). 
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Figure 15. The derived multiplier spectrum. Our 
A TR EM-corrected data are scaled integers where a 
reflectance level of I is a data number (DN) equal to 
20,000. The multiplier corrects the DN back to 
reflectance in our software, so the multiplier should be 
approximately 1/20,000 (or 50x I o·•). If the A TREM data 
matched the field spectrometer data, the multiplier would 
be a flat line on this graph at 50x 10·•. 

The imaging spectroscopy data are corrected 
by running a computer program that subtracts the 
offset and multiplies by the multiplier for each pixel. 

2.5 This simple math can be done with commercial 
software such as IDL or small custom programs or 
other public domain software such as REMAPP. 

We scale the A VIR IS data souch that a derived reflectance of 1.0 is scaled to a DN = 20,000, so the 
multiplier shown in Figure 15 should have a level approximately equal to 1/20,000. The resulting 
surface-reflectance-calibrated data set is called "radiative transfer ground calibrated" and we use a file 
extension of "rtgc" on the output file name. 

The final "rtgc" data are stored as signed 16-bit integers so that the 0 to 1.0 reflectance range 
must be scaled. Because of the very high signal-to-noise of current A VIRIS data (which can be several 
thousand), with seemingly continuous improvements from year-to-year by the A VIRIS engineering team, 
we use a high scale factor, 20,000, to be sure we do not run into any DN quantization problems. Thus all 
"rtgc" calibrated data from our lab is scaled so a DN of 20000 is a reflectance of 1.0 (reflectance 0 .5 has a 
DN= I 0000, a reflectance of 0 is DN=O). If any value in the data set is out of range, or the processing 
steps indicated bad data, the data point is marked deleted. Deleted point values are set to a value of 
-32767. 

Example spectra from well-calibrated data cubes are shown in Figure 16a-c. Ignoring the regions 
of low signal through the Earth's atmosphere, near 1.4 and 1.9 microns, the derived surface reflectance 
data are excellent. 
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Figure 16a. Radiative transfer, ground calibrated (rtgc) 
calibrated A VI RIS spectra from the August, 199 8 flight 
over Park City, Utah. Comparison of calc ite and dolomite 
spectra. Ignore the 1.4 and 1.9 micron regions where the 
terre strial atrn osphere is mostly opaque. The dolomite 
spectrum shows residual C02 absorptions near 2-microns 
because the area from which it was sampled is at a much 
higher elevation than the calibration site and A TREM 
does not correct for localized C02 effects . 



Figure 16b. Radiative transfer ground calibrated (rtgc) 

Park City, Utah 
1998 AVIRIS Spectra 
10 pixel average 

A VIR IS spectrum from the August, 1998 fl ight over Park 
City, Utah . The clay mineral montmorillonite shows a 
2.2-micron absorption feature. Ignore the 1.4 and 1.9 
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Figure 16c. Radiative transfer ground calibrated (rtgc) 
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8. Summary 
Imaging spectroscopy data, such as A VIRIS, can be corrected to surface reflectance by using a 

two step correction. A radiative transfer correction tracks changing atmospheric water absorptions from 
pixel to pixel and removes the absorptions due to water and other atmospheric gases, scattering in the 
atmosphere and the solar spectrum. The second step uses the reflectance of known targets in the scene to 
correct the artifacts from the imperfect radiative transfer correction. Critical to the success of this method 
is the accurate reflectance characterization of field calibration sites . 

The quality of the calibration to surface reflectance is important for accurately identifYing 
materials. A small calibration artifact could distort an absorption feature, causing a misidentification. An 
accurate calibration shows the fundamental properties of surface m aterials , and is key to linking remotely 
sensed surface properties with laboratory data. 

The effort to do the calibration is significant. The steps involved are many, including pre
assessment of calibration sites before the flight, measurements with a field spectrometer near the time of 
the flight, sampling of the materials at the site, measurement of those samples on laboratory 
spectrometers, reduction of the field data, radiative transfer corrections of the flight data, extraction of 
imaging spectroscopy data over the same area as the field measurements, comparison of the radiative 
transfer data with the field data, correction of artifacts in the field data, evaluation of path radiance 
scattering in the imaging spectroscopy data, derivation of offsets and multipliers to correct the radiative 
transfer calibrated imaging spectroscopy data, application of the offsets and multipliers to the fl ight data, 
and then evaluation of the resulting calibration to see if it is adequate. If the calibration is not adequate, 
the data need to be re-evaluated and some steps re-done. Our experience has shown that the calibration of 
one site involves about 1 to 2 person months to calibrate, and sometimes more. One of our recent 
experiences was with the Utah EPA study where a person week was spent pre-assessing calibration sites, 
3 person weeks spent in the field making measurements near the time of the flight, and about 7 person 
months working in the lab and at the computer doing the above steps for 3 sites. The average is about 2. 7 
person months per site, and the calibration for all 3 sites is not yet complete. 

While the effort is substantial, the results are worth the effort as the "radiative transfer ground 
calibrated" spectra are near laboratory quality. The remaining artifacts are mainly due to elevation 
differences because the current radiative transfer code we use does not correct elevation effect s for all 
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atmospheric gases. More sophisticated code should result in even better corrections for all pixels in the 
imaging spectroscopy data set. 
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APPENDIX A 
Obtaining and Organizing Imaging Spectroscopy Data 
The first step to organizing data is to acquire digital copies of the imaging spectroscopy data (e.g. AVIRIS data are 
obtained from JPL). The data may not come in a form that will be easy to work with and will have to be reformatted. For 
example, new A VIRlS data are sometimes shipped as one flight line per tape, with A VIRIS data in 512-line scenes (files) 
in band-interleaved-by-pixel (BIP) format. Our processing requires band interleaved by line (BIL) format. We read the 
data tapes onto disk, and convert the imaging spectroscopy data to BIL format and add ascii Vicar headers. Table I 
shows a sample Vicar header. Important for software use, including easy access by FORTRAN programs, the header 
should have a length equal to a logical record length. For example, AVIRIS has 614 pixels across one scan line and 2 
bytes per pixel, thus the header is (2x614=) 1228 bytes. Note that a valid vicar header has at least two blank spaces 
between key words. 
LBLSIZE=l228 FORMAT='HALF' TYPE= 'IMAGE' BUFSIZ=l9648 DIM=3 EOL=O RECSIZE=l228 
ORG='BIL' NL=l024 NS=614 NB=2 24 Nl=614 N2 =22 4 N3=10 24 N4=0 NBB=O NLB=O TASK= 'dd 
to combine scene1 ,2' USER='rclark' DAT_TIM= 'Aug 19 19:35:05 1992 UTC' 
TITLE= 'Chesler Park flight 92 08198 run 6 sce n e 1,2' 

We concatenate the A VIRIS scenes into I 024-line segments because the size of a segment is about 281 
megabytes, enabling convenient viewing on a terminal screen and so that two scenes plus some data products can fit onto 
a CD-ROM disk (650 megabyte capacity). Two scenes on an optical disk are required because the radiance data and the 
reflectance calibrated cubes are stored together so that they can both be used for mapping. In the future, the many
gigabyte capacity of Digital Versatile Disk (DVD) technology will allow archiving of an entire flight line on a single disk 
as one file each for the radiance and reflectance cubes. 
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MAPPJNG THE lNV ASIVE PLANT ARUNDO DON AX AND ASSOCIATED 
RIP ARlAN VEGETATION USJNG A VIRIS 

Deanne DiPietro,1 Susan L. Ustin,1 Emma Underwood1 

1. INTRODUCTION 

It is now widely recognized that invasions by non-native plants present a serious ecological threat to the 
already greatly reduced native ecosystems of California (Barbour eta!., 1993; Bossard eta!., 2000). In response to 
the expanding ranges and increasing damage done by harmful non-natives, control of invasive species has become a 
priority for environmental management and an integral component of many habitat conservation efforts. This is 
especially true for riparian ecosystems in southern California, where invasive species threaten the last vestiges of 
remaining native habitat and associated species already reduced to precariously small and fragmented populations 
(Zemba!, 1989). This study focuses on an invasive plant that has proven very destructive to riparian ecosystems, 
Arundo donax (Arundo, giant cane). An aggressive invader, the plant successfully out-competes all surrounding 
vegetation, completely converting large areas into solid, impenetrable cane fields that deplete water resources, trap 
sediment, and bum readily (Jackson et a!., 1993). Arundo is present in large stands in the study area on the Santa 
Margarita River on Camp Pendleton Marine Corps Base and has been the target of an ongoing eradication effort 
since 1996 using a combination of mechanical and herbicide control methods (Omori, 1996). 

A key requirement for the effective management of invasive plants is the ability to identifY, map, and 
monitor invasions as well as the invaded plant communities. Hand-mapping in the field or from aerial photos are 
techniques commonly used in support of eradication efforts, but these methods are labor intensive and limited. 
Hand-mapping from field observation requires access to the site from the ground, a prospect that is not always 
practical, safe, or timely, especiaUy on an active military base. Interpretation of aerial photos is extremely time
intensive and often necessitates interpretation oflarge numbers of photographs (Avery, 1992). In addition, it can be 
difficult to distinguish the weed species in the photos even with magnification, making the interpretation process 
highly subjective and likely to differ from one analyst to another. Because of these constraints, weed mapping is 
usually done on an as-needed basis, and comprehensive maps that would support time-series evaluation are not 
generally made. There is the need, therefore, to develop repeatable and reliable automated techniques for 
monitoring the spread of weeds and the effects of eradication efforts as well as changes in the habitats being 
managed. Imaging spectrometry data offers the spectral resolution necessary to distinguish between plant species or 
communities using a greater variety of subtle spectral reflectance characteristics, potentially allowing for mapping of 
the invader and surrounding plant communities which cannot be accomplished using more conventional multi
spectral imagery. 

This study tested the suitability of imaging spectrometer data for improved mapping of a native riparian 
plant community invaded by Arundo. The research included trials in mapping the major vegetation types in the 
riparian corridor: riparian woodland, scrub, and annual grasslands. The ability to monitor these vegetation types 
along with the invasive plant is important for tracking habitat required by endangered species being managed at 
Camp Pendleton. This work will be useful in future decisions about methods for mapping Arundo and associated 
riparian vegetation in other regions. 

2.METHODS 

2.1 Study Site 

The Camp Pendleton Marine Corps Base is a 49,857 ha area in northern San Diego County, California, 
used for Marine Corps military maneuver training (Figure I). The base contains the largest contiguous stretch of 
unbuilt coastal land in southern California (Steinitz, 1996). Despite sixty years in service as a ground-troops 
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training and practice range, Camp Pendleton contains large areas of relatively intact native habitat. Biodiversity in 
this region is among the highest in the continental United States; vascular plant diversity on the base exceeds 650 
species (Zedler et al., 1997). The Base's high biodiversity and location, abutting the San Mateo Wilderness Area 
and near the Santa Rosa Plateau Ecological Reserve, and that fact that it encompasses the lower reaches of five 
watersheds, make it a key component in conservation of the region's ecosystems. 

The focal area for this study is the Santa Margarita River, the largest river on the base. The lower 16 of the 
river's 60 miles lie within the boundaries of Camp Pendleton. This stretch of river is one of the few relatively 
undisturbed riparian corridors remaining in southern California (Zemba!, 1989) and is one of the last strongholds of 
the federal-listed endangered Least Bell's Vireo, a riparian obligate bird once common throughout California's 
Central and San Joaquin Valleys and Coast Ranges, and the Mojave Desert (Franzreb, 1989). 

The Camp Pendleton Marine Corps Base presents several common problems land managers face in 
monitoring invasive species and improving habitat condition. The land is managed for multiple uses: military use as 
well as for the conservation of endangered species. Military training causes large scale and repeated disturbance to 
environmental conditions which in tum reduces the value of the landscape for future training activities and has 
consequences for natural systems. The types of mechanical disturbance that a military base experiences, from 
walking, camping, vehicles, wildfires, soil erosion, detonation of explosives, excavation, and the movement of 
troops and equipment to and from other parts of the world, provide opportunities for transport and establishment of 
invasive species. 

Fig. 1) 

Camp Pendleton 
Marine CorJ)G Base 

San Diego 

Fig. 2) 

Figure 1. Location of Camp Pendleton Marine Corps Base on the southern coast of California. 
Figure 2. September 2000 A VIRIS data coverage over Camp Pendleton 

2.2 A VIRIS data acquisition and calibration 

NASA's low-altitude, high spatial resolution (approximately 4 m x 4 m) Advanced Visible/Infrared 
Imaging Spectrometer (A VIRIS) data was acquired on 8 September 2000 over portions of Camp Pendleton Marine 
Base. Eight flightlines composed of 12-14 scenes each were collected (Figure 2) and geometrically corrected by the 
A VIRIS team at NASA JPL. At the time of the A VIRIS data collection in late summer, deciduous vegetation (such 
as willow and sycamore) was in full canopy and the giant cane, which becomes senescent during winter months, was 
near its peak of greenness and active growth. Water to support the riparian vegetation is provided by the baseflow 
of the Santa Margarita River, largely underground by this time of year, and so it is still in vigorous growth in 
September despite the late timing in California's summer dry season. 

The A VIRIS data was calibrated to surface reflectance using the atmospheric correction program ACORN 
(Analytical Irnaging & Geophysics, Boulder, Colorado) with field calibration spectra for reference. Image analyses 
were performed using ENVI software (Research Systems, Inc., Boulder, Colorado). The A VIRIS scenes were 
spectrally subset, georectified, and mosaicked for use in overlays with other geographic data. All analyses were 
performed on ungeorectified data to avoid error due to changes in pixel spectral properties from warping. A total of 
59 noisy bands were removed and a mask was created to select for vegetated areas using a Normalized Difference 
Vegetation Index (NDVI) of greater than 0.2. The riparian zone was selected using a 1 00-year flood plain map for 
Camp Pendleton as the template for a mask. A Minimum Noise Fraction (MNF) transform was performed to 
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compress and reduce noise in the data and to order the transformed bands by the variability represented in the new 
bands (Green eta!., 1988). MNF bands 1-20 containing 98% of the variance in the dataset were selected for use in 
the maximum likelihood supervised and spectral angle mapper classification. Reflectance data was also used in 
spectral angle mapper analysis and in analysis using the continuum removal technique. 

2.3 Fieldwork and GPS data collection 

This study combined A VIRIS data, aerial photos, field observations, and geographic information systems 
(GIS) data for the creation of training sets and accuracy assessment polygons. Ancillary data included 1999 1:3,000 
aerial photos over selected areas, a riparian vegetation map created in 1997 by drawing field observations onto 1994 
aerial photos, recent (2000, 2001) Arundo distribution maps for parts of the river created by the Base to track 
eradication efforts, and roads, coastline, and base boundary data from the San Diego Association of Governments 
(SANDAG) and Camp Pendleton's GIS operations office. The 16 aerial photographs provided by the Base were 
examined under magnification for determination of vegetation existing at the time of the photos. 

Forty-four geolocations were recorded during two trips to the study site in September 2000 and September 
2001 using a Trimble Pro-XRS (Trimble Navigation, Inc., Sunnyvale, California) global positional system (GPS) 
receiver providing sub-meter accuracy, and these were associated with notes and hand-drawn maps. Reflectance 
spectra of several dominant species, Arundo, and calibration targets were collected in the field coincident with the 
A VIRIS data collection overflight using a GER2600 Spectrometer (Geophysical & Environmental Research, Corp., 
Millbrook, New York) in continuous 2-11 nm bands across 325-2530 nm. Data were acquired near solar noon and 
calibrated to reflectance using a Spectralon reference panel (Labsphere, Inc., North Sutton, New Hampshire) for 13 
canopy samples with 2-10 replicates each. Locations ofthe sampling sites were recorded with the GPS. Field 
spectral readings were compared with reflectance data from atmospherically-corrected A VIRIS data to evaluate the 
success of the calibration and the validity of the training sets selected (Figure 3). Preliminary classification maps 
were verified in September 200 I by loading the images onto an iPAQ (Compaq Computer Corp., Houston, Texas) 
handheld computer connected to the Trimble GPS for direct field validation. 

2.4 Classification methods 

A 7 km x 1.6 km subset of one flightline over the Santa Margarita River was chosen for its abundance of 
giant cane (referred to below as Image 1 ), and pre-processed as described above. Predominant spectral features 
were evaluated by viewing results from the unsupervised classifications and a display ofMNF transform bands 2, 3, 
and 4. A pixel purity index found few pure pixels, and these were displayed to show spatial arrangement of 
potential classes in the scene. Seven vegetation types were chosen for classification: Arundo, scrub, riparian 
woodland, annual grassland, aquatic plants, green lawn, and tamarisk. The Arundo class consists of pure stands of 
Arundo, with polygons taken from areas of green Arundo as well as stands of more mature, senescent Arundo. The 
riparian woodland community in this reach of the Santa Margarita River consists primarily of tree willows (Salix 
lasiolepis, S. laevigata, and S. gooddingii), exotic Eucalyptus, and, to a lesser degree, cottonwoods (Populus 
fremontii and P. balsamifera spp. trichocarpa), and sycamore (Platanus racemosa). The scrub class includes two 
communities: riparian southern willow scrub dominated by mulefat (Baccharis salicifolia) and the shrub-willow 
Salix exigua, with scattered coyote brush (Baccharis pilularis), and Diegan coastal sage scrub comprised largely of 
California sagebrush (Artemisia californica) and white sage (Salvia apiana). The annual grass vegetation class 
consists of exotic annual grasses such as ripgut brome (Bromus diandrus), slender oat (Avena barbata), and wild 
barley (Hordeum spp.) (Hickman, 1993; Zedler eta!., 1997). At the time of the image collection in September, 
annual grassland plants had completed their life cycles and were standing dead biomass. Tamarisk or salt cedar 
(Tamarix spp.) is another harmful invader in riparian areas, and so it was mapped when seen in the field so 
classifications could be included. The green lawn training set is an area of homogeneous green, irrigated lawn. The 
aquatic plant class polygons encompass stands of emergent sedges (Carex spp.) and rushes (Juncus spp.) and mats 
ofmicroalgae. These last two were selected because they were observed to be confused with Arundo in preliminary, 
unsupervised classifications. 

Regions of interest (ROis) were created for use as training sets using a combination of field GPS data, field 
notes and hand-mapped polygons, and 1999 1 :3000 aerial photos supplied by the Camp Pendleton Base. ROI 
polygons were created on an un-georeferenced true-color display of the image data using the GPS coordinates as 
reference by visually matching features in the un-georeferenced and georeferenced images. Spectral profiles of the 
vegetation classes, created by averaging values taken from the reflectance image data, are shown in Figure 4. It can 
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be seen from this comparison that the vegetation types have distinct response patterns across the region of the 
spectrum sampled by A VIRJS. The tamarisk spectral profile was very close to that of scrub, and was omitted from 
classifications due to poor results. 

6000 

AsurrUu 

Aquatic plants 

Green lawn 

Scrub 

- Riparian woodland 

Annual gras:tes 

Figure 3. Comparison of field spectrometer readings and A VIRIS image spectra (averaged values) for 
Arundo. 

Figure 4. Spectral profiles from A VIRIS reflectance data for vegetation training sets (averages of values for 
all pixels). 

Training set ROis were analyzed for spectral distinctness using the ENVI image processing program's 
spectral separability calculation, which reports both the Jeffries-Matusita and Transformed Divergence separability 
measures (Richards, 1994). All were found to have high separability values (close to the highest value of2.00). 
Upon examination using the ENVI n-dimensional visualization tool, however, it could be seen that the pixels from 
the ROis were not completely unique with regard to the areas in the data space that they occupied. The classes were 
trirruned using the draw tool in the n-d visualizer, but the use of these spectrally trirruned ROis did not improve upon 
classification results. 

Polygons for use in validating classification results were digitized over a georectified true-color display of 
the A VIRJS imagery overlaid with the GPS points, and using the hand-drawn maps and notes from the field, ground 
photos, 1997 Camp Pendleton riparian vegetation map and 200 I Arundo eradication maps as reference. In total, 209 
polygons were created for six vegetation types: Arundo, riparian woodland, scrub, annual grassland, aquatic plants, 
and tamarisk. The total area covered by these polygons was 68.3 ha, or approximately 15.4% of the 443 .9 ha scene 
being classified. The true-color image, classification results, and validation polygons were co-registered using 
ground control points taken from a I : I 00,000 roads coverage, and the confusion matrix function in ENVI used for 
quantitative comparison. 

Several methods for classifying the image were compared: unsupervised classifications (Isodata and K
means); continuum removal using the water absorption feature at 970 nm with an unsupervised (Isodata) 
classification; supervised (maximum likelihood) classification using training sets from the image; and spectral angle 
mapper using training spectra from the image. Analyses were performed on MNF-transformed and reflectance data. 
Maximum likelihood and spectral angle mapper techniques were also applied to a second image (referred to below 
as Image 2) using spectra imported from the first image. 

3. RESULTS 

3.1 Unsupervised classification 

Results of unsupervised classifications using K -means and Isodata algorithms with several thresholds 
provided interesting insights into the spectral and spatial features of the dataset but did not yield results appropriate 
for use in mapping the desired vegetation types. The results were helpful in the selection of training set ROis, but 
comparisons with ground data were too inaccurate to be considered further. 
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3.2 Continuum removal 

The use of the water absorption feature at 970 nm to map the plants in the test image resulted in the 
identification of giant cane relatively well when it was applied to a scene with only Arundo and terrestrial riparian 
vegetation species. However, presence of other high water content plants in the image, such as the aquatic plants 
growing at the edges of the reservoir near the upper edge of the image, resulted in confusion and made this a less 
than optimal procedure for giant cane mapping (see Figure Sa). 

Fig. Sa) Fig. Sb) Fig. Sc) Fig. Sd) 

• Arundo [J Scrub 

Aquatic plants • Riparian woodland 
2 Kllonuhn 

• Green lawn 0 Annual grasses In b, c, d: 

Figure 5. Results from selected classifications of Image 1. 

a) continuum removal (5 classes assigned colors from red to blue red=plants with highest water content, 
blue=plants with lowest water content), b) maximum JikeJihood on MNF, c) spectral angle mapper on MNF, 
d) spectral angle mapper on reflectance data. 

3.3 Maximum likelihood supervised classification 

The maximum likelihood supervised classification performed on MNF transformed data using training sets 
taken from the same image was very successful in mapping Arundo, annual grasses, and riparian woodland, with 
less success in classifying the scrub vegetation type. Tamarisk results had a high rate of confusion with scrub, so the 
tamarisk training data was dropped from subsequent classifications. Figure 5b shows the best result, performed with 
no threshold. Arundo classified at a 95.27% overall accuracy rate, and annual grasses and aquatic plants classified 
correctly in 79.78% and 81.82% ofthe pixels, respectively. The high percentage of successful classification of 
Arundo, aquatic plants, and annual grassland is to be expected in the classification of the image from which the 
training sets were taken, as geometric characteristics ofthe data and the biophysical status of the monotypic Arundo, 
aquatic plant, and grassland stands are likely to be very similar to those in the training set polygons. The result for 
riparian woodland, 90.73% correct, however, is surprisingly good considering the range of species and canopy cover 
possible in that vegetation class. Scrub was confused in 45.01 % of the pixels with riparian woodland, and 16.41 % 
of the time with annual grass. 

3.4 Spectral angle mapper using reference spectra from the same image 
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The spectral angle mapper teclmique, when used on calibrated reflectance data, is relatively insensitive to 
illumination and albedo effects (Kruse et al., 1993), and can be used with spectra imported from other images or 
stored in spectral libraries. For these reasons it was considered the most likely to provide repeatable results in 
different images, possibly both over the same spatial area taken in different years and over different spatial areas. 

Spectral angle mapper was applied to both reflectance data (165 bands) and MNF transformed data, which 
yielded markedly different results. When applied to MNF transformed data (and the reference spectra extracted 
from the MNF data), an angle of0.10 radians for all classes only classified a small fraction ofthe image. The 
classes began to have reasonable spatial distributions only at very large angles, and the best image was created using 
a 1.2 radian angle for all classes (Figure 5c). Results were as follows: Arundo mapped correctly in 84.89% of the 
pixels, and riparian woodland, annual grasses, and aquatic plants success rates were 79.76%, 48.02%, and 71.76%, 
respectively. Again, the classification of scrub yielded the lowest rate of success at 28.56%. 

When reflectance data was used with the SAM method, and the reference spectra were extracted from the 
reflectance data, an angle of 0.10 radians for all vegetation types classified most of the image. In this case there was 
significant confusion in both directions between the Arundo and aquatic plant vegetation types. Removing the 
aquatic plant training set from the process increased confusion with the green lawn class. Figure 5d shows the most 
successful result, using four vegetation classes with angles of 0.15 radians for four classes: Arundo, scrub, riparian 
woodland, and annual grasses, and success rates of70.91 %, 42.56%, 64.37%, and 64.67%, respectively. 

The MNF-transformed data was also rotated back to image space, and SAM performed using ROis from 
the inverted MNF data and from the original reflectance data, and with a variety of angle settings for the different 
classes. Although the classes displayed good spatial patterns, none of these results classified the vegetation types as 
well as either SAM with the MNF transformed data or SAM with the reflectance data. 

3.5 Maximum likelihood supervised classification of a second image, using imported spectra 

The maximum likelihood classifier can accept imported spectral data for use as training sets with which to 
classify an image. Spectra for Arundo, riparian woodland, scrub, and annual grasses were imported from the first 
image classified and applied to a 500 m x 800 m section of an image (Image 2) over a lower reach of the Santa 
Margarita River, acquired in the same overflight but in a different flightline . Image 2 was pre-processed separately 
from Image I (from which the reference spectra were taken). For this classification, 165 bands were used, both 
from the original reflectance data and from the results of an MNF transform inverted back to image space. Training 
data from both the reflectance and MNF processed data were applied in various combinations and thresholds. 
Results were variable; none of the results were good for all classes in one image. In some cases, one or two classes 
looked reasonable and another completely spurious. In order to find a promising arrangement of training data and 
thresholds to use on the second image, the first image was classified with its own ROis after MNF transformation 
and conversion back to image space. These results were also inconsistent (see discussion). 

3.6 SAM classification of a second image using imported spectra 

A SAM classification of Image 2 using vegetation spectra imported from reflectance data of Image 1 was 
performed for five classes: Arundo, riparian woodland, scrub, annual grasses, and aquatic plants. Both the 
reflectance data and the MNF result converted to image space were classified with the imported spectra. These 
results were evaluated qualitatively, using the 1997 riparian vegetation map and 1999 aerial photos in visual 
comparison. Figure 6 shows the resulting maps compared to the 1997 riparian vegetation for that area. A 0.15 
radian angle was used in both cases for all classes. The technique applied to reflectance data appears to have 
worked well for riparian woodland and scrub, but the aquatic plants did not classify at the 0.15 radian angle, even 
though there are marshes in the floodplain within the image. Inspection of aerial photos from 1999 show that the 
image created from the reflectance data (Figure 6b) was more accurate for current giant cane distribution than the 
1997 riparian vegetation map. The large area mapped as solid cane in the 1997 vegetation map (Figure 6a) appears 
as a 30-50% mosaic of cane and riparian woodland in the 1999 aerial photos. The cane-infested area along the river 
channel in the lower part of the image is approximately 50-75% Arundo mixed with riparian woodland in the 1999 
aerial photo, and so reflects extensive new growth of the weed since the 1997 vegetation map was made. The result 
of the classification done with MNF transformed data looks more like the vegetation map (Figure 6c), but 
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comparison to the aerial photos indicates that it did not produce the best result. This method was also less effective 
at mapping the other vegetation classes. 

Fig. 6a) Fig. 6b) Fig. 

Figure 6. Results of classification of Image 2 using imported spectra. 

• Arundo 

• Aquatic plants 

0 Scrub 

• Riparian woodland 

Annual grasses 

a) 1997 riparian vegetation map, b) SAM classification of reflectance data using reference spectra of the 
vegetation types imported from a different image, c) SAM classification of MNF transformed data converted 
back to image space. The pink polygons in the 1997 riparian vegetation map at left represent tamarisk, but 
are classified as scrub in image b, as no training data for tamarisk was entered in this analysis. 

Results are summarized in Table I. For the mapping of a single image with training sets from the same 
image, the maximum likelihood supervised classification gave the best results for all classes. When reference data 
was applied from one image to the mapping of another, however, the SAM technique performed on reflectance data 
gave the best results. 

T bl 1 S a e ummary o fR It esu s 
IMAGE METHOD DATA TRAINING S ETS RESULTS 

FROM 

Image I Maximum Likelihood MNF Image I MNF Good: Overall Accuracy= 75.7% 

Arundo Accuracy= 95.3% 

K~pa coefficient= 0.69 

SAM MNF Image I MNF Good: Overall Accuracy= 6 1.5% 

Arundo Accuracy= 84.9% 

Kappa coefficient= 0.54 

SAM Reflectance Image I Good: Overall Accuracy=60.2% 
Reflectance Arundo Accuracy= 70.9% 

Kllppa coefficient= 0.48 

Maximum Likelihood Reversed MNF Image I Poor 
and SAM Reflectance 

Image 2 SAM Refl ectance Image I Good 
Reflectance 

SAM Reversed MNF Image I Poor 
Reflectance 

Maximum Likelihood Refl ectance Image I Poor 
Reflectance 

Maximum Likelihood Reversed MNF Image I Poor 
Reflectance 
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4. DISCUSSION 

A maximum likelihood classification using training sets from the same image provides an excellent method 
for mapping vegetation classes, once training sets have been selected and all possible sources of confusion are 
included as ROis. The limitation with this method, however, becomes apparent when a map for a larger region 
comprised of multiple images and flightlines is needed, or for images acquired in different years. The analyst is 
faced with either needing training sets from every scene or mosaicking the scenes together before any processing 
occurs. The first option is not likely to be feasible and even defeats the purpose of using a remote sensing approach. 
The other, that of mosaic king the images, was not practical due to large file sizes and the computing resources 
necessary to process them together as a single file . In many situations, available images are not contiguous or are 
collected at different times. A method is needed to classify multiple images for the same classes using training sets 
imported from one image, or using data from a spectral library. While this is a common practice for geological 
mapping, mapping vegetation presents challenges in that the spectral response is highly subjective to changes in 
environmental, climatic, and seasonal parameters. 

The spectral angle mapper technique, although less successful than the maximum likelihood classification 
in mapping Image 1, looks more promising for use with imported reference spectra. The data must be in image 
space for the use of imported spectra. The use of the MNF transform is helpful for compressing the image data, but 
presents the challenge of transforming each image differently due to different ranges of variability in the images, 
thereby making the resulting MNF-transformed data impossible to compare with reference spectra from other 
images. Converting the data back to image space solves this problem, but there are apparently changes in the data 
that affect the clustering algorithms. Classifications performed directly on reflectance data provided better results 
than those performed on MNF transformed data that was converted to image space. This is possibly due to small but 
important differences in the average spectral responses of different vegetation classes being smoothed out of the data 
in the MNF noise reduction process, resulting in classes that are less distinct. 

The scrub vegetation class presented a challenge with all methods, which confused it most often with 
riparian woodland. The greatest contributor to this error is probably the inherent variability within the classes in 
their species compositions and cover densities. It can be seen by examining the spectral response of class pixels 
using the n-dimensional visualizer that there is some overlap between riparian woodland and scrub, with the riparian 
woodland class having pixels that respond similarly to those of scrub. It may be possible to improve upon these 
results by refining the woodland class. Tamarisk classification was poor due to the fact that the canopy was green 
and neither senescent or flowering at the time of the image, and so failed to provide a significantly distinct enough 
spectral response to distinguish it as a separate class. 

In order to gain insight into the factors contributing to variability in the dataset, statistical information from 
the MNF transform process was compared to the spectral properties of the vegetation classes to infer the 
physiochemical characteristics being used to distinguish the classes. During the MNF transform, original bands are 
first noise-whitened and then transformed to new bands by identifying the principal component vector (Green, 
1988). The resulting eigenvectors are then ordered by their information content (i .e., proportion of variance 
represented) and the contribution of the original bands to these new bands is recorded as an eigenvalue number 
between 1 and -1 (Research Systems Inc., 1995). Contribution toward the variability in the transform bands is 
expressed in assigned weightings from zero in either the positive or negative direction. MNF band I showed 
weightings that were evenly distributed across the spectrum, which indicates a heavy contribution of albedo effects 
in the image rather than from differences in physical or chemical characteristics of the vegetation. MNF bands 2 
and 3 are composed of information that is more heavily weighted in the 490-700 nm range than in any other region 
of the spectrum, indicating strong variability in the spectrally active areas of chlorophyll and other pigments. Also 
contributing to much of the variability in the data is the near-infrared region. Lower-order bands, such as band 5, 
show weightings more equally distributed across the spectrum, with contributions in the SWIR becoming more 
prominent. This is an intuitive result given the absorption properties of various plant and mineral constituents. 
Unlike broader-band, multispectral data, hyperspectral data provides the spectral resolution to take advantage of 
these characteristics. 
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5. CONCLUSIONS 

This study shows that the invasive plant Arundo donax and associated riparian vegetation types can 
successfully be mapped using A VIRlS data and with standard imaging spectrometry techniques. However, adequate 
ground data for part of the area is necessary for development of training set and refinement of the mapping 
technique, which can then be applied to the larger region. Once selected and refined, training spectra from one 
image can then be applied to separate images in the same region and for the same year using the spectral angle 
mapper technique with the angles that gave good results in the origina:t image. The use of the MNF transform may 
in some cases remove distinguishing features from spectral data and make classification of spectrally similar 
features Jess successful. 

Despite the need for site-specific information, these techniques show promise as useful tools for evaluating 
the status of important habitats and the advance (or eradication) of an invasive weed. This is especially applicable in 
the management of riparian systems because constituent habitat types can change significantly in their spatial 
extents and distribution in just a few years. More work is needed to discover if spectra can be used in images from 
different years for the same region for development of a sequence of maps that would allow change analysis, since 
variations from year to year in the timing of plant phenological stages will certainly be a factor. 
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Introduction 

DETECTING SPIDER MITE DAMAGE IN COTTON THROUGH 
SPECTRAL MIXTURE ANALYSIS OF A VIRIS IMAGERY 

Glenn J. Fitzgerald1 

Steve J. Maas2 

William R. DeTar 

Few papers have addressed the issue of detection or identification of field-level features in agricultural field 
crops with hyperspectral remote sensing (Green eta!., 1998; Gat eta!., 1999). Multispectral images have been used 
to identify certain field stresses and anomalies such as diseases, weeds, and mites (Brown et a!., 1994; Peiiuelas et 
a!., 1995; Summy, eta!., 1997) but the limited spectral coverage may not allow unique identification, only that an 
anomaly is present. The large amount of information available for analysis in hyperspectral imagery permits the 
application of advanced image analysis techniques designed to extract unique data features from high dimensional 
data sets and reduce complexity to make the data more interpretable. Spectral Mixture Analysis (SMA) assumes 
that a small number of spectra representing the scene components of interest (end:members) can describe most of the 
spectral variation in a scene and be used to "unmix" the pixels and determine the relative fractional abundance of 
each component on a per-pixel basis. This approach could allow discrimination of one plant stress from another 
through identification of unique spectral features or differences in the shapes of the spectral curves. The abundance 
maps produced could indicate both the spatial extent and severity of stresses. This would permit a farm manager or 
scout to locate precisely the identified stress in a field, providing for guided field scouting and precision application 
of appropriate control measures such as pesticides or biological control agents. This procedure has been well 
documented in geological and ecological studies (Adams et a!., 1995; Adams and Smith, 1986; Elmore et a!., 2000; 
Mustard, 1993; Okin et al., 2001; Roberts eta!., 1993; Roberts eta!., 1998; Smith eta!., 1990) but has had little to 
no application in precision agriculture. 

The strawberry spider mite, Tetranychus turkestani causes severe damage to cotton in the San Joaquin 
Valley in California. These mites feed on plants causing leaf puckering and reddish discoloration in early stages of 
infestation and leaf drop later (Anonymous, 1996). Because of the leaf color change, and perhaps physiological 
changes not visible to the naked eye it was hypothesized that the spectral signature of mite-damaged leaves might 
provide a method to detect the pest. The objective of this paper was to develop ground-based reference spectral 
signatures of various scene components (endmembers) in field-grown cotton in order to unmix AVIRIS imagery 
using spectral mixture analysis and determine if the fraction maps could accurately discriminate between a field of 
healthy cotton and an adjacent field of mite-damaged cotton. Additionally, it was expected that the SMA procedure 
would provide end member abundance fraction maps delivering spatially explicit maps of mite damage severity. 

Materials and Methods 

An experiment was established on two, 2.8 ha research fields at the USDA-ARS research station in Shafter, 
CA (35.5° N, 119.3° E., 120 meters above sea level). Each field was planted to cotton (Gossypium hirsutum L. 
variety "Maxxa") on May 4, 1999. Both were managed according to standard cultural practices for cotton in the 
area except that one (field 41) was sprayed once with a wide spectrum pesticide about eight weeks after planting, 
virtually eliminating mites as well as beneficial arthropods which normally keep mite populations in check. The 
other (field 42) was treated with appropriate pesticides several times during the growing season to control spider 
mite infestations. For reference, Figure 1 shows near-infrared images of fields 41 and 42 acquired from a high 
resolution multispectral system (Fitzgerald eta!., 1999b) and one band from AVIRIS. Weekly mite counts were 
performed to monitor their temporal and spatial distribution within each of the fields (Anonymous, 1996). Visual 

1 USDA-ARS, U.S. Water Conservation Laboratory, Phoenix, Arizona gfitzgerald@uswcl.ars.ag.gov 
2 Dept. of Plant & Soil Science, Texas Tech University, Lubbock, Texas 
3 USDA-ARS, Western Integrated Cropping Systems Research Unit, Shafter, California 
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records were kept noting areas of obvious mite damage throughout the season. Both fields were irrigated with sub
surface drip irrigation leaving the soil surface dry all season. 

Mite Dirt Road 

•. 
1a. 

Healthy canopy 
1b. 

Figure 1 a . High resolution (0.65 m) near-infrared image (850 nm) of cotton research 
fields 41 and 42 acquired on 25 Aug 1999. In field 41, mites were allowed to damage the 
cotton while in field 42 mites were controlled. Fields 41 and 42 each had dimensions of 
1OOm X 300m. Figure 1 b. A VIRIS image (band 41, 845 nm, 18 m pixel resolution) of 
the same fields acquired 28 Aug 1999. 

A digital camera system consisting of visible and near-infrared "Varispec" liquid crystal tunable filters 
(LCTF) from Cambridge Research Instrumentation, Inc., Wobwn, MA and a digital camera from PixelVision (Pluto 
model, 14-bit, cooled, 512 X 512 pixels) were mounted on a high clearance vehicle capable of entering cotton fields 
with the operator aboard a platform mounted on top. The liquid crystal filters are tuned electronically to allow 
narrow band wavelengths of light to pass through to the digital camera. The camera shutter and filter are 
synchronized so that an image is acquired when the filter switches to a new waveband. This system recorded 
images in 10 nm increments from 400 to 1050 nm. At a height of three meters above the soil, pixel resolution was 
about one mm. Images were calibrated to reflectance using a 99% "Spectralon" calibration panel which was placed 
in the field of view before and after image acquisition. 

Imagery from A VIRIS was acquired for the research fields on four separate dates in 1999. Flight dates, 
local times, and solar zenith angle are shown in Table 1. The hyperspectral data cube from A VIRIS was composed 
of 224 images acquired contiguously from 400-2500 nm in approximately I 0 nm bands. The A VIRIS data sets were 
atmospherically corrected and converted to reflectance using A TREM and EFFORT algorithms. Ground pixel 
resolution was 18 m. 

Table 1. AVIRIS overflight dates, local times (PDT), and solar zenith angles. 

Overflight Date Local Time (PDT) Solar Zenith 
13 Jun 1999 !1:29am 22.7° 
28 Aug 1999 12.09 pm 27.9° 
1 Sep 1999 10:07 am 49.3° 
24 Sep 1999 11:43 am 38.9° 

Images acquired from the LCTF system were used to build a spectral library containing representative 
spectra (endmembers) that included sunlit healthy leaves (H), sunlit mite-damaged leaves (M), sunlit tilled soil (S), 
shaded tilled soil (Sh), and sunlit dead leaf (D). Pixels from each waveband representing the particular endmember 
(Fig. 2) were selected to build the spectral library (Fig. 3). 
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la. lb. 

Figure 2. Liquid crystal tunable filter images showing scene components (endmembers). Each image 
represents about 0.15 m2 (1.5 ~). 
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Figure 3. Spectral library endmembers derived from selected regions in the liquid crystal 
tunable filter imagery (see Figure 2). The error bars on theM endmember line represent 
± l standard error. Standard errors for the other curves were too small to show clearly. 

The A VIRIS image cubes were masked to include only the field's of interest and then spectrally resampled 
to match the wavelengths of the LCTF spectral library. This resulted in 57 wavebands in 9.5 nm increments from 
459 to l 002 nm. Spectral mixture analysis was then performed on the four A VIRIS images using the built-in linear 
spectral unmixing (LSU) routine in the ENVI software package (Better Solutions Consulting, Inc., Lafayette, CO). 
Analysis parameters were set to constrained unmixing with a weight of 10 which constrained the endmember 
fractions within each pixel to sum to unity. If the proper endmembers have been chosen for each pixel then the 
abundance fractions should be positive, the sum of all the abundance fractions (excluding the RMSE image) should 
equal unity, and the pixels should have a low RMSE (Smith et al., 1990; Roberts et al., 1998). 

It was noticed in the fraction images that negative values occurred whenever a pixel contained an 
endmember that was not present at the time of image acquisition, e.g., pixels chosen over areas of known dense 
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canopy showed negative soil fractions or pixels from healthy vegetation (field 42) had negative M endmember 
fractions). Thus, a procedure was developed to assign variable numbers of endmember to the pixels. The criteria 
for assigning valid endmembers to each pixel was, 1) endmember sign (positive values retained, negative values 
assigned zero values), and 2) RMSE (whenever models of equal value occurred, the one with the lowest RMSE was 
selected). The number of potential endmembers was limited because the fields were not as heterogeneous as, say a 
regional image containing roads, lakes, urban features, etc. as discussed in Roberts et al. ( 1998). Thus, based on 
knowledge of the field and the fact that the objective of the study was to identifY mite areas only, the five 
endmembers in Figure 3 were chosen as those representing the bulk of the variance in the fields. The iterative 
process to choose variable number of endmembers per pixel began with the five endmembers and flagged pixels 
with negative endmembers. The flagged pixels were re-analyzed with four endmembers, followed by three and two 
endmember models, consecutively. At each stage, if a set of endmembers was equally valid (e.g., two, three
endmember models contained positive values) then the one with the lowest RMSE was selected. This continued 
until all pixels were assigned endmembers. 

Results 

The combination of endmembers that consistently had the lowest RMSE, summed to unity, and correctly 
located known areas of mite damage, healthy plants, and soil was the combination that included the S, M, H, and Sh 
endmembers, except for the 13 Jun image that did not include the Mite endmember because mites were not present. 
Whenever Sh was excluded from the unrnixing analysis, the sum of endmember abundances ranged frorri 0.60 to 
0.92. When Sh was included, all pixel abundances summed from 0.99 to 1.00. A spectrum representing dead leaves 
was initially included in the unmixing procedure to account for non-photosynthesizing vegetation (NPV) but 
fraction values were always negative so they were excluded from further analysis. 

Pixels forming Regions oflnterest (ROI) were visually selected for field 41, field 42, and the dirt road 
around the fields. These represented the mite-damaged canopy, healthy canopy, and soil/dirt road areas, 
respectively. Table 2 shows the mean values of these regions and Figure 4 shows the abundance image maps 
indicating the spatial distribution and intensity of these endmembers (bright pixels indicate high abundance fraction 
values and black pixels equal zero). 

Table 2. Fractional abundance means by end members for Regions of Interest 
selected within fields 41, 42, and tbe dirt roads surrounding tbe 
cotton fields. Zero values indicate absence of end members. 

Field 41 13 Jun 99 28 Aug 99 I Se1.1 99 24 Se1.1 99 
Soil . 0.650 0.012 0 0.027 
Mite 0 0.092 0.010 0.044 
Healthy 0.043 0.344 0.240 0.280 
Shade 0.307 0.552 0.750 0.649 
RMSE 0.018 0.021 0.016 O.Dl5 
Field 42 
Soil 0.650 0 0 0 
Mite 0 0 0 0.020 
Healthy 0.046 0.630 0.400 0.401 
Shade 0.304 0.370 0.600 0.579 
RMSE 0.019 0.053 0.042 0.027 
Road 
Soil 0.882 0.715 0.464 0.576 
Mite 0 0 0 0 
Healthy 0 0.073 0.049 0.070 
Shade 0.117 0.212 0.486 0.354 
RMSE 0.027 0.018 0.019 0.015 

78 



Healthy Mite 
..... _ 

--.. 
13 Jun 1999 

lla.t-. . 

1 Sep 1999 

Soil 

-.. _ 
'• .. 

. 
.... ... 

I 

·-. . -I I 

Shade RMSE 

----·1" • - ,.I' 

I 

Figure 4. Fractional abundance image maps produced from spectral unmixing of the 
four A VIRIS image cubes. Highest to lowest values are represented by brightest to 
darkest pixels. Black pixels have zero value. All values were zero for the M 
endmember abundance map on 13 Jun 1999. 

On 13 Jun 1999, the mean values from the two fields for the four endmembers and RMSE were essentially 
the same (Table 2). This was expected since mite damage had not yet occurred and all other factors were equal 
(irrigation, planting date, cultural practices, etc.). By 28 Aug 1999, mites had been present for seven weeks and the 
unmixing procedure correctly showed that field 41 had mite-damaged cotton plants whereas field 42 did not. Since 
the 1 Sep 1999 overflight occurred only four days later, little difference should be expected between the two in 
terms of relative endmember fractions. The differences in endmember fractions noted in Table 2 between the two 
dates can be attributed to the amount of Sh fraction. The solar zenith angle was much greater for 1 Sep than 28 Aug 
(Table 1) resulting in a greater Sh component and consequently lower fraction values for the other endmembers. 
The relative differences however were maintained (H > M > S). Pixels with greater M fraction values were located 
in the same areas in field 41 on both dates (Fig. 4) showing a consistent pattern. 

By 24 Sep 1999, a few weeks before harvest, senescence became a dominant feature. Some pixels in 
Figure 4 are brighter for theM endmember and darker for the H endmember in field 42. Also, the location of bright 
pixels for theM images in field 41 (Fig. 4) changed from the previous two dates. When cotton senesces, it tends to 
form red spots on its leaves. The spectral signature from the reddish senescent vegetation undoubtedly resembled 
that of theM endmember (Fig. 3). 

The S fraction was always greatest for the Road region and non-existent in field 42 once full canopy was 
established (Table 2). The dirt roads around the fields are clearly identified in the S fractions in Figure 4. Some 
vegetation was present in the pixels selected for the Road ROI as evidenced by small positive H endmember values 
in Table 2. This is reasonable since the 18m pixels would have encompassed edges of the fields as well as road. 

The Sh endmember pixels were brightest where there was more canopy variability along the edges of the 
fields and in the mite infested and sparse canopy regions where there was a mix of canopy and soil (Fig. 4). The 
mean Sh fraction values were always greatest in field 41 and lowest in the Road ROI within a given date (Table 2). 
This seems to indicate there was more shade in more heterogeneous parts of the scene, a reasonable outcome. 
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The highest RMSE values occurred for healthy vegetation, for example in field 42 (Table 2, Fig. 4) 
probably due to calibration errors between the LCTF and A VIRJS imagery. The H endmember spectrum differed 
somewhat from the healthy canopy spectrum derived from the A VIRJS imagery (not shown). However, shapes of 
the curves were fundamentally similar showing the characteristic red edge and green peaks. It is likely the greater 
RMSE for the H endmember was due to imperfect curve fitting by SMA. Despite this, the routine is obviously 
robust enough to match the endmember and A VIRJS spectra, and overall results show good correlations to known 
ground conditions. 

Discussion 

Mite detection early in the season is critical if the farm manager is to use imagery as a decision aid for 
control. In this respect, these A VIRJS images are not useful since the acquisition times did not correspond to early 
mite infestations and the large pixel size would not allow early identification of a few mite-infested plants occupying 
a minute percentage of a pixel, even using SMA techniques. Additionally, under normal farming practices, mite 
damage would never be allowed to progress to the degree of damage present in field 41. However, these conditions 
were advantageous for mite detection in this study because of the contrast between severe and light or non-existent 
mite damage in the two fields and the spatially extensive damage within field 41 . 

There are several measures of success for the unmixing procedure in this analysis. One, the plant and soil 
conditions in field 41 and 42 were essentially the same on 13 Jun so it is encouraging to find the mean fraction 
values for these fields are so similar. Two, there were no false positives for selection of theM endmember in field 
42. All M endmembers were selected in field 41. Three, the S fraction consistently was greatest over the dirt road 
and showed low values in field 41 but was not present in field 42 once full canopy was established. Four, the 
relative brightness and locations of abundance fractions from 28 Aug and 1 Sep, which were acquired only four days 
apart, are similar (Fig. 4). However, because the solar zenith angles are different, the abundance fractions are not 
the same (Table 2). It appears that it can be difficult to compare the abundance fractions across dates. There may be 
a temporal or non-linear component tied to the shade endmember since this changed with zenith angle and the Sh 
fraction differed on each date. Perhaps other shade endmembers should have been included in the analysis, such as 
shaded healthy leaves and shaded mite-damaged leaves. 

The LSU procedure in the ENVI software outputs images with the same number of endmembers for every 
pixel. This is not realistic since there is spatial variability across images not just in terms of quantity ( endmember 
abundance) but also in quality (which endmembers are present). Removing unrealistic (negative) endmembers 
resulted in pixels with varying numbers of endmembers (2-4) and is similar conceptually to the multiple endmember 
selection method presented by Roberts et a!. ( 1998). The result shows abundance images that match known ground 
conditions. This procedure therefore incorporated both spectral and spatial variability. The comparison across four 
dates allowed a measure of temporal change to be incorporated into the analysis which is critical for agriculture. 
The resulting images showed both consistent features and explainable changes in the crop (Fig. 4 ). 

In the near future, high spatial resolution hyperspectral imagery will be available that can pinpoint with 
greater accuracy the locations of stressed plants. Frequent image acquisition would allow temporal changes to be 
monitored, and early signs ofprob1erns could be detected. The utility ofhyperspectral remote sensing for precision 
agriculture comes, in part, from the potential to identify stressed areas in fields early enough for the farm manager to 
make timely decisions. However, it remains to be seen whether early detection can be accomplished and is, 
therefore, a fertile area for research. 
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MAPPING FOREST COMPOSITION IN THE CENTRAL APPALACHIANS USING A VIRIS: 
EFFECTS OF TOPOGRAPHY AND PHENOLOGY 

Jane R. Foster and Philip A. Townsend 1 

1. INTRODUCTION 

Of the many promising applications of imaging spectroscopy in forest ecosystems is the possibility of 
mapping species composition and distribution with greater accuracy than is possible using standard multispectral 
data. In areas with complex forest composition, vegetation mapping with hyperspectral imagery requires 
methodological approaches that can handle the complex spectral and vegetation data sets. In addition, it requires the 
careful implementation of image preprocessing routines that reduce the effects of other surface properties that may 
confound the mapping of forest composition. In this paper, we outline an approach to mapping the distribution of 
three prominent species in the central Appalachian Mountains using A VIRIS imagery and classification/regression 
trees. In addition, we evaluate the influence of terrain characteristics on mapping results, and finally compare the 
utility of spring vs. summer A VIRIS imagery for forest mapping. 

2. STUDY AREA AND METHODS 

2.1 Study Area 

The study area is the 15,700 ha Green Ridge State Forest (GRSF) in 
western Maryland (Figure 1). GRSF is located in the Ridge and Valley 
physiographic province of the central Appalachian Mountains, and is 
characterized by steep mountains with deep valleys. Elevation ranges from 200-
700 m. The forests were largely cleared around the turn of the twentieth 
century, and are now mostly intact and mature. Some scattered clearcuts and 
selective cuts are located within the study area, but are limited in extent. A few 
burned areas are also present; however, the largest areas of uneven forest are 
located in places where gypsy moth defoliation over the last two decades has 
caused substantial tree mortality. Forests are comprised largely of deciduous 
oaks, with Virginia pine (Pinus virginiana) on some west-facing slopes and 
hemlock (Tsuga canadensis) in some valley bottoms. The key species ind ude 
white oak (Quercus alba), especially on mesic slopes and at lower elevations, 
red oak (Quercus rubra), and chestnut oak (Quercus prinus) on ridge tops, high 
elevations and rocky slopes. The understory is largely open, although blueberry 
(Vaccinium spp.) and the evergreen mountain laurel (Kalmia latifolia) can be 
locally abundant. 

2.2 Held Data 

PA 

VA 

Figure 1. Location of 
Green Ridge State Forest in 
western Maryland. 

Continuous Forest Inventory (CFI) data from the Maryland Department of Natural Resources was used to 
characterize forest composition. The CFI database includes 436 plots in GRSF, all of which were sampled in 2000 

· or 200 I. Each CFI plot is a 0.2 acre (0.08 ha) circular area on which all trees > 12 em diameter are identified and 
measured. The CFI plots are arrayed on a regular grid at approximately 550 m intervals, yielding a statistical sample 
of the population of forest properties within the study area. We processed the tree diameter data to determine total 
basal area (TBA) of each plot, as well as basal area by species (SBA) and relative basal area by species (RBA) for 
each plot. We use RBA as a measure of species abundance at a plot level. All plots were geographically referenced 
using a Trimble Pathfinder Pro GPS. For this research, we concentrate on the distribution of three of the most 
common species in the study area: white oak, chestnut oak, and Virginia pine. 

1 University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland 21532; 
j foster@al.umces.edu 
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• 

2.3 Image Data and Preprocessing 

The research presented here uses two AVIRIS images, acquired on 14 May 2000 and 13 July 2001 from an 
altitude of -19,900 m (Table 1). The images were atmospherically corrected using the ATmospheric REMoval 
program (ATREM) (Gao eta!. 1993). The A VIRIS imagery exhibited a cross-track view-angle dependent 
brightness gradient. This gradient of increasing brightness on the west side of the images results from the A VIRIS 
scan angle and direction, flight path orientation and solar azimuth, and was corrected by fitting a first-order additive 
quadratic curve to the mean radiance by view angle (Kennedy et al. 1997). The images were georeferenced to UTM 
coordinates in ENVI using a triangulation method with > 70 GCPs per scene and nearest neighbor resampling. The 
images exhibited the effects of differential terrain illumination due to the presence of steep north-south trending 
mountain ridges in the study area. We applied an empirical correction method (Allen 2000, Meyer et al. 1993), 
which is described in detail elsewhere in this proceedings (Townsend and Foster 2002) .. One objective of the 
research presented here is to determine the consequences of terrain normalization on the capability to map forest 
composition. Mean spectra for a 3 by 3 pixel window around each plot was collected for all plots in the A VIRIS 
flight line. This resulted in a sample of331 plots for the 5/14/2000 scene (Figure 2) and 175 plots for the 7113/2001 
scene. 

Table 1. Image Characteristics 

Sensor Date Time (UTC) Solar Azimuth Solar Elevation 

AVIRIS 
AVIRIS 

5/14/2000 15:42:46 133.8 62.62 
7113/2001 15:47:47 

2.4 Image Classification 

The forests in GRSF exhibit a range of structure 
and density, with total basal area ranging from recently 
clear-cut (0) to 60 m2ha' 1

• The majority of the forests 
have BA values between 16-32 m2ha·1

, which is typical 
for 1 00-year old forests in the region. However, because 
gross differences in vegetation structure influence overall 
reflectance from forested plots, we constrained our 
analyses to mature, fully stocked forests, i.e., those with 
TBA > 20 m2ha·1

• This stratification required mapping 
TBA to delineate forests based on BA; for this, we used 
multiple stepwise regression (following Townsend 2002) 
to map TBA as a function of A VIRIS image bands. 
Following this, we used classification and regression 
trees (CART) to map composition of individual species. 
A variety of approaches have been used to map forest 
composition with hyperspectral data in mountainous 
landscapes (Martin et a!. 1998) and with mixed forests 
(van Aardt and Wynne 2001), including discriminant 
analysis and maximum likelihood classifiers. CART is 
being used increasingly for mapping from remotely 
sensed imagery (Friedl and Brodley 1997, Friedl et al. 
1999, Hess et al. 1995, Simard et al. 2000) and as such is 
only generally described here. Classification and 
regression trees (also known as decision trees) are fitted 

134.94 66.72 

Figure 2. True color 14 May 2000 A VIRIS 
image of Green Ridge State Forest. White dots 
indicate locations of CFI plots. 

by binary recursive partitioning, in which data sets are consecutively divided into smaller subsets with increasing 
statistical homogeneity (Clark and Pregibon 1993). Classification trees are used with class data, while regression 
trees are used to predict continuous data. CART approaches are desirable because they are less sensitive to non-
1inearities in the input data than methods that require assumptions of Gaussian distributions (as do many image 
classification techniques) (Clark and Pregibon 1993, Venables and Ripley 1994). In addition, CART is an extremely 
valuable approach for data exploration when a potentially very large set of independent predictor variable are 
available, e.g. with hyperspectral data sets. CART can be used to determine the best set of bands for predicting 
cover characteristics and does not require data reduction, tests for normality or data transformations. One limitation 
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to CART is that its performance is most robust and repeatable with large data sets, such as the CFI vegetation 
database that we used. For this work, we used classification trees with relative basal area by species grouped into 
five categories (A= 0%; B = >0- 10%; C = 10- 30%; D = 30- 50%; E =50- 100% RBA). These correspond to 
abundance levels of none, low, medium, moderate and high. The classification tree models were pruned to avoid 
overfitting the model to the training data using a cost complexity method designed to minimize misclassified results. 

3. PRELIMINARY RESULTS 

3.1 Total Plot Basal Area 

Total Basal Area (TBA) was best modeled 
in the corrected 5114/2000 image using a stepwise 
linear regression involving 13 image bands with an 
R2 of0.356 (p < 0.03). Although the R2 was not as 
strong as desired, the relationship was deemed strong 
enough to subset the A VIRlS image for mapping 
species composition in mature forests (TBA ~ 20) 
using CART. The bands employed in the TBA 
regression included three in the red portion of the 
spectrum, one on the red edge, and several in the far 
end of the near infrared. The regression equation was 
used to map TBA for the A VIRlS scene, and was 
then smoothed using a 5x5 median filter to assess the 
appropriateness of the spatial patterns ofTBA created 
by the model (Figure 3). The map showed relatively 
low levels of plot BA in recently clear-cut areas 
throughout the forest, and predicted higher total basal 
area on mesic slopes grading into valley bottoms. 
This resulting map exhibits promise for mapping BA, 
especially because the overall histogram for the 
distribution ofBA on the A VIRlS map matches that 
from the CFI sample (Figure 4). The prediction of 
BA from the 13 July image is not shown here. 
Regression using bands from the July image had an 
R2 < 0.2. The July image was characterized by fully 
leafed out forests, which probably obscured some of 
the variation in TBA on that image. 
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Figure 3. Predicted basal area for forests in Green 
Ridge State Forest. Gray scale ranges from 0 (black) 
to> 40 m2ha-1 (white). 
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Figure 4. Comparison of tbe distribution of actual basal area (left) for the CFI 
plots with predicted BA for the entire study area (right). 
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3.2 Species Distributions 

The results for predicting species abundance classes are listed in Table 2 for each date and for the 
normalized and non-normalized imagery. The best model for each species is highlighted. An example classification 
tree for Virginia pine is presented in Figure 5, with the resultant map in Figure 6. The bands used in all of the 
classification tree models are listed in Table 3. 

Table 2. Classification tree results. 

Image Date 

14 May 2000 
13 July 2001 

Quercus alba 
Normalized Original 

0.6009 
0.6387 

0.6479 
0.6807 

3.2.1 Effect of Image Date 

Quercus prinus Pinus virginiana 
Normalized Original Normalized Original 

0.6291 
0.6891 

0.6479 
0.605 

0.6901 
0.7479 

0.6948 
0.7563 

Figure 5. Classification tree for Pinus 
virginiana, generated from the 
normalized A VIRIS image of 14 May 
2000. Each branch delineates a split 
in the dependent variable (relative 
basal area of P. virginiana) based on 
an A VIRIS image band (identified by 
the prefix~ e.g. w1294 =the A VIRIS 
channel centered on 1294 om). 
Numbers below each box (node or leaf 
of the tree) indicate the mis
classification rate for that branch of 
the decision tree. 

KEY 
Code 
A 
·B 
c 
D 
E 

Description 
RBA=O% 
O%<RBA::; 10% 
10% < RBA::; 30% 
30% < RBA ::; 50% 
RBA>50% 

The classification accuracies for species abundance (i.e., relative basal area) vary from 60-76%. In general, 
the summer image performed better for predicting the individual species. This probably results from the likelihood 
that not all of the deciduous trees in the region (including white oak and chestnut oak) were fully leafed out on 14 
May 2000, making their detection somewhat problematic. The fact that classification accuracy for Virginia pine 
was relatively high for both the spring and summer images points to its ease of detection as an evergreen conifer. 
Note that even though the misclassification rates are high, our classification categories are very specific (relative 
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abundances by species). We consider these results to be 
very promising for mapping individual species patterns 
using decision trees. The logical next step to this 
research is to employ a multitemporal classification to 
take advantage of the differing reflectance characteristics 
of each species across seasons. 

3.2.2 Topographic Effects 

The comparison of models that used terrain 
normalized imagery versus the uncorrected original 
imagery yielded mixed results. For chestnut oak, which 
is typically located along steep slopes and ridge tops, the 
terrain-normalized imagery produced the best 
classification of species distribution. This is no surprise, 
as chestnut oak is typically located on the east and west 
slopes of the ridges in GRSF. The normalization would 
therefore be expected to improve the classi fication of this 
species by reducing differences in reflectance between 
illuminated and shadowed slopes. For Virginia pine, 
there was very little difference between the accuracy of 
models using normalized imagery and uncorrected 
imagery. This is likely due to the very distinct 
reflectance characteristics of Virginia pine, making it 
easily identifiable regardless of illumination effects. 
Finally, white oak was best predicted using the 
uncorrected imagery. This was somewhat of a surprise. 

Figure 6. Prediction of relative basal area for P. 
virginiana, ranging from 0% (black areas) to> 
50% (white). Virginia pine is especially 
prominent along west-facing slopes of ridges. 

However, because white oak generally occurs on gentle slopes, lower slopes and in flat areas, it is possible that the 
terrain normalization had very little impact on areas where white oak is found, and perhaps introduced some 
confusion in areas where white oak mixes with other deciduous oaks. Although these results do not provide 

Table 3. Bands used in the classification tree models. 

5/1412000 Normalized 5/14/2000 Original 
QUAL QUPR PIVU QUAL 

452 491 433 433 
529 510 442 510 
655 520 539 549 
665 529 597 703 
703 549 636 713 
1193 568 703 741 
1444 587 1294 11 74 
1484 703 1643 1454 
1623 1334 2001 1533 
1792 1444 2091 1633 
2041 1494 1703 
2211 1524 2011 
2420 2011 2031 

2191 2231 
2410 
2430 

QUAL = Quercus alba (white oak) 
QUPR = Quercus prinus (chestnut oak) 
PIVU = Pinus virginiana (Virginia pine) 

QUPR PIVU 
452 423 
578 500 
607 655 
694 713 
1155 799 
1165 1474 
1334 1494 
2001 1514 
2011 2001 
202 1 2330 
203 1 
2151 
2380 
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7/13/2001 Normalized 
QUAL QUPR PIVU 

451 422 471 
461 432 490 
741 471 538 
807 558 558 
1079 664 567 
1293 702 674 
1533 865 1333 
2020 2180 2020 
2389 2270 2349 
2438 2419 

7/13/2001 Original 
QUAL QUPR PIVU 

432 442 422 
451 538 693 
529 2010 769 
731 2060 1117 
798 2379 1154 
1135 1254 
1572 2010 
1632 2060 
1772 2379 
1782 2419 
2309 2438 
2438 



Figure 7. Composite prediction of 
the distributions of Virginia pine 
(projected in the blue channel), 
white oak (green channel), and 
chestnut oak (red channel). Black 
areas have TBA < 20 m2ha-1

; the 
river and interstate are not 
masked out on this image. Red 
areas represent ridges and steep 
slopes dominated by chestnut oak; 
blue areas are west-facing slopes 
dominated by pines (and other 
conifers); green areas are mesic 
slopes dominated by white oak. 
Other colors represent mixes. 

unequivocal support for the need to implement topographic normalizations, our results do suggest that more research 
is needed to determine the relative value of terrain normalization for species mapping. 

4. CONCLUSIONS 

A composite map of species distributions generated from the classification trees yields a map (Figure 7) 
that closely resembles the actual distributions and dominance of the three species described in this paper. These 
results represent a promising first step towards the application of A VIRlS imagery for detailed species mapping in 
rugged terrain. The results were mixed regarding the value of the terrain normalization; however, we expect that a 
multi-temporal analysis of the normalized AVIRlS imagery will result in improved classification results for all 
species. Finally, decision trees represent a promising technique for mapping using complex data sets (such as the 
CFI field data and A VIRlS hyperspectral data), reducing the need for data reduction or data transformation. 
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ECOSYSTEM CARBON FLUX IN A DISTURBED, FRAGMENTED SOUTHERN CALIFORNIA 
LANDSCAPE 

John Gamon,u D. Fuentes,3 D. Sims,1.2 S. Houston,2 A. Moyes,u H.-L. Qiu,u W. Oechel4 

1. BACKGROUND 

Humans are altering biogeochemical cycles in many ways. Our activities, through land use 
change and altered fire frequency, have measurable impacts on biogeochemical cycles, including the 
photosynthetic and respiratory components of the carbon cycle. Recent policy discussions concerning 
carbon management (e.g. Kyoto protocol) require that we develop a quantitative understanding of terrestrial 
carbon fluxes (i.e. the photosynthetic and respiration rates of natural landscapes). 

In southern California, activities resulting from human population pressures, including land use 
change (e.g. urban and suburban development) and altered fire regimes (e.g. arson and fire suppression) are 
likely to have significant impacts on resource use and carbon flux (photosynthetic and respiratory activity) 
of terrestrial ecosystems. Assessing human impacts on terrestrial carbon flux is particularly problematic in 
this region due to fragmented land use patterns, and complex terrain. The typical measurements for 
directly assessing landscape-scale carbon flux (e.g. eddy covariance) require large, relatively flat and 
unobstructed regions to work well (Moncreiff et a!., 1996 ). Such methods are difficult or impossible to 
apply in the fragmented and topographically complex terrain that characterizes much of southern California 
today. 

An alternate method of assessing photosynthetic and respiratory carbon flux is through models 
derived from remote sensing. For example, a light-use efficiency model is commonly used for assessing 
photosynthetic carbon uptake by vegetation. Originally presented by Monteith ( 1977), the typical light use 
efficiency model expresses net primary production (NPP), or the annual accumulation of carbon via 
photosynthesis, as the product of two terms, absorbed photosynthetically active radiation (APAR) and the 
efficiency (E) with which absorbed radiation is converted to fixed carbon: 

NPP = £ x APAR (eq. I) 

In this case, efficiency is sometimes treated as a constant for a given biome and is derived from literature 
values (e.g. Ruimy, 1996). However, many recent studies have demonstrated that light-use efficiency can 
be quite variable, particularly over the short term (days to months) and for vegetation types exposed to 
temperature extremes or drought stress, (Running and Nemani, 1988; Gamon et a!., 1995). This view of a 
dynamic light-use efficiency has prompted the exploration of alternate expressions of the light-use 
efficiency model that are capable of defining photosynthetic activity over a finer range of temporal and 
spatial scales. 

Alternate versions of the light-use efficiency model express instantaneous photosynthetic rate (PS) 
as a product of absorbed photosynthetically active radiation (AP AR) and radiation-use efficiency (E): 

PS = £ x APAR (eq. 2) 

1 Center for Environmental Analysis (CEA-CREST), California State University, Los Angeles, California 
90032 (jgamon@calstatela.edu) 

2 Department of Biological Sciences, California State University, Los Angeles, California 90032 
3 Department of Geography and Urban Analysis, California State University, Los Angeles, California 
90032 
4 Global Change Research Group, San Diego State University, San Diego, California 92182 
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AP AR can be further defined as the product of incident light intensity (PAR) and the fraction of 
incident light that is absorbed by vegetation that is potentially available for photosynthesis (fAPAR)· 

APAR =PAR X fAPAR (eq. 3) 

Typically, fAPAR is derived from remote sensing using a vegetation index such as the normalized difference 
vegetation index (NDVI), which is readily available from a wide range of satellite and aircraft instruments 
(Gamon et al., 1995; Gamon and Qiu, 1999). Incident light intensity (PAR) can be easily obtained from 
meteorological stations or remote sensing. Thus, evaluation of the AP AR term for large landscapes is 
fairly straightforward. However, evaluation of the efficiency (E) term in equation 2 is more problematic, 
and is usually not possible with remote sensing. However, with hyperspectral data, it is often possible to 
derive E from narrow-band indices. For example, numerous studies have shown that the photochemical 
reflectance index (PRJ), derived from reflectance at 531 nm and 570 nm can serve as an index of light-use 
efficiency at leaf and canopy scales (Gamon et a!, 1992; Penuel as et al., 1995; Gamon et al., 2001; Stylinski 
et al. , 2002). Recent applications of this index using aircraft remote sensing in the boreal forest have 
shown some promise for deriving light-use efficiency and photosynthetic rates for whole vegetation stands 
(Nichol et al., 2000; Rahman et al., 2001). If this approach can be extended to a larger variety of 
landscapes and vegetation types, including disturbed landscapes, then it could provide a powerful tool for 
assessing spatial and temporal patterns of photosynthetic activity across different landscapes. 

The purpose of this study was to assess patterns of carbon flux in a fragmented southern 
Californian landscape exhibiting various degrees and types of human disturbance. To do this, we applied a 
light-use efficiency model to A VIRIS imagery to generate a map of photosynthetic carbon uptake. The 
A VIRIS imagery was also used to derive a detailed cover-type map that, along with the photosynthesis 
map, was used to examine the relative productivity of different landscape regions. If this approach can be 
successfully validated in such a complex and disturbed region, then it could provide a way to improve our 
understanding of the impact of human land-use change on the carbon cycle. 

2.METHODS 

2.1 A VIRJS imagery 

Low-altitude A VIRIS imagery of the Cheeseboro Canyon region (center longitude and latitude: 
34° 9 ' 56" N, 118° 43' 12" W) obtained on Sept 9, 2000, was used for this analysis, yielding a "pixel size" 
(instantaneous field of view) of approximately 4.3 meters. The images (3.5 A VIRIS scenes from flight # 
f000909t0lp0l_r05) were processed to surface reflectance using the commercial software (ACORN, 
Analytical Imaging and Geophysics LLC, Boulder, Colorado). This region was chosen in part because it 
contains large holdings of public land (allowing access for field validation) but also because it forms a 
critical wildlife conidor between the Santa Monica Mountains and the Santa Susana Mountains. Changing 
human land use in this region, which includes suburban development, roadways and a large landfill, 
provided the opportunity to examine the impact of diverse land-use patterns and cover types on 
photosynthetic productivity, expressed as net carbon uptake of different landscape regions. 

2.2 Light-use efficiency model 

The light use efficiency model was developed using independent measurements primarily 
collected in a mature chaparral stand at San Diego State University's Sky Oaks Reserve (San Diego 
County), where measurements of ecosystem photosynthesis, spectral reflectance, and stand structure are 
underway. At this site, spectral reflectance along a 100-m transect in the vicinity of the eddy covariance 
sampling was obtained using a field spectrometer (UniSpec DC, PP Systems, Haverhill Massachusetts). 
Reflectance data were used to model net photosynthesis according to equation 2. 

NDVI (table I) was used to derive fAPAR according to the following empirical calibration: 

fAPAR = (NDVI X 1.25) - 0.1 35 (eq. 4) 
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· The values for fAPAR were then combined with midday light intensity (PAR, estimated to be 1740 umol m·2 

s"1
) to derive AP AR, according to equation 3. 

Light use efficiency (e) was derived from the photochemical reflectance index (PRJ, table I) by 
calibrating PRJ measurements (sampled with spectral reflectance) against whole-ecosystem light-use 
efficiency (derived from eddy covariance measurements at midday), yielding the following equation: 

E = 0.034 +(PRJ x 0.447) (eq. 5) 

The estimated LUE values were then combined with AP AR estimates, as indicated in equation 2, to yield a 
modeled estimate of net C02 flux (i.e. net photosynthetic rate) for all A VIRIS scenes. 

2.3 Deriving cover types 

A VIRJS scenes were also used to derive a vegetation map for the region. First, a series of 
reflectance indices (table I) were derived from the A VIRIS reflectance imagery. The precise bands 
employed in the index equations were obtained using the linear interpolation option included in ENVI 3.5 
(Research Systems Inc., Boulder Colorado). The resulting index images were then combined and used in a 
maximum likelihood routine to map the distribution of land cover types. We used an existing vegetation 
map of this region, derived from a spring 1993 Landsat TM image and aerial orthophoto quadrangles 
(Franklin, 1997), provided by the National Park Service, to identify regions of uniform cover type to use as 
training sites in the maximum likelihood routine. The identity of these training sites were then confirmed 
by field visits. The resulting vegetation map was then used to analyze the relative flux rates of different 
cover classes, as shown in table 2. 

Table I - Reflectance indices used in this study for vegetation mapping. Indices also used for deriving 
carbon flux are indicated with an asterisk(*). 

Index Formula Pu_l'])ose Reference 
Water Band Index Rwo/R91o Vegetation water content Peiiuelas eta!., 1993 & 

1997 
Chlorophyll index (R75o-R7os)/(R7so+R7os) Vegetation chlorophyll Gitelson & Merzlyak, 

content 1994; Gamon & Surfus, 
1999 

Photochemical (RsJ ,-Rs7o)/(Rs3o+R570) Photosynthetic light use Gamon eta!., 1992; 
reflectance index* efficiency Peiiuelas eta!., 1995; 

Gamon et a!., 200 I; 
Stylinski et a!., 2002 

Normalized (Rs60-RI240)1(Rs60+R,240) Vegetation water content Gao, 1996 
difference water 
index 
Normalized (R~oo-~so)/(Rsoo+~so) Fraction of light Bartlett et a!., 1990; 
difference absorbed by green Gamon et a!., 1995 
vegetation index* vegetation (FPAR), 

potential _photosynthesis 

3. RESULTS AND DISCUSSION 

A comparison between the Landsat-derived map (Franklin, 1997) and the A VIRJS-derived 
vegetation map is provided in figure I. Not surprisingly, the A VIRJS-derived map shows a much finer
grained classification due, in part, to the finer pixel size of the low-altitude A VIRJS imagery. Field surveys 
indicated that, in many locations, the A VIRJS imagery yielded a more accurate map. For example, the 
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Landsat-derived map indicated large areas of coastal sage scrub (dark green) that were often not present in 
the field. The AVIRlS imagery indicated that a large part of this region was actually a fairly continuous 
area of grassland (e.g. the north-south trending light green region in the central part of the A VIRIS-derived 
map in figure 1). Field surveys indicated that most ofthis region was indeed dominated by grassland rather 
than coastal sage scrub. Additionally, new regions of disturbance showed up in the AVIRlS scenes that 
were not visible in the Landsat-derived map produced a few years earlier. For example, the right side of 
the A VIRIS-derived map (figure I) indicated a large region of disturbed land that subsequent field visits 
proved to be a new suburban construction site dominated by bare soil. Although a quantitative accuracy 
assessment has yet to be conducted, our qualitative assessment suggested that the AVIRIS map was 
probably an improvement over the original Landsat-derived map. 

Combining information from the vegetation map (figure I) with the carbon flux map (figure 2) 
allowed us to evaluate the relative photosynthetic activity of different land cover types (table 2). According 
to the model (figure 2), oak woodland along riparian corridors exhibited the highest net photosynthetic rate, 
with all other vegetation types (chaparral, coastal sage scrub, and annual grassland) exhibiting much lower 
rates (table 2). Lower rates for these vegetation types are consistent with previous studies, and are to be 
expected at the end of the summer dry season (Gamon eta!., 1995). Suburban development, which 
consisted of a combination of houses, driveways, roads, and irrigated landscapes, exhibited a net 
photosynthetic rate that was approximately half (48.7%) that of the riparian oak woodland . By contrast, 
recently disturbed areas exhibited rates that were essentially zero or slightly negative (landfill, new 
development, and recently burned chaparral). If correct, negative rates would indicate that the land surface 
was actually a slight source of carbon to the atmosphere. In other words, respiratory activity (carbon loss 
to the atmosphere) was larger than photosynthetic activity (carbon gain from the atmosphere), leading to a 
negative net photosynthetic rate. However, it should be noted, that these modeled rates have not been 
validated yet. These relatively small percentage differences in modeled rates between landscape categories 
could be explained in a variety of ways, and could simply be due to errors inherent in the particular 
approach (e.g. errors in atmospheric correction or errors in the flux model itself). 

Table 2- relative photosynthetic activity, expressed as maximum midday photosynthetic rate, for selected 
cover types chosen from the A VIRlS-derived map in figure I. Photosynthetic rates are derived from the 
flux image in figure 2, and are expressed as a percent of maximum rates exhibited by oak woodland in 
riparian corridors. 

Landcover classification Relative photosynthetic 
rate(%) 

Riparian 100 
ChaiJ_arral 16.6 

Recently burned chaparral -1.0 
Coastal sage scrub 13.2 

Grassland -2.6 
Suburban development 48.7 

Disturbed (new development) -4.9 
Disturbed (landfill) -0.6 

This analysis allows us to draw several useful, if tentative, conclusions about the impact of human 
activity on photosynthetic productivity. Most notably, even in the best of circumstances (well-watered 
suburban landscapes), the photosynthetic activity of altered landscapes remains a fraction of that of riparian 
woodland, yet higher than other natural (unbuilt) landscapes. Presumably, surburban vegetation, which is 
typically heavily irrigated, has relatively high photosynthetic rates. On a leaf-area basis, these rates are 
most likely similar to those of riparian vegetation similarly exposed to abundant water. However, despite a 
presumably heavy input of water and fertilizer, the overall photosynthetic rates of suburban developments 
are only half that of riparian areas. Presumably, this effect is partly due to the large areas devoid of 
vegetation (e.g. paved areas, rooftops, and other constructed landscapes), in human-derived landscapes. 
Although not explicitly considered here, further analysis might attempt to examine the "resource-use 
efficiency" (e.g. water-use efficiency) of different landscape types. An analysis of resource-use efficiency 
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could take into account water and fertilizer usage in various human-derived landscapes and could compare 
these to nearby "natural" (unbuilt) landscapes. Such an analysis might be useful for developing strategies 
to maximize photosynthetic productivity of landscapes with a minimum of resource use. 

Land Cover Classes 

- Coastal sage scrub 
Northern-mixed chaparral 

- Chamise 
Non-native grass 

- Oaks 
Walnut 
Riparian 
Development 

- Soil 

Figure 1 - Landsat-derived vegetation map (A) and A VIRJS-derived vegetation map 
(B) for Cheeseboro Canyon. 
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0 40 J.lmol m·2 s-1 

Figure 2- Images ofNDVI (A) and PRJ (B) used to derive an image of midday net photosynthetic rate (C) 
according to the model in equation 2. In panels A and B, red indicates low values, and blue-black indicates 
high values (similar scale to panel C). 

The analysis presented here also illustrates the value of riparian woodland. If our analysis is 
correct, these regions are far more productive on a land-area basis than all the built landscapes. It is well 
known that riparian regions also provide critical wildlife habitat, and important corridors for wildlife 
migration. In the case of this particular region, the riparian corridors provide a potentially critica l 
connection between two large public land holdings, the Santa Monica Mountains, and the Santa Susana 
Mountains. Part of the attraction to wildlife is undoubtedly a result of its relatively high photosynthetic 
productivity, which provides food as well as protective cover. 

It should be emphasized that the modeled photosynthetic rates reported here have not yet been 
validated by direct field measurements, and that a thorough validation (e.g. by direct flux measurements), 
would be difficult or impossible for much of this fragmented landscape, some of which is privately owned. 
Thus, the photosynthetic rates and conclusions presented here should be considered hypotheses to be tested 
with further study. More work is needed to develop methods of validating this approach in such a complex 
landscape. 
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4. CONCLUSIONS 

The results presented here demonstrate a method for assessing cover type and photosynthetic productivity 
for a range of natural and human-disturbed landscapes in southern California, a region heavily impacted by 
human disturbance. The cover type with the highest photosynthetic productivity was riparian woodland, a 
cover type that also serves an important function as a wildlife corridor in this region. Suburban 
development exhibited the next highest photosynthetic productivity (approximately 50% of riparian 
woodland), but presumably at a large cost in terms of fertilizer and water usage. By contrast, recently 
disturbed sites (e.g. new developments, landfill, and recently burned chaparral) showed photosynthetic 
rates that were essentially zero or slightly negative, suggesting a possible source of carbon to the 
atmosphere. Future work will attempt to validate the methods and conclusions presented here, allowing us 
a quantitative assessment of human impacts on the carbon budget in this region. 
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A CURVE-FITTING TECHNIQUE TO IMPROVE WAVELENGTH 
CALIBRATIONS OF IMAGING SPECTROMETER DATA 

Bo-Cai Gao: Marcos J. Montes,t and Curtiss 0. Davis: 

1 INTRODUCTION 
There are now growing interests in hyperspectral remote sensing for research and applications in a 

variety of fields, including geology, agriculture, forestry, coastal and inland water studies, environment hazards 
assessment, and urban studies (Mouroulis et al., 2000). The concept of imaging spectrometry, or hyperspectral 
imaging, was originated from geological communities in the early 1980s (Goetz eta!., 1985), mainly for the purpose 
of mineral exploration. Imaging spectrometers acquire images in many contiguous narrow channels such that for 
each picture element (pixel) a complete reflectance or emittance spectrum can be derived from the wavelength 
region covered. Figure 1 shows an example of a spectrum acquired with the Airborne Visible Infrared Imaging 
Spectrometer (A VIRIS) (Vane et al., 1993; Green eta!., 1998) from an ER-2 aircraft at 20 km altitude. The solar 
radiation on the Sun-surface-sensor path is subject to absorption and scattering by the atmosphere and the surface. 
Major atmospheric absorption bands, such as those of water vapor centered at approximately 0.94, 1.14, 1.38, and 
1.88j.Lm, the oxygen band at 0.76jlm, the carbon dioxide bands near 2.01 and 2.06j.!m, and a solar Fraunhofer line 
near 0.43 J.Un are clearly seen. In order to study surface properties using imaging spectrometer data, the atmospheric 
absorption and scattering effects must be removed. Several atmospheric correction algorithms (e.g., Gao et al., 1993; 
Gao and Davis; 1997; Adler-Golden et at., 1998; Qu eta!., 2000) for deriving surface reflectances from imaging 
spectrometer data have been developed in the past decade. 

For both the airborne and spaceborne imaging spectrometers, shifts in radiometric and spectral calibrations 
can occur. Calibration coefficients for all detectors obtained in a laboratory may need to be adjusted when applied to 
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Figure I : An A VIRIS spectrum showing typical features due to the solar spectrum and gaseous absorption by the 
terrestrial atmosphere. 
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Figure 2: The ratio oftwo simulated transmission spectra with a spectral resolution of about 10 nm but with a relative 
wavelength shift of 1 nm between them. Over regions where there are absorption bands of atmospheric gases, the 
ratio values deviate significantly from 1.0. 

data obtained from an aircraft or a satellite platform. Shifts in channel center wavelengths and changes in spectral 
resolution may occur when an instrument is airborne or space borne due to vibrations, and to changes in instrument 
temperature and pressure. In order to use radiative transfer-based approach to derive surface reflectances from 
hyperspectral imaging data for improved studies of surface properties, accurate radiometric and spectral calibration 
to the data must be made (Green, 1998). 

Following calibrations, atmospheric correction algorithms are typically applied to imaging spectrometer 
data to remove the effects of atmospheric gas absorption, and Rayleigh and aerosol scattering (Gao et al., 1993). The 
atmospheric gas absorption features are very sharp and errors in wavelength calibrations can produce significant 
errors in the retrieved land or ocean surface reflectances around these features. For the purpose of illustrating the 
importance of wavelength calibrations, we calculated two spectra at the typical A VIRIS resolution of approximately 
I 0 nm. One spectrum was calculated for the correct wavelengths, and the other with a I nm shift in wavelengths for 
all the channels. Figure 2 shows the ratio of the two spectra. Over regions where there are absorption bands of 
atmospheric gases, the ratio values deviate significantly from I. Therefore, small errors in wavelength positions can 
introduce large errors in the derived reflectance spectra. 

In this paper, we describe an algorithm for refining spectral calibrations of imaging spectrometer data. The 
algorithm is based on spectrum-matching of atmospheric water vapor, oxygen, and carbon dioxide bands, and solar 
Fraunhofer lines. We then present sample results from applications of the algorithm to data acquired with a few 
airborne and spaceborne hyperspectral imaging sensors. 

2METHOD 
Spectrum-matching techniques (Chang and Shaw, 1977) were developed in the 1970s for retrieving 

positions and widths of atmospheric gases from laboratory-measured "ultra" spectra (in which individual lines 
within bands of atmospheric gases are resolved). Later on, a spectrum-matching technique was developed for 
deriving column atmospheric water vapor amounts (Gao and Goetz, 1990) from hyperspectral imaging data (in 
which major bands of atmospheric gases are resolved) acquired with the A VIRIS instrument. We have recently 
developed another spectrum-matching algorithm for refining wavelength calibrations of imaging spectrometer data. 
This algorithm is based on the matching between measured atmospheric water vapor, oxygen, carbon dioxide bands, 
and solar Fraunhofer lines with the corresponding calculated bands. The spectral calculations are performed using 
procedures described by Gao et al. (2000) and Gao and Davis ( 1997), which utilize high-resolution line-by-line 
atmosphere transmittance calculations based on the HITRAN 2000 database.§ 

In order to automate the wavelength calibrations of hyperspectral data based on atmospheric or solar 
Fraunhofer band matching, we assume that the wavelengths of the measured spectrum can shift from - 5 nm to +5 

§Rothman eta!., 2001 private communication. 

100 



-4 -2 0 2 4 
OFFSET FROM LABORATORY WAVELENGTH GRID ( nm) 

Figure 3: Standard deviation between the laboratory calibration spectra and the modeled spectra as a function 
of wavelength shift. 

nm in steps ofO.Ol nm. For each step, we calculate the standard deviation between the measured and the simulated 
spectrum. Figure 3 shows the standard deviation of matching for a PHILLS (Portable Hyperspecral Imager for Low 
Light Spectroscopy) spectrum in the vicinity of the 0.76 J.U11 oxygen feature as a function of wavelength shift. A 
minimum occurs at a wavelength shift of2.57 nm, so this is considered to be our best estimate of the wavelength 
shift. 

In the case of hyperspectral images measured with sensors built with arrays of area detectors, each across 
track pixel may have a different wavelength calibration. The spectrum-matching technique described above needs to 
be applied to each cross track pixel of the data. In our practical applications, we average (in the along track 
direction) all the spectra of a scene for a particular cross track sample to improve signal-to-noise ratio, and apply the 
spectrum-matching technique to the averaged spectrum to obtain an estimate of wavelength shift for the column. 
The process is repeated for every cross track pixel in the imaging scene. 

Through theoretical considerations and analysis of measured imaging spectrometer data, we have found 
that a number of atmospheric and solar bands in the 0.4 - 2.5 J.l.m solar spectral region can be useful for wavelength 
calibrations using the spectrum-matching technique described above. Specifically, for instruments with a spectral 
resolution of approximately 10 run, the atmospheric water vapor bands centered near 0.82, 0.94, 1.14 J.l.m, the 
oxygen band near 0.76 J.U11, and the carbon dioxide bands near 1.58 and 2.06 J.U11 can be used for wavelength 
calibrations. For instruments with a spectral resolution of about 5 nm, an additional solar Fraunhofer line near 0.43 
Jlll1 becomes useful due to the increased resolving power of the instruments. For instruments having a spectral 
resolution of 2.5 nm or better, several more solar Fraunhofer lines centered near 0.516, 0.656, 0.854, and 0.863 J.l.m, 
can be used for wavelength calibrations because of the further increased resolving powers. 

3 RESULTS 
Our spectrum-matching algorithm has been applied to hyperspectral data collected with several imaging 

spectrometers for refining wavelength calibrations. Sample results from applications to A VIRIS, PHILLS, and 
Hyperion data are described below. 

3.1 AVJRJS 
We typically average all the 512 spectra in one along track column of a scene to obtain a spectrum with 

signal to noise ratios well above 1000 before applying our spectrum-matching technique to A VIRIS data. The 
spectrum-matching technique is then applied to the averaged spectrum to estimate wavelength shift from the 
supplied laboratory A VIRIS calibrations. Sample wavelength shifts obtained from an A VIRIS data set are shown in 
Figure 4. The A VIRIS data used in this study was acquired over the Cuprite (30° 30'N and 117 ° 10' W) mining 
district in Nevada on 23 June 1995. The three curves in Fig. 4 are wavelength shifts as a function of sample number 
(cross track direction). These wavelength shifts are obtained through matching an atmospheric oxygen band near 
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Figure 4. AVIRIS wavelength offsets derived through spectrum-matching of an oxygen band near 0.76 11m, a 
water vapor band near 1.14 )lin, and a carbon dioxide band near 2.06 J.ll1l. 

0.76 J.ll1l, a water vapor band near 1.14 J.ll1l, and a carbon dioxide band near 2.06 J.ll1l. Both the oxygen and the water 
vapor bands are located in the wavelength region covered by the Spectrometer B of A VIRIS. The carbon dioxide 
band is located in the wavelength range covered by the Spectrometer D. The mean of wavelength shifts from fitting 
the oxygen band for all the samples is -0.589 nm with a standard deviation ofO.Oll nm. This mean shift is within 
the A VIRIS' laboratory wavelength calibration uncertainty of ±1 nm. Because A VIRIS is a scanning instrument, the 
shift is essentially the same across the scene. The mean shift can be considered to be the best estimate of A VIRIS' 
wavelength shift based on the oxygen-band-fitting. The standard deviation of0.012 nm can be considered to be the 
accuracy using the spectrum-matching technique for wavelength calibrations. The mean wavelength shift obtained 
from fitting the 1.14-micron water vapor band is -0.658 nm with a standard deviation of 0.017 nm. This mean shift 
is consistent with the mean shift obtained from fitting the oxygen band. The mean shift derived from fitting the C02 

band near 2.06 J.ll1l is +0.344 nm with a standard deviation of 0.010 nm. The wavelength shift for the Spectrometer 
Dis positive while that for the Spectrometer B is negative. The amounts of shifts are all within the stated A VIRIS' 
laboratory calibration accuracy of ±I nm. 

3.2PHILLS 
Over the past few years the Naval Research Laboratory (NRL) has build a series ofPHILLS instruments 

(Davis, et al., 1999; Davis et al., 2002). All the PHILLS instruments use area arrays in focal planes. The PHILLS 
instruments have spectral resolution of 1.13 nm per pixel and are typically binned by 4 to 4.52 nm. Data collections 
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have been made from low altitude airplane platforms during several field experiments. The temperature and pressure 
around the PHILLS instruments have not been controlled during the data acquisitions. Our spectrum-matching 
technique has been applied to the column-averaged PHILLS spectra for estimating wavelength offsets. Sample 
results obtained from one PHILLS data set are shown in Figure 5. The PHILLS data with a spectral resolution of 
4.52 nrn were acquired over an area in New Jersey (39°20' Nand 74°30' W) on 31 July 200 I. The two curves in Fig. 
5 are wavelength offsets (as a function of sample number in the cross track direction) derived through matching the 
oxygen band near 0.76 !lffi and a solar Fraunhofer line near 0.43 J.im. The offset curve from the oxygen band 
matching shows a difference of about 0. 7 nm from left side of the detector array to the right side of the array. This is 
the result of a combination of spectral smile of about 0.3 nm over 1000 pixels and a tilt of about 0.6 nrn over 1000 
pixels caused by misalignment between the spectrometer and the camera. The two curves in Fig. 5 have a vertical 
offset of approximately 1.3 nrn, indicating a possible change in light dispersion property for the PHILLS instrument 
in the aircraft environment. 

3.3 Hyperion 
TRW Space, Defense and Information Systems in Los Angeles, CA built the Hyperion instrument. It is the 

first spacebome imaging spectrometer flying on a NASA experimental satellite platform named Earth Observer-! 
(EO-I) (Ungar, 1997). This instrument was launched into space in November 2000. It covers the 0.4 - 2.5J.im 
reflected solar spectral region with more than 220 narrow channels at a spectral sampling spacing of about I 0 nm. It 
has a spatial resolution of 30 m on the ground, and a surface swath width of 7 km (Ungar, 1997). The dashed line in 
Figure 6 is the curve of center wavelength position for Band 41 as a function of sample number in the satellite cross 
track direction. The center wavelengths were obtained based on laboratory calibrations of the Hyperion sensor at 
TRW. Because the center wavelengths depend on the sample number, the "smile" effect is obviously present in the 
Hyperion sensor. The dotted line in Fig. 6 is a curve of our estimated center wavelength positions based on matching 
the 0. 76 11m oxygen band from one set of Hyperion data acquired over the Cuprite mining district in Nevada on 
March I, 200 l. This curve is shifted upward by roughly I nrn in comparison with the laboratory calibration curve. 
Actually, the amount of shifts depends slightly on the sample number. The solid line in Fig. 6 is our estimates of 
center wavelengths for Band 41 from another Hyperion data set acquired over the heavily vegetated Coleambally 
Irrigation Area (39°48' S, 145°39' E) in Australia on March 6, 2001. The shape of this curve is very similar to that 
of the Cuprite curve. The similarity of the two curves (one from a heavily vegetated area, one from a much less 
vegetated area) provides evidence that we are correctly accounting for the differing backgrounds in the vicinity of 
the 0.76 !lJl1 feature. 
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Figure 6: Center wavelengths as a function of sample number in the cross track direction for Channel 41 of the 
Hyperion instrument obtained from laboratory calibration (dashed line) and retrieved from the Cuprite Hyperion 
data set (dotted line) and from the Coleambally Hyperion data set (solid line) based on spectrum-matching of the 
oxygen band near 0.76 11m. 
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4 DISCUSSIONS 
The application of our algorithm to A VIRlS data has demonstrated that the channel positions can be 

estimated with an accuracy of 0.017 nm or better using our spectrum-matching technique, while the A VIRlS ' 
laboratory calibration uncertainty is about ± 1 nm. Therefore, improved wavelength calibrations can be obtained 
using the spectrum-matching technique. After adjusting the standard A VIRlS wavelength table based on our results, 
errors in derived surface reflectance spectra using atmospheric correction algorithms will be decreased significantly, 
particularly over spectral regions where the atmospheric gas absorption features are strong. 

For array spectrometers, the spectral calibration may vary across the scene as a result of spectral smile or 
misalignment. The applications of our spectrum-matching algorithm to the PHILLS data and Hyperion data have 
shown that our algorithm is sufficiently accurate to allow the measure of these artifacts. Corrections of these 
artifacts, in particular the misalignment, are possible for airborne imaging spectrometers. 

SSUMMARY 
We have developed a spectrum-matching algorithm for refining the wavelength calibrations of imaging 

spectrometer data. Atmospheric water vapor, carbon dioxide, oxygen bands, and solar Fraunhofer lines are used for 
the spectrum matching. The algorithm has been applied to data acquired with the A VIRlS, PHILLS, and Hyperion 
instruments onboard aircraft or satellite platforms. After the refinement in wavelength calibrations, improved 
derivation of surface reflectance spectra from hyperspectral imaging data based on radiative transfer modeling can 
be obtained. Subsequently, better studies of surface properties using the derived surface reflectance spectra can be 
conducted. 
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ACQUISITION OF UNDERWATER REFLECTANCE MEASUREMENTS AS GROUND TRUTH 

James A. Goodman1 and Susan L. Ustin 

I. INTRODUCTION 

Work is being performed to establish effective quantitative methods for the mapping, monitoring and 
assessment of coral reef ecosystems using hyperspectral remote sensing. Specifically, imagery acquired over the 
Hawaiian Islands by NASA's Airborne Visible InfraRed Imaging Spectrometer (A VIRIS) is being used to develop, 
apply and evaluate algorithms for analyzing coral reefs using airborne hyperspectral data. The imagery was 
obtained during two separate A VIRIS deployments to Hawaii, one in April 2000 and another in October 2001 . The 
coral ecosystems covered in these deployments exhibit conditions ranging from significantly human impacted reefs 
in the Main Hawaiian Islands to the relatively pristine coral environments of the Northwestern Islands. In addition 
to this significant spatial coverage, the deployments also provide temporal coverage through repeat acquisition of 
select study areas. Of these locations, the primary study area being used for this research is Kaneohe Bay on the 
windward shore of Oahu (Figure 1). This area provides 
many advantages as a model system for developing 
algorithms, including ease of accessibility for 
fieldwork, a wealth of supporting research literature 
and limited species diversity. The bay also exhibits a 
significant range in habitat health, from coral
dominated to algae-dominated, thereby allowing 
evaluations of algorithm effectiveness in identifying 
such differences. 

As an evolving field in remote sensing, 
hyperspectral analysis of benthic environments still 
requires many technical developments prior to 
reaching a comprehensive level of image classification 
and analysis. The confounding influences of varying 
water column properties and the complex mosaics of 
coral species create many technical challenges and 

Oahu 

Hawaiian 
Islands 

,o ~t . ~ 
Oahu {) 

physical limitations for applications of remote sensing . .. 
in benthic habitats (Dustan et a!., 2000; Holden and Figure I. Kaneohe Bay, Oahu, Hawau. 
LeDrew, 1998; Lubin et al., 200 I). Furthermore, there is an observed deficiency in accepted standard methods for 
acquiring field spectral measurements. As such, an early focus of this research project has been to examine 
traditional terrestrial hyperspectral techniques, particularly acquisition of field reflectance measurements, and adapt 
those methods for application in an underwater environment. Presented below is a description of the field 
instrument selected for this task, a summary of the field methods developed using a set of control experiments, and 
an illustration of reflectance results obtained in Kaneohe Bay for coral, algae and benthic calibration targets. 

2. METHODS 

As support for hyperspectral analysis, field spectroscopy plays an important role in characterizing the 
reflectance properties of the individual components comprising an image. The in situ data supplied by these field 
measurements provide valuable information with which to compare, calibrate, and analyze data obtained by the 
sensor. Field-portable spectroradiometers are common~y used in terrestrial hyperspectral analysis to measure the 
reflectance of target areas for use in image calibration, develop spectral libraries for image analysis, and identify 
suitable endmembers for use in classification algorithms (Milton, 1987; Salisbury, 1998). Similar methods are being 
used in the underwater environment; however, as of yet, no standard has been developed. 

1 Center for Spatial Technologies and Remote Sensing (CSTARS), Department of Land, Air and Water Resources, University of California, 
Davis Uagoodman@ucdavis.edu). 
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2.1 Instrument 

The fundamental 
starting point for acquiring 
underwater spectral 
measurements was to select a 
suitable instrument for the task. 
Although subsurface spectra are 
acquired for a variety of 
scientific purposes and 
appropriate instruments have 
been developed for these 
investigations, diver-portable 
spectroradiometers are less 
common. In the interest of cost and instrument availability, it was decided to modify a field-portable GER-1500 
spectroradiometer for use in the underwater environment. Selecting this instrument, as opposed to a specifically 
designed underwater unit, has the advantage of maintaining the ability to use the instrument outside of its housing 
for acquiring measurements of terrestrial targets. While one option is to leave the instrument on the surface 
(typically in a small boat) and simply utilize the fiber optic cable underwater (Hochberg and Atkinson, 2000; Holden 
and LeDrew, 1998; Holden and LeDrew, 200 I), this method has the disadvantages of a limited range and depth in 
which spectra can be acquired, as well as difficulties in communication between the diver and the instrument 
operator located on the surface. Thus, the design selection used here was to completely enclose the GER-1500 in a 
custom underwater housing with external controls allowing full operation of the instrument by a diver (Figure 2). 

The GER-1500 is a reasonably small field instrument with the ability to function in a stand-alone mode of 
operation. This mode allows full access to the instrument controls, as well as an internal memory capacity for 
storing field data. It has a silicon diode array measuring 512 spectral bands in the region from 350 to 1050 nm with 
a resolution of approximately 1.5 nm. Aside from the underwater housing itself, modifications included a larger 
capacity battery for extended life between charging and instrument adjustments to allow operation from external 
controls on the underwater housing. In addition to the GER-1500, a 10 inch Spectralon® 99"/o diffuse reflectance 
panel was carried underwater with the diver for use as a reference standard. 

2.2 Control Experiments 

The issues involved in underwater spectroscopy have 
many similarities to already established terrestrial methods, but 
there are a few important differences. Unlike terrestrial 
conditions, the presence of a water column, which separates both 
the airborne sensor and field instrument from the features being 
measured, introduces significant variations in the light field that 
must be brought into consideration. Of most importance was the 
effect of wave-focusing (Figure 3), which is a function of the sea 
surface state and manifests itself as a rapidly fluctuating 
underwater light field. Surface waves also inherently exhibit 
differing heights and orientations, which result in changing path 
lengths for downwelling irradiance as well as varying illumination 
angles due to refraction. Thus, the presence of surface waves, 
which occurs on all but the rarest of windless days in the field, 
greatly complicates the ability to achieve uniform illumination 
conditions for both reference and target measurements. A set of 
control experiments were performed using the above described 
underwater field spectroradiometer to develop a field methodology to account for these illumination issues and 
thereby minimize errors introduced by environmental fluctuations (Goodman and Ustin, 2002). Different lighting 
conditions and instrument settings were used to establish the reliability of obtaining field spectra under variable 
situations. Experiments were performed in a controlled pool environment at the Bodega Marine Laboratory of the 
University of California, Davis. Results from these experiments indicated the utility of acquiring field reflectance 
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measurements by creating diffuse lighting conditions (achieved 
by shading the target of interest) during both measurement of the 
reference standard and the target surface. 

2.3 Field Measurements 

Results obtained from the control experiments were 
utilized to develop a measurement protocol for acquiring 
underwater field reflectance data. The diver making the spectral 
measurements floats over the bottom target or reference panel to 
produce shaded conditions during data acquisition (Figure 4). 
For consistency, all measurements are acquired from a distance 
of30 em from the subject. Additionally, the spectroradiometer is 
set to average three measurements per reading and each reference 
reading is quickly followed by five readings of the selected 
target. This protocol was applied during two separate visits to 
Kaneohe Bay to obtain in situ measurements of sand, rubble, 
coral and algae. Supporting data obtained in the field included 

Figure 4. Underwater measurement. 

time of measurement, water depth, photographic record and W AAS-corrected GPS location. The first visit 
corresponded with the October 2001 A VIRIS deployment to Hawaii and was undertaken with the express purpose of 
acquiring field data coincident with the A VIRIS overflight of Kaneohe Bay. The second visit was completed in 
April of2002 in order to obtain field data at the same time of year as the earlier acquired AVIRIS imagery in 2000. 
This data is being used to investigate potential seasonal differences in the reflectance data (e.g., physical and 
physiological differences in the targets and as a function of seasonal differences in illumination characteristics), as 
well as expand on the spatial coverage of the field data. 

3. RESULTS 

3.1 Coral and Algae 

The methods employed in the field data collection were designed to minimize errors in underwater 
reflectance measurements resulting from the inherent variability oflighting conditions. Thus, it can be inferred that 
the resulting spectral characteristics of each target can be attributed primarily to its biological and physical 
properties and not to products of environmental variations. Accordingly, because individual measurements were 
acquired from numerous locations and depths, results are presented not just in terms of averages but also with an 
indication of species variation (e.g., through the standard deviation). Results from the 200 I data collection in 
Kaneohe Bay for two species (one coral and one algae) are presented in Figure 5. 
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Figure 5. Reflectance of Porites compressa (coral, n =51) and Dictyosphaeria cavernosa (algae, n = 34); 

average and +/- 1 standard deviation. 
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The reflectance characteristics observed in Figure 5 are similar to averages presented in other coral 
reflectance investigations. The difference here is the inclusion of the standard deviation of measured spectra for 
each species. This provides a valuable indication of the variation within and between each species, which aside 
from a few limited publications (Andrefouet et al., 200 I; Hochberg and Atkinson, 2000; Holden and LeDrew, 200 I) 
is typically not reported. Such variation is a significant factor to consider in spectral analysis, particularly for 
investigations focused on examining the spectral separability between and among species (and between other bottom 
materials such as sand, rubble and mud). Furthermore, it is important that the measure of variation is indicative of 
actual differences between species and not to fluctuating environmental conditions. The field protocol used here has 
been shown to minimize such unwanted errors in underwater reflectance measurements (Goodman and Ustin, 2002). 
Therefore, by using this protocol, the measured differences and similarities in reflectance characteristics indicated 
by this data can be confidently attributed to the actual differences in reflectance properties of each individual 
species. 

3.2 Calibration Targets 

In addition to obtaining measurements of individual 
coral and algae species, reflectance characteristics of five natural 
calibration targets were also acquired during the two field visits. 
These targets are similar to terrestrial calibration areas whose 
spectral information is used to assist in calibrating hyperspectral 
imagery to reflectance. For image analysis of coral reef and 
other shallow benthic habitats, the calibration procedure 
necessitates both atmospheric and water column corrections. 
Accordingly, underwater calibration targets needed to be 
identified and measured for use in calibrating images. The 
targets selected for Kaneohe Bay (Figure 6) are distributed at 
different locations and at different water depths throughout the 
study area. Each individual target consists of a large 
homogeneous sand area of uniform depth and was characterized 
by collecting a random sampling of 40 to 60 individual 
reflectance measurements. Results for two of the areas acquired 
in 2001 are presented in Figure 7. It is apparent that these areas 
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Figure 6. Calibration targets. 

exhibit a much greater variation in reflectance than the individual coral and algae species. Also evident in these 
graphs (and for all the target areas measured within Kaneohe Bay) is the characteristic chlorophyll-a absorption 
feature around 680 nm. This feature has been reported in other investigations and results from the presence of 
benthic microalgae within the sand, which can contribute significantly to overall primary productivity (Roelfsema et 
al., 2002). As with the coral and algae measurements, the field method used in this research produces an indication 
of the natural differences between targets. Among other functionality, this allows the target measurements to more 
confidently serve as ground truth for use in evaluating the effectiveness of water column correction algorithms. 
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Figure 7. Reflectance of targets 1 (n =50) and 3 (n = 45); average and+/- 1 standard deviation. 
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4. CONCLUSION 

The physical limitations and technical difficulties associated with the water column present a challenging 
environment for remote sensing investigations. The energy interactions occurring at the air-water interface and 
within the water column alter many of the basic assumptions used in traditional terrestrial investigations. This is 
particularly evident when making in situ underwater reflectance measurements. Surface waves produce wave
focusing, changing wave height and varying refraction geometries. Absorption and scattering properties are also 
affected by varying constituents within the water column. Together, these factors result in highly variable 
underwater illumination conditions, both spatially and temporally. Control experiments were employed to address 
these issues and produce a field methodology that minimizes errors associated with environmental fluctuations. The 
methodology was then used to acquire reflectance measurements of coral, algae and sand within Kaneohe Bay. Data 
acquired from these field investigations is an important component of the ongoing research to develop hyperspectral 
image analysis techniques for coral reefs. Specifically, this includes utilizing the natural underwater calibration 
targets for empirical image calibration, applying a semi-analytical model for water column correction, developing 
algorithms for benthic habitat mapping, identifying large-scale coral community composition and examining causal 
relationships associated with environmental stress and global change. 
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1.0 INTRODUCTION 

On the l41
h of September 2001, in the wake of the destruction of the World Trade Center, the 

question of using A VIRIS (Vane et al., 1993; Green et al., 1998) to detect possible asbestos 
contamination was raised. A VRIS measures the spectral range from 3 70 to 251 0 nm, with I 0 run 
sampling and high precision. This spectra1 range, spectral resolution, and precision, supported the use of 
A VIRIS to measure the 2300-nrn absorption features of the principal asbestos minerals. Based on this 
potential contribution, approval was given for A VIRIS to acquire data over the disaster site. 

At the time, A VIRIS was installed on the Twin Otter aircraft and grounded at the Atlanta, Georgia, 
airport. With careful and persistent effort in the challenging environment following September ll 1

h, 

permission was given to fly A VIRIS at low altitude over the disaster site. A VIRIS data were acquired of 
the site and surrounding area on the 16th of September 200 I. Rapid examination of these data in the 
following 24 hours unexpectedly revealed the presence of multiple hot fires still burning in the debris. 
Subsequently, rapid characterization and reporting of the hot-fire properties in the debris area were added 
to the analysis objective for the A VIRIS data. 

A Planck-function-based spectral-fitting fire temperature and fractional area algorithm (Green, 
1996; Green, 200 l) was applied to the A VIRIS-measured bot-fl.re spectra. A precise georectification of 
these A VIRIS data was performed to locate the geographic position of the hot fires (Boardman, 1999). 
The locations and derived fire temperatures and fractional areas were reported to the rescue teams on the 
ground on the 17th of September. Based on these initial results additional A VIRIS overflights of the 
disaster site were made on the l81

h, 22nd, and 23rd. This paper reports the measurements, algorithms, 
analyses, and results of the fire temperature and fractional area determinations with A VIRIS calibrated 
spectra at the World Trade Center site in September 2001. Additional results relating to the detection of 
asbestos and other materials are reported elsewhere (Clark et al., 2002). 

2.0 MEASUREMENTS 

A VIRIS spectral image measurements were acquired over the World Trade Center disaster site in 
the period from 14:51 to 17:07 UTC on the 16th of September 2001. They were returned to JPL early in 
the morning of the 17th for analysis. Figure 1 shows an A VIRIS image cube rendition of a portion of one 
of the A VIRIS flight lines, with the disaster site in the left center of the image. The edge panels of the 
image cube rendition depict the spectral dimension of the A VIRIS data. 

These data were acquired from an altitude of 1500 m, which gives a corresponding spatial 
resolution of 1.5 m, based on the 1 milliradian instantaneous field-of-view of the A VIRIS instrument. 
Early examination of the A VIRIS image data at 2300 nm on the morning of the l71

h revealed a number of 
high-intensity radiance targets. Figure 2 shows the A VIRIS image from the 2300-nm spectral region, 
with numerous bright targets evident in the area of the World Trade Center. Additional bright targets at 
this wavelength are also evident towards the right of the image at some distance from the disaster site. 
Detailed examination of the spectra from high-intensity targets at the World Trade Center disaster site 
revealed spectral signatures of hot fires. The bright spectra to the right of the image in Figure 2 were 
shown to be the result of sun glint from reflective roof surfaces. A VIRIS spectra from surface 
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background material, a burning fire at the disaster site, and sun glint from a building roof are shown in 
Figure 3. The background material spectrum has the form of solar-reflected radiance from a surface, of 
moderate uniform spectral reflectance across the AVIRIS range. The hot-fire spectrum exhibits the 
reflectance of a dark material in the range from 400 to I 000 nm. At wavelengths longer than 1000 nm, 
the hot fire spectrum radiance intensity increases until reaching the A VIRIS instrument saturation level in 
the 2000-2500-nrn spectral range. This increase in radiance to longer wavelengths is consistent with 
surface sourced radiance emitted by a hot fire. In contrast, the sun glint spectrum shows a high spectral 
radiance that conforms to the shape of the solar spectral irradiance source convolved with the two-way 
transmittance of the atmosphere. In this spectrum, minor A VIRIS instrument saturation occurs near the 
1000 nrn wavelength region. A VIRIS instrument radiance saturation levels are set to preserve 
measurement precision for materials in the range from 0 to that of a 1.0 reflectance Larnbertian surface 
with the sun directly overhead. Both the burning fire and sun glint spectra exceed this saturation level in 
limited portions of the spectrum. However, measurement of the spectral shape by A VIRIS in the 
nonsaturated portions of the spectrum provides a basis to identify the properties of these targets. hi the 
case of the burning fire, the spectral shape and intensity may be used to derive estimates of both the 
temperature and fractional area of the hot source. 

Figure 1. AVI RIS image cube of World Trade Center disaster site acquired on the 16Jh of September 2001. 

Figure 2. AVIRIS 2300-nm wavelength image of the World Trade Center disaster site. The bright signal to right side of the 
image is sun glint from a reflective roof surface. 
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Figure 3. AVIRIS spectra for the World Trade Center disaster site. Background, active fire, and roof sun glint spectra are 
shown. The active fire exhibits exceptionally high radiance in the 2000-2500-nm wavelengths emitted from the fire and 
comparatively low radiance in the 400 -1 000-nm spectral region. 

3.0 PHYSICAL MODEL AND ALGORITHM APPROACH 

The electromagnetic energy emitted by matter is a function of spectral emissivity that is related to 
composition and of the material temperature. The well-known Plank function (Liou, 1980) describes the 
radiance emitted by a target with emissivity of 1.0 as a function of temperature. Figure 4 shows the 
calculated Planck-function curves for a series of targets of temperature 600, 800, l 000, and 1200 Kelvin. 
In addition, the solar-reflected radiance for a 1.0 reflectance Lambertian target is also shown. For the 
Planck-function-modeled spectra, the radiance emitted increases as a strong function of temperature. Just 
as importantly, the slope and position of the Planck-function spectrum increases and shifts to shorter 
wavelengths as the temperature increases. This change in slope and wavelength position provides a basis 
for use of spectral measurement to determine the temperature of hot fires . 

Because hot fires almost never uniformly fill the field of view of a spectral measurement, the 
fractional area of the hot source must be accounted for as well as the temperature. Equation 1 gives a 
simple relationship between the measured radiance at a given wavelength (LA) and a Planck function (BA) 
at a given temperature (T) and fractional area (A) for a 1.0 emissivity target. 

LA= A* BA( T) (1) 

For daytime measurements by AVIRIS in regwns of the spectrum where the atmospheric 
transmittance in approximately 1.0, an additional term is needed to account for the solar-reflected 
radiance (U.s ) and is included in Equation 2. This equation provides a simple model of the radiance 
measured by A VIRIS over a hot target in the highly transparent regions of the atmosphere 

LA = A* BA( T) +LA... (2) 

With this equation, a spectral-fitting algorithm has been implemented, where the fractional area and 
temperature parameters of the model are adjusted until optimal agreement is reached with the A VIRIS-
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measured radiance for the hot-target spectrum. The best fit resulting temperature and fractional area are 
then reported for each analyzed spectrum. For this approach, the solar-reflected radiance may be 
estimated from adjacent measured spectra that are not hot, or with a radiative transfer model such as 
MODTRAN (Berk et al., 1989; Anderson et a\., 1995; Anderson et al., 2000). Planck-function spectral
fitting algorithms have been previously used with A VIRIS measurement of hot volcanic Java and hot 
burning fires (Oppenheimer et al., 1993; Green, 1996; Green; 200 l ). 
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Figure 4. Planck-function calculated radiance for targets at different temperatures. The radiance of a 1.0 lambertian target 
illuminated with the Sun at the zenith is also shown. 

4.0 ANALYSIS 

Hot-fire AVIRIS spectra from the World Trade Center data set were analyzed with this Planck
function spectral-fitting algorithm for derivation of temperature and fractional area. Areas with active 
fires were identified in the A VIRlS image from the 2300-nm wavelength region of the spectrum. For the 
16th of September A VIRJS data set, the brightest spectra from eight different areas with active fires in the 
World Trade Center site were analyzed. These spectra were labeled A to H. Figure 5 shows a hot-fire 
spectrum and an adjacent solar-reflected spectrum as well as the difference spectrum. Apart from the 
regions of strong atmospheric absorption near 1400, 1900, and 2500 run, the spectral shape of the 
difference spectrum is dominated by the fire-emitted radiance. 

The fire temperature and fractional area estimation analysis proceeds by determining the best fit 
between the A VIRJS spectrum with solar reflected component subtracted and the Planck function model. 
Figure 6 shows the best spectral fit between the hot fire spectrum and the Plank function model for the 
spectrum from area Gin the 16th of September AVIRJS data set. No portion ofthis spectrum is saturated 
in the A VIRJS measurement. The fit was optimized in the spectral regions with minimal atmospheric 
absorption. A temperature of 984 K and fractional area of 1.48% was derived for this spectrum. This is 
expected to be a low estimate for the temperature because the emissivity of the hot target was assumed to 
be 1.0. If the emissivity were lower than 1.0 the temperature would be higher to generate the intensity of 
measured radiance. 
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Figure 5. Hot-fire spectrum. adjacent solar-reHected spectrum, and difference spectrum for area Gin the World Trade 
Center AVIRIS data set. 
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Figure 6. Spectral rlt result in continuum regions between AVIRIS spectrum with solar-reHected background radiance 
subtracted and Planck-function model. 

An additional example of the tem~erature and fractional area estimation algorithm for the highest 
intensity spectrum from area A of the 161 of September data set is shown in Figure 7. For this spectrum a 
temperature of 928 K with a fractional area of 6% was derived. As with all analyses, the solar-reflected 
component of the radiance was estimated and subtracted using an adjacent solar-reflected dominated 
spectrum. For this spectrum from area A, the temperature and fractional area of the fire measured were 
sufficient to cause instrument saturation in the 2000- to 2500-nm region of the A VlRIS spectral range. 
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Figure 8. Spectral fit resun for World Trade Center spectrum E. 

However, even with saturation over part of the A VIRIS spectral range, the measured spectral shape and 
intensity in the 1000- to 1800-nm spectral range provide sufficient leverage for the algorithm to derive a 
temperature and fractional area for this spectrum. 

A further example of the temperature and fractional area analyses is shown in Figure 8 for the 
spectrum from area E of the 16th of September AVIRJS World Trade Center data set. The AVIRJS
measured spectrum with solar-reflected component subtracted, the Planck-function model fit, and residual 
difference are shown. For this spectrum, a temperature of 710 K and fractional area of 9% was derived. 
This spectrum was best modeled with a lower derived temperature and higher fractional area than the 
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previous examples. This result is 
consistent with the shallower spectral 
slope of this spectrum and the shift of 
intensity rise to longer wavelengths. 

To present and demonstrate the 
algorithm and analyses for estimation of 
fire temperature and fractional area from 
the l61

h of September A VIRIS World 
Trade Center data set, selected examples 
have been shown. Temperature and 
fractional area parameters were derived 
even in the presence of A VIRIS 
instrument saturation over a portion of 
the spectrum. As expected, a range of 
temperatures and fractional areas were 
derived from spectra with distinctly 
different spectral forms. For these 
examples, the spectral fits between 
A VIRIS measured spectra and the 
Planck-function-based modeled spectra 
were in good agreement in the regions of 
high atmospheric transmittance. These 
spectrally derived values of temperature 
and fraction area are consistent with the 
expected emitted radiance from the hot 
fires burning an extended period in the 
surface debris of the World Trade Center 
disaster site. 

5.0 RESULTS 

Figure 9. AVIRIS image acquired on the 161h or September 2001 
with hot spots labeled. 

The algorithm was applied to the highest intensity spectrum from each of the eight hot-fire areas 
identified. Figure 9 shows a portion of an AVIRIS image of the World Trade Center disaster site 
acquired on the 16th of September. The eight hot-fire areas identified are labeled A to H. Table l shows 
the corresponding locations of the hot-fire areas and the derived temperature and fractional area for the 
analyzed spectra. Temperatures range from 700 to 984 K, and fractional areas range from 1.5 to 18% for 
the 16th of September data sets. These results were reported to the teams on the ground at the disaster site. 

Spectrum 
A 
B 
c 
D 
E 
F 
G 
H 

Table 1. Location. temperature, and rractional area determined ror the highest 
intensity spectrum in the eight hot target areas identified. 

Latitude Longitude Temp (K) 
404247.18 74 00-41.43 928 
40 42 47.14 74 00-43.53 827 
40 42 42.89 74 00-48.88 921 
40 42 41.99 74 00-46.94 791 
40 42 40.58 74 00-50.15 710 
40 42 38.74 74 00-46.70 700 
40 42 39.94 74 00-45.37 984 
40 42 38.60 74 00-43.51 817 
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Based on the results with the 
data measured on the 16th of 
September 2001, A VIRIS was 
requested to over fly the World Trade 
Center disaster site on the 18th of 
September. A subset of an image 
from that overflight is shown in Figure 
10. ln this data set acquired on the 
18th, hot-fire areas were identified and 
labeled from A to L. The A to H 
designations were selected to match 
the areas of the 16th of September data 
set. The additional hot areas-J to 
L-were not identified in the data set 
from the 16th September overflight. 
This increase in hot-fire areas on the 
18th may be due to increased 
sophistication in identifying hot areas 

Figure 10. AVIRIS image from the 18"' of September 2001 
with identified hot zones labeled. 
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or to the occurrence of new hot areas. Table 2 gives the locations, temperatures and fractional areas 
derived for the highest intensity spectra in the hot-fire areas of the 18th of September A VIRIS data set. 
Derived temperatures range from 471 to 952 K and areas from 0.5 to 36 %. In the case of area E 
identified in the 16th of September data set no hot spectra were found on the 18th. For area J the spectral 
fit algorithm did not converge successfully. 

Table 2. Location, temperature, and fractional area determined for the 18th of September data set. 

Hot Spectrum Latitude Longitude TemQ_(KJ Area(%) 
A 40-42-46.96 74-00-41.21 952 2.2 
B 40-42-47.31 74-00-43.31 790 36 
c 40-42-43.38 74-00-48.15 500 22 
D 40-42-42.48 74-00-46.64 700 5 
E not seen 
F 40-42-38.62 74-00-46.41 725 7 
G 40-42-39.77 74-00-45.45 932 2 
H 40-42-39.04 74-00-43.65 471 4 
I 40-42-36.97 74-00-44.54 762 35 
J 40-42-36.97 74-00-47.01 no fit 
K 40-42-42.69 74-00-45.26 538 7 
L 40-42-44.14 74-00-46.98 805 0.5 

These results from the 16th and 18th September A VIRIS World Trade Center measurements show 
the estimation of fire temperatures and fractional areas for the highest intensity spectra in each of the hot 
areas identified. The spectral-fitting algorithm used is based on the physics of the Planck function and a 
simple model of the effects of solar-reflected energy and fractional filling of the spectral measurement 
spatial sample. Temperatures and fractional area were derived from the AVIRIS calibrated spectra that 
were consistent with the conditions at the World Trade Center disaster site in this period of September 
2001 . 
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6.0 TEST OF THE FRACTIONAL AREA COMPONENT OF THE MODEL 

Following initial analysis and reporting of hot-fire location, temperature, and fractional area results 
from the AVIRIS World Trade Center data sets, a test of the fractional area component of the Planck
function model was performed. The high-intensity spectrum from site G on the 16th of September was 
used. This spectrum was averaged with an adjacent spectrum that did not exhibit a hot-fire signature. 
Spectrum G, the adjacent spectrum, and the average are shown in Figure 11. Based on the simple 
temperature and fractional area model, the effect of the averaging should be to reduce the fractional area 
by a factor of 2. However, the derived temperature should remain unchanged because the spectral shape 
of the emitted energy is preserved across the spectrum. 
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3.00 
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Figure 11. Dilution of the hot-fire component of spectrum G from the AVIRIS measurements on the 16th of September 2001 
at the World Trade Center disaster site. 

To test the validity of the fractional area component of the model, the diluted spectrum was 
analyzed with the full Planck-function algorithm. Figure 12 shows the spectral-fitting results from this 
test. As expected, the derived fractional area was half that derived for the undiluted spectrum G shown in 
Figure 6, and the derived temperature was the same. An additional test was performed with dilution of 
spectrum G by 3 adjacent nonburning spectra. A similar conservation of temperature estimate was 
achieved with a reduction of fraction area to one fourth of the original. These simple tests support the 
validity of the fractional area estimation component of the Planck-function-based hot-target model used in 
these analyses of the AVIRIS World Trade Center data. 

7.0 CONCLUSION 

On the 14 lh of September 200 I, a request was made for A VIRIS to acquire spectral measurements 
over the World Trade Center disaster site for detection of asbestos contamination in the debris. AVIRIS 
measurements were acquired on the 16th of September. Rapid examination of the data showed spectral 
expression of hot fires in the World Trade Center debris. A simple Planck-function-based spectral-fitting 
algorithm was applied to the A VIRIS-calibrated radiance spectra to estimate the temperature and 
fractional area of the highest-intensity AVIRIS spectrum in each identified area of hot fires. The location, 
temperature, and fractional area derived for the eight zones identified in the 16th of September data set 
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were delivered to the teams on the ground. Based on these rapid results, A VIRlS was requested to 
acquire additional data on the 18th of September. A similar analysis was performed estimating the 
temperature and fractional areas of the highest intensity spectra of the identified area of hot fires for this 
data set. Overall, the derived temperatures of the analyzed spectra from each of the hot zones decreased 
from the 16th to the 18th. In one case, no hot spectrum was identified on the second date. As with the 
results from the 16t\ the hot-fire location, temperature, and fractional area derivations were provided to 
the ground teams to help understand and mitigate risk. 

A VIRlS measurements in the solar-reflected spectrum offer an important approach to estimate the 
temperature and fractional area of hot targets. The estimation of temperature and area is based on the 
spectral slope, position, and intensity of the emitted radiation. This approach may be extended to a range 
of applications such as disaster response, controlled burn and wild fire research as well as volcanic lava 
flow temperature investigation. Additional research is needed to further validate the derived temperatures 
from this approach and to understand the sensitivity of the results to the assumption in the inversion 
model. 
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Figure 12. Derived temperature and fractional area from the diluted spectrum G. The derived temperature was unaHected 
by dilution of the original spectrum from an adjacent non burning spectrum. 
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A VIRIS lnflight Calibration Experiment Results for 2001 

Robert 0. Green and Betina Pavri 
Jet Propulsion Laboratory, California Institute of Technology 

Pasadena, California 91109 

1.0 INTRODUCTION 

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (1998a) is calibrated each year in 
the laboratory (Chrien et al. 1990, 1995, 1996, 2000). To assess the validity of the laboratory calibration 
in the flight environment, an inflight calibration experiment is conducted (Cone! 1988, Green et al . 1990, 
1992, 1993a, 1995, 1996, 1998b, 1999, 2000, 2001 ). For the inflight calibration experiment, a 
homogeneous surface calibration target is designated where the surface spectral reflectance, atmospheric 
aerosol and water vapor properties are measured. These measurements are used to predict the upwelling 
radiance incident at the A VIRIS instrument aperture with radiative transfer model calculations. The 
predicted radiance is compared and analyzed with respect to the A VIRIS measured radiance to understand 
the state of the A VIRIS calibration in the flight environment. A V]RJS airborne data calibration is traced 
to the laboratory measurements using the signal of the on board calibrator (Green et al. 1993b ). In 200 l 
the principal inflight calibration experiments occurred on February 7 at Salar de Arizaro, Argentina and 
on June 6 at Rogers Dry Lake, California. The measurements and results of these inflight calibration 
experiments in 2001 are described in this paper. 

2.0 ARGENTINA EXPERIMENT 

AVIRIS was deployed on the Twin Otter aircraft platform to Argentina in January and February 
2001 as part of science validation effort for the Hyperion spaceborne imaging spectrometer onboard the 
NASA New Millennium E0-1 spacecraft. For inflight calibration validation of both Hyperion and 
A VIRIS, the Salar de Arizaro, a high altitude dry salt lakebed, was selected. Salar de Arizaro is located 
24 degrees south latitude and 67 degrees west longitude at an elevation of 3700 m in the Andes of 
northwestern Argentina. Figure 1 shows a Landsat Thematic Mapper image of Salar de Arizaro with the 
general location of the calibration site indicted. Figure 2 shows a picture taken from the surface Salar de 
Arizaro on February 6, 2001. The surface is bright and uniform at the meter scale and greater; however, 
there is considerable microtopography reflectance variability at the 0.3-meter scale and finer. 

Figure 1. landsat image of Salar de Arizaro Argentina 
with the AVIRIS inflight calibration site indicated. 
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2.1 Surface Measurements 

At the Salar de Arizaro calibration site, both surface and atmospheric measurements were acquired. 
A calibration target was established with dimensions of 300 by 60 m on the dry salt Jake surface. At each 
end of the calibration target, demarcation tarps were placed to allow unambiguous location of the target in 
the A VIRIS image data. Surface reflectance measurements were acquired with a field spectrometer 
(Analytical Spectral Devices Inc., Full Range Spectrometer) in the period from 40 minutes before to 40 
minutes after the A VIRIS overflight of the calibration target. A spectralon (Labsphere Inc.) reflectance 
standard was measured at the beginning, middle, and end of each transect down the length of the 
calibration target. The measured data were calibrated to reflectance using the spectralon target and a 
bidrectional reflectance correction factor for the 35-degree solar zenith angle at the time of the data 
acquisition. Figure 3 shows the average spectrum and the standard deviation and the standard deviation 
of the average of the 1824 spectra measured. The spectral reflectance of the Salar de Arizaro calibration 
target is exceptionally bright over the entire spectral range, however the microtopography induces large 
spectrum-to-spectrum reflectance differences. Figure 4 shows the reflectance value at 900 run for all 
measured spectra and reveals the extreme spectrum-to-spectrum variability of the surface. To assess the 
effect of this variability, an average spectrum was calculated from all the odd spectra and all the even 
spectra. These two average spectra agreed at the 0.002 reflectance level, indicating enough spectra were 
measured for the average spectrum to accurately represent the reflectance of the calibration target. This 
agreement is also consistent with the calculation of the standard deviation of average for the measured 
spectra (Taylor 1982) and shows a knowledge of the average reflectance of the calibration target at the 
0.002 reflectance level. 

In addition to the surface reflectance, the atmospheric characteristics were measured with a sun 
tracking solar radiometer (Professor John Reagan, University of Arizona). The solar intensity was 
measured from sunrise through local solar noon in the 10 wavelength of the radiometer (370, 400, 440, 
520, 620, 670, 780, 870, 940, I 030 run). Figure 5 shows the measurements from this instrument at the 
calibration target on Salar de Arizaro. These data were used to calculate the instantaneous optical depths 
on February 7, 2001. Figure 6 shows the derived instantaneous optical depths for the 9 non water vapor 
wavelength measurements. The measurement from 940 run was used to estimate the water vapor (Bruege 
et al. 1992, Reagan et al. 1987). 
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Figure 3. Average reHectance spectrum for Salar de Arizaro on February 7. 2001. The standard 
deviation and standard deviation or the average are shown as well. 
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Figure 4. Renectance at 900 nm for all1824 measurements of the calibration target on Salar de 
Arizaro. The surface microtopography causes large spectrum-to-spectrum variability. 
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Figure 5. Measurements from the sun tracking solar radiometer at Salar de Arizaro on February 7, 2001. 

2.2 A VIRIS Measurements 

16 

On February 7, 2001 at 14:22 UTC, AVIRIS acquired data over the calibration target on the Salar 
de Arizaro. Figure 7 shows a georectified AVIRlS image that includes the calibration target. One of 
demarcation tarps is evident immediately adjacent to the east-west road and the other south of the road. 
From the A VIRIS measured data, the average calibrated radiance spectrum was extracted for the Salar de 
Arizaro calibration target and is shown in Figure 8. 
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Figure 6. Calculated instantaneous total optical depths lor February 7, 2001 at Salar de Arizaro. 

Figure 7. AVIRIS image or calibration target on Salar de Arizaro. 
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Figure 8. Average radiance spectrum measured by AVIRIS lor the calibration target on Salar de Arizaro. 
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2.3 Modeled Radiance 

To predict the radiance incident at AVIRIS over the calibration target, the MODTRAN radiative 
transfer code (Berk et al. 1989, Anderson et al . 1995) was used. MODTRAN was constrained by the 
latitude, longitude, elevation, and time as well as the surface spectral reflectance, optical depths, and 
water vapor derived from the solar radiometer measurements. The MODTRAN mid-latitude summer 
atmospheric model was used with visibility scaled to I 00 km. This visibility gave the best agreement 
between the measured total optical depths and the corresponding MODTRAN calculated total optical 
depths. A water vapor amount of 8.13 precipitable mm was used based upon the solar radiometer 
measurements at 940 nm wavelength. Carbon dioxide was constrained to a mixing ratio of 371 ppm by 
the Mauna Loa values for February 2001 (Keeling and Whorf 2001 ). Ozone was constrained to 263 
dobsin units by the Total Ozone Mapping Spectrometer (TOMS) satellite instrument measurements 
(McPeters 2001 ). Figure 9 shows the MODTRAN modeled radiance for A VIRIS over the calibration 
target on February 7, 200 1. 

2.4 Results 

To assess the inflight calibration of AVIRJS, the AVIRIS measured spectrum for the calibration 
target was compared to the MODTRAN predicted spectrum. The comparison is shown in Figure 10. In 
general, there is good agreement across the spectral ranges. This figure also shows a ratio of the A VIRIS 
spectrum to the MODTRAN spectrum. The features in the ratio result from a combination of 
uncertainties that include: A VIRJS laboratory calibration, change in A VIRIS calibration in the flight 
environment, the MODTRAN model, and the atmospheric and solar parameters internal to the 
MODTRAN code. Overall, the average absolute agreement between the MODTRAN and A VIRIS 
spectra of the calibration target is 96% excluding the regions of strong atmospheric absorption. 

In addition to inflight radiometric calibration, the inflight radiometric precision of A VIRIS was 
assessed. Radiometric precision was calculated as the noise equivalent delta radiance (NEd.L) for 
A VIRIS on the Salar de Arizaro flight. The NEd.L is calculated as the standard deviation of the A VIRIS 
dark signal in units of radiance. For the Arizaro calibration target data (and all AVIRIS data), the dark 
signal was automatically measured immediately before and after the flight line data acquisition. Figure 
11 shows the calculated A VIRIS NEd.L for the Salar de Arizaro data set. The NEdL may be viewed as 
the precision error bars in radiance due to the A VIRIS instrument for any measured radiance spectrum. 

30.--------------------------------------------------------, 
/ \ 
1 \ 

25 / \,r~\ 

-.:- I ~" l2o ·~ '\\.-, 
- I . 

"'E vi I \ 
u I \ 
~}5 I• ', 
:i 1 '-'\._, 
'-" \ 

5 

400 700 

\ /~ 
I I \ 
, \r\ 

/ \ 
I 
; 

1000 1300 1600 
Wavelength (nm) 

- MODTRAN 

1900 2200 

Figure 9. MODTRAN modeled radiance for the Salar de Arizaro calibration target on February 7, 2001 . 
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For bright signal targets, the NEdL increased due to the photon noise contributions to the uncertainty in 
the measurement. 

3.0 CALIFORNIA EXPERIMENT 

On June 6, 2001, an A VIRIS inflight calibration experiment was conducted at a site on Rogers Dry 
Lake, California. Rogers Dry Lake is a large silt composition playa located 35 degrees north latitude and 
117.8 degrees west longitude-about 2 hours drive north of Los Angeles. Figure 12 shows an A VIRIS 
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Figure 10. AVIRIS measured and MODTRAN modeled radiance spectra for the calibration target on 
Salar de Arizaro, Argentina. 
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Figure 11 . Calculated NEdL for AVIRIS in the flight environment over the calibration target of Salar de Arizaro. 
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image of the northern portion of Rogers Dry Lake, 
California. The location of the surface calibration 
target for the inflight calibration experiment is also 
shown. 

3.1 Surface Measurements 

A calibration target was designated on the 
surface of Rogers Dry Lake. The dimensions were 
240 by 40 m with blue demarcation tarps placed on 
the surface 20 m beyond each end of the long axis of 
the target. Surface measurements of the calibration 
target were acquired with field spectrometer 
(Analytical Spectral Devices Inc., Full Range 
Spectrometer). These measurements were acquired in 
the period 30 minutes before and after the A VIRJS 
overflight of the calibration target. A spectral 
reflectance standard (Spectralon, Labsphere Inc.) was 
measured at the beginning, middle, and end of each 
transect of the calibration target. The data were 
reduced to surface reflectance with the spectral 
reflectance standard and accommodation for the 
bidirectional reflectance of the reflectance standard 
for the 43-degree solar illumination zenith angle. 

Figure 12. AVIRIS image of the northern portion Rogers 
Dry Lake, California acquired on June 6, 2001 with the 
calibration target area indicated. 

Figure 13 shows the average reflectance of the calibration target. Also shown are the standard deviation 
and the standard deviation of the average for the I 029 measurements of the calibration target. The 
standard deviation of the average is below 0.001 reflectance over the almost the entire spectral range. 
This indicates excellent knowledge of the average reflectance of ~he calibration target. Figure 14 shows 
the reflectance value for each spectrum at wavelengths of 500, 1000, 1500, and 2000 nrn for all I 029 
measurements. The spectrum-to-spectrum variation is small and consistent with the standard deviation of 
the set of calibration target reflectance measurements. 
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Figure 13. Average reflectance of the Rogers Dry Lake calibration target measured on June 6, 2001. The 
standard deviation and standard deviation of the average are shown for the 1029 measurements acquired as well. 
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Figure 14. Reflectance values at wavelengths 500, 1000, 1500, and 2000 nm for the 1029 measurements of the 
calibration target. Only small spectrum to spectrum variation is present confinning the homogeneity of the site. 

In addition to the surface reflectance, a sun tracking solar radiometer was set up adjacent to the 
calibration target to measure the atmospheric aerosol properties and atmospheric water vapor. On June 6, 
200 I this instrument failed. As a fallback, measurements from the Aeronet (Holben et al. 1998) site at the 
NASA Dryden Research Center on the western side of Rogers Dry Lake were used. Table I shows the 
Aeronet aerosol optical depths and the calculated Rayleigh and total optical depths. A water vapor value 
of 15.1 precipitable mm was also derived for the time of the A VIRlS overflight. 

3.2 AVIRlS Measurements 

AVIRIS acquired data over the calibration target on Rogers Dry Lake at 16:38:17 UTC on June 6, 
200 I. The demarcation tarps were identified in the A VIRIS data and the average radiance spectrum was 
extracted for the calibration target. Figure 15 shows a portion of the A VIRIS image with the demarcation 
tarps in the center. Figure 16 shows the average A VIRIS spectrum for the calibration target. 

Table 1. Optical depths for June 6, 2001 at 
Rogers Dry Lake, California 

Optical Depth 
Wavelength 

Aerosol Rayleigh Total 
(nm) 

340 0.105 0.64 0.74 
380 0.078 0.40 0.48 
440 0.051 0.22 0.27 
500 0.047 0.13 0.17 
670 0.033 0.039 0.073 
870 0.026 0.013 0.040 

1020 0.032 0.0073 0.039 
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Figure 15. A subset of the AVIRIS measured image that 
shows the calibration target on the surface of Rogers Dry 
Lake. The demarcation tarps are evident one above the 
other in the center of the subset image. 



,-... ..... 
<Jl 

E 

16.0 

14.0 

1::: 
NE 10.0 

0 

~ 
:::i.. 
'-' 
0 

g 6.0 
<'<I :a 
~ 4.0 

2.0 

-AVIRJS 

0.0 +-------~----------------~~~--------~--~~----~----==w 

400.0 700.0 1000.0 1300.0 1600.0 1900.0 2200.0 2500.0 
Wavelength (nm) 
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3.3 Modeled Radiance 

The MODTRAN radiative transfer code was used to model the upwelling radiance incident at 
A VIRIS over the Rogers Dry Lake calibration target. MODTRAN was constrained by the latitude, 
longitude, elevation, and time as well as the measured surface reflectance, the optical depths and water 
vapor determinations. A MODTRAN visibility of 150 km with the mid latitude summer atmospheric 
model gave a good match with the in situ measured optical depths. Atmospheric carbon dioxide was 
constrained to a mixing ratio of 371 ppm consistent with the Mauna Loa values for June 2001 (Keeling 
and Whorf 2001 ). Ozone was constrained to 313 dobsin units by the TOMS satellite instrument 
measurements (McPeters 2001 ). Figure 17 shows the modeled upwelling radiance. 
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Figure 17. MODTRAN modeled radiance for the AVIRIS inflight calibration experiment on Rogers Dry Lake, 
California. on June 6, 2001 . 
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Figure 18. Comparison of the AVIRIS measured and MODTRAN modeled radiance spectra for the calibration 
target on Rogers Dry Lake, California, on June 6, 2001 . 

3.4 Results 

To assess the inflight calibration of A VIRIS the measured radiance is compared to the modeled 
radiance. Figure 18 shows this comparison and a ratio of the A VIRIS measured to the MODTRAN 
modeled spectrum. Exclusive of the strong water vapor absorption regions of the spectrum the average 
absolute agreement is better than 96%. 

The inflight radiometric precision of A VIRJS was assessed for June 6, 200 l inflight calibration 
experiment. The NEdL was calculated as the standard deviation of the A VIRJS dark signal in units of 
radiance. Figure 19 shows the calculated A VIRJS NEdL for this Rogers Dry Lake calibration 
experiment. · 
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Figure 19. Calculated inHight dark signal NEdL for the June 6, 2001 calibration experiment. 
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4.0 CONCLUSION 

The measurements, analyses, and results from two A VIRJS inflight calibration experiments of 2001 
have been presented. The first experiment was conducted at 3700 m on the dry salt lake of Salar de 
Arizaro, Argentina on February 7, 2001. This was the first ever calibration experiment at a site of this 
altitude. In general, simpler atmospheres are expected at higher altitudes. The surface reflectance of 
Arizaro was also unusual with very high reflectance across the A VIRIS spectral range specifically 
including the blue portion of the spectrum. At the Arizaro calibration target, measurements of surface 
reflectance, atmospheric optical depths, and water vapor were acquired. These measurements were used 
to constrain the MODTRAN radiative transfer code and predict the radiance incident at AVIRIS at the 
time of the A VIRJS overflight. Comparison of the A VIRJS measured and MODTRAN predicted 
radiance showed an average absolute agreement of better than 96 percent exclusive of the strong 
atmospheric water absorption bands. A VIRIS inflight precision was also assessed through calculation of 
the dark signal noise equivalent delta radiance. Noise equivalent delta radiance is the radiance 
uncertainty due to the A VlRJS instrument. 

A second A VIRJS inflight calibrat,ion experiment was conducted at Rogers Dry Lake, California on 
June 6, 2001 . Surface measurements were acquired of the reflectance at atmospheric properties and used 
to constrain the MODTRAN radiative transfer code and predict the radiance at A VlRJS. Comparison of 
the A VIRJS measured to the MODTRAN predicted showed an average absolute agreement of better than 
96 percent exclusive of the spectral regions of strong atmospheric water vapor absorption. The A VIRIS 
inflight instrument precision uncertainty was calculated as the noise equivalent delta radiance. 

The results from these two A VIRJS inflight calibration experiments are consistent with the 
corresponding results of the past few years. There are a combination of factors that currently inhibit 
matches between A VIRIS measurements and MODTRAN prediction much better than 96 percent. These 
factors include: A VIRIS laboratory calibration, change in A VJRJS calibration in the flight environment, 
uncertainty in the surface measurements, assumptions in the MODTRAN radiative transfer calculations, 
and uncertainty in the solar and atmospheric parameters used within MODTRAN. It is hoped with 
improvements to the A VIRJS onboard calibrator and improvements to the MODTRAN constraining 
atmospheric and solar parameters, the level of agreement will improve. 
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We present a new algorithm for unsupervised classification which we apply here to AVIRIS 
hyperspectral data. The algorithm is based on the notion of region growing in a hierarchical 
setting and involves both spectral clustering and spatial clustering. This is in contrast to the 
standard approach to performing unsupervised classification of hyperspectral data wherein 
pixels are clustered (segmented) into regions ba.c;ed only on the similarity of their spectra 
without consideration of their spatial positions. Thus an important source of information 
about segmentation, contiguity of spatial neighbors, is ignored. And notice that spectral 
clustering will yield the same clusters for a data cube, and for the same data cube where the 
spatial positions have been randomly permuted. 

Hierarchical segmentation normally begins by assuming every pixel in the hyperspec
tral data cube is a separate region (however, provision is made for initialization with a 
per-segmentation). Then, a dissimilarity criterion is computed between spectra in neigh
boring regions, the minimum dissimilarity criterion is found over all pairs of neighboring 
regions, and all pairs of neighboring regions with this minimum dissimilarity criterion value 
are merged. Optionally, this spatial clustering step is followed by a spectral clustering step 
in which a dissimilarity criterion is computed between spectra of all spatially non-adjacent 
regions, and all pairs of such regions with dissimilarity less than or equal to the minimum 
dissimilarity value found in the spatial clustering step are merged. After sufficient iterations 
of this procedure are completed so that a potentiaHy meaningful segmentation is produced, 
the segmentation process is checked for convergences. A convergence is signified by a jump 
in a global dissimilarity criterion calculated between the region mean image and the origi
nal image data values. When a convergence is detected, the image segmentation from the 
previous iteration is saved. The region growing process (spatial clustering plus t he optional 
spectral clustering) is continued until there are only two regions remaining, and this two 
region segmentation is also saved. The outcome is a hierarchical stack of segmentations at 
different levels of segmentation detail in the form of a tree structure with two regions at the 
top which come from merges of multiple regions at the next level down, and so on, to the 
highest level of segmentation detail from the first detected convergence. 

Clearly this process is compute intensive. However the advent of cluster computing by 
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Beowulf class machines [1], in which tens of commodity Intel processors running Linux are 
interconnected with a high speed network, allows methods requiring large computational 
resources to be explored. For example on a 64 processor Beowulf machine with a Myrinet 
network linking the processors, it is possible to perform hierarchical segmentation on a data 
cube ofsize [lines, samples, bands] = [ 464, 595, 182] in 16 minutes, and on a data cube of 
size [ lines, samples, bands] = [ 128, 128, 182 ] in 129 sec. 

Below we describe the hierarchical segmentations algorithm and demonstrate its use on 
a hyperspectral data cube taken by AVIRIS at the Patuxent Wildlife Research Center in 
Laurel Maryland. 

2 Hierarchical Segmentation 

Image segmentation is a partitioning of an image into sections or regions. These regions may 
be later associated with a ground cover type or land use type, hut the segmentation process 
simply gives generic labels (region 1, region 2, etc.) to each region. The regions consist of 
groupings of hyperspectral image pixels that have similar data feature values. These data 
feature values may be the hyperspectral data values themselves, and/or they may be derived 
features such as hand ratios [2] or textural features [3] . Image segmentation is a key first 
step in a number of approaches to image analysis. In image analysis, the group of pixels 
contained in each region provides a good statistical sampling of data values for more reliable 
labeling ha.-,ed on multi-spectral or hyperspectral feature values. In addition, the region 
shape can be analyzed as an additional clue for the appropriate labeling of the region. Most 
image segmentation approaches can be placed in one of three classes [4]: 1. Characteristic 
feature thresholding or clustering, 2. Boundary detection, 3. Region growing. 

Characteristic feature thresholding or clustering is often ineffective because it does not exploit 
spatial information. Boundary detection does exploit spatial information through examining 
local edges found throughout the image. For simple noise-free images, detection of edges 
results in straightforward boundary delineation. However, edge detection on noisy, complex 
images often produces missing edges and extra edges producing region boundaries that do 
not necessarily form a set of closed connected curves that surround connected regions. We 
prefer region growing because it exploits spatial information and guarantees the formation of 
closed connected regions. However, region growing is not without its problems. With region 
growing, spectrally similar but spatially disjoint regions are never associated together, and 
it is often not clear at what point the region growing process should be terminated. Also, 
region growing tends to be a computationally intensive process. 

Tilton has developed a hybrid region growing and spectral clustering approach (first 
described in [5]) that largely overcomes these problems. The hybridization with spectral 
clustering allows association of spectrally similar hut spatially disjoint regions. T he approach 
also includes the detection of natural convergence points to assist in determining at what 
point the region growing process should terminate. Finally, the recursive version of this 
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approach is very effectively implemented on MIMD (Multiple Instruction, Multiple Data 
stream) parallel computers, which greatly reduces the amount of time required to segment 
large images with this approach. Next we give a description of the segmentation approach. 
The actual implementation is on Beowulf class cluster machine at Code 935, NASA/GSFC 
[6]. 

2.1 Hybrid of Region Growing and Spectral Clustering 

\Ve begin by defining the global criterion that will control how the algorithm will decide when 
to merge regions of similar clusters, and how the algorithm will decide that the particular 
level reached in the merging process is a natural convergence point and should be saved. 
Then we describe a high-level outline of the hybrid image segmentation (HSEG) approach. 

2.1.1 Dissimilarity Criterion 

Selection of an appropriate dissimilarity criterion is generally dependent on the application 
the resulting segmentations will be used for, and on the characteristics of the image data. 
However in earlier studies, Tilton [7] found the Euclidean Spectral Distance to be a useful 
criterion. 

Let two regions (which may be individual pixels or regions of contiguous or non-contiguous 
pixels that are spectrally similar), be labeled by w, '1/J. For these regions we can compute 
mean spectral vectors Xw = (xwl, Xw2, ... , Xwnb) and :X:..p = (.r..p1 , X..p2, ... , X..pnb), where Xwq = 
LiEwq Xiq/ LiEwq 1 and similarly for i:..pq, and where q (l :::; q :::; nb) is the index of the spectral 
band and nb is the total number of bands per pixel. 

From these a Euclidean spectral distance defines the dissimilarity criterion, 

[2:::;~1 (i:wq- X..pq) 2
] ~ 

nb 

2.1.2 Global Criterion 

The global criterion is used to identify significant changes in the segmentation results from 
one iteration to the next. This criterion is defined like the dissimilarity criterion, except 
that it compares the original image data with the region mean image from the current 
segmentation. The value of this criterion is calculated at each image point, and averaged 
over the entire image. Thus we define the global criterion as, 

1 

"' "' ["'nb (x )2] 2 L...wE {o,/3, ... } L...iEw L...q=l wq- Xiq 
J.1,gtbl = ----'-----'---~--=------......:....__ 

n 5 ntnb 
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where i indexes an image pixel , w indexes over regions of spectrally similar pixels given by 
the current segmentation {a, !3, . .. } , q indexes over the all the spectral channels 1 ... nb for 
each pixel or region , and n.~ and n1 are the number of samples (columns) and lines (rows) in 
the image. 

Next we give in pseudo code the Hierarchical Segmentation Algorithm. This is the basic 
algorithm, but in order to render it computationally on any but small hyperspectral cubes it 
will need to be embedded in a recursive hierarchical segmentation algorithm which is given 
in the sequel. We will show two ways it can be used depending on the value of the parameter 

N { = 0 suppresses convergence checking 
chk > 0 uses convergence checking 
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2.1.3 The Hierarchical Segmentation Algorithm 

seg = HSEG( cube, Nm ;n, Nchio ¢thresh , seginit) 

% cube hyperspectral cube of size r, s, nb 
% Nmin number of regions threshold. When called by recur _hseg with nrer. > 0, set » 2, else 2 
% Nchk number of regions threshold when level 0 has converged. 
% if>thresh threshold for natural global convegence test 
% seginit initial hyperspectral cube segmentation 
%Define: k the heirarchical level index 
% N(k) number of regions in level k 
% T!oop control output 

k = 0, N(O) = r X s, seg = s e ginit , p~~;t) = 0, Ttoop =true % initialization 

while( N(k) > Nmin ) %outer loop with end criterion 
while( Tioop == true & Nchk > Nmin) % inner loop with natural convergence criterion 

compute Pw.P between all pairs of % region growing 
spatially adjacent regions, w'lj;, 

find smallest P~"::t) over all spatially 
adjacent regions 

seg t-merge(seg, all pairs of spatially adjacent regions 

d h (min) ) 
E an v w ere P cv = Padj 

N(k) t- new number of regions 
compute Par where a and T index over 

all pairs of non-spat ially adjacent regions. 
seg t-merge( seg, all pairs of non-spatially adjacent 

% region growing 

% region growing 

% spectral clustering 

regions A and ~ where PA£. ~ p~';t) ) % spectral clustering 
N(k) t- new number of regions 
if ( N(k) ~ Nchk ) % natural convergence test begins at N chk 

(curr) 
compute Pg!bl 

"f ( (pre) > O) ,~, _ (curr) / (pre) 1 Pglbl 'I' - Pglbl Pglbl 

else ¢ = if>thresh 
(pre) (curr) 

Pglbl = Pglbl 

if( ¢ 2: if>thresh ) Ttoop t- false 
end if 

end while 
if ( Ttoop ==false ) 

save region label map from the iteration k 
as the segmentation result for level k. 

Ttoop t-true 
kt-k+I 

endif 
end while 
if( Nchk > 0) 

save region label map from the current iteration as the 

% compute ¢ only when defined 

coarsest instance of the final hierarchical segmenta tion result. 
stop 

end if 
end 
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2.1.4 Implementation Overview 

A practical implementation of the hierarchical segmentation algorithm for all but the smallest 
hyperspectral cubes requires that the combinatorial growth in inter-region comparisons in 
the spectral clustering steps be addressed. Tilton 's solution, is to recursively subdivide 
the image data into smaller and smaller sections until an image size is reached in which 
the required number of inter-region comparisons is sufficiently constrained that the HSEG 
algorithm can be applied without the global criterion, and run until a pre chosen number 
of regions, Nmin has been found. At this point the segmentation so found is passed to the 
HSEG algorithm with the global criterion, which then produces the stack of region labeled 
segmentations. The number in the stack is dependent on the global criterion cPthresh and the 
number of regions that initializes the HSEG computation [8]. Additional processing speed 
can be obtained through a parallel implementation of the recursive hierarchical segmentation 
algorithm [9] . However, the recursive decomposition and subsequent recombination of results 
can easily impart proces..sing window artifacts in the segmentation results so obtained unless 
steps are taken to remove the artifacts. Effective and efficient methods for removing these 
artifacts have been devised [10]. This is called the RHSEG algorithm and is given in the 
sequel. 

2.1.5 Implementation Details 

For recursion, the original hyperspectral cube is subdivided along the spatial coordinates into 
4 equal sized cubes rectangular in the spatial coordinates, each of which is itself subdivided 
into 4 equal rectangles and so on nrec times until each of the 4n,ec cubes resulting are small 
enough to directly apply HSEG to. Typically we choose nrec such that the number of pixels 
in the smallest cube, n!/2nrec x ns/2nrec, is in the range 500 ... 2000. In order for the number 
of pixels in the two spatial directions be integers at level nrec we pad out the original cube to 
n~pad) and nt:ad) with spectra of all O's so that n~pad} /2nrec and n~pad} /2nrec are both integers. 
The recursive algorithm, called RHSEG, first establishes the number of recursions and then 
calls recursively calls recur ...hseg until the resulting subdivided hyperspectral cubes can be 
processed, without the global criterion, by HSEG. The resulting subdivided segmentation 
are then reassembled in recur _hseg until a segmentation at the top level of the recursion is 
obtained. This then initializes a final call of HSEG with the global criterion, and produces 
the output stack of region labeled segmentations. 
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seg(n~, n 5 ) = RHSEG 
% (cube(n1, n.,nb) 
% Nmin 

(cube(n1, n., nb), Nm;n, N~hb rPthresh, seginit) 
initial data cube 
number of regions threshold. 

% Nchk 
% if>thresh 

number of regions threshold when level 0 has converged. 
threshold for natural global convegence test 

% seginit optional initial hyperspectral cube segmentation 
%Define: 
% 

nrec 
lrec 

(pad) 

number of recursive calls 
recursion level 

padded sizes % 

end 

nl , 
(pad) 

ns 

compute nrec as an integer such that ~ log2 [nins/2000] ::; nrec::; ~ log2 [nlns/500] 
n)pad) = 2n..e r nl /2nree l 
n~pad) = 2n ... r n./2nr-. l 

be( {pad) (pad) ) d( b ( ) ) cu n1 ,n8 ,nb = pa cue n1,n8 ,nb %pad out with 0 spectra 
lrec = 0 

...hs ( be( ·(pad) (pad) ) N N ,~, z init ) seg =recur eg cu n1 ,n.. ,nb, min• chk,'l'thresh,nrec' rec,seg 

seg =recur _hseg( cube(r, s, nb), Nmin• Nchk, if>thresh• nrec• lrec, seginit ) 
% cube(r, s, nb) sub-cube of size r x s x nb 
% Nmin minimum number of regions for stopping criterionn 
% Nchk number of regions threshold when level 0 has converged. 
% if>thre•h threshold for natural global convegence test 
% nrec number of recursive calls desired 
% lrec recursion level 
% seginit optional initial hyperspectral cube segmentation 
%Define i index E 1,2,3,4 naming i'th sub-cube in recursion 

end 

if( lrec < nrec true ) 
for i=1,4 do 

cube;(rj2,sj2,nb) = split4(i,cube(r,s,nb)) 
segtnit(rj2,sj2,nb) = split4(i,seginit(r,s,nb)) 
seg;(r /2, s/2, nb) = recur ...hseg( cube;(r /2, s/2, nb), Nm;n, N chk> if>thresh, 

nrec,lrec + l,segtni"t(rj2,sj2,nb) %Incremented lrec 
end do 
seginit(r, s, nb) = concatenate( seg1, seg2, seg3, seg4 ) 

end if 
if( lrec == 0 & Nchk > Nmin ) Nmin = Nchk 
segtemp = HSEG( cube, Nmin, 0, if>thre•h, seginit) 
seginit = eliminate...artifacts( segtemp ) 

if( lrec == 0 ) 
Nmin = 2 
seg = HSEG( cube, Nm;n, Nchk, if>thresh, seginit) 

end if 
return 

% Note, set Nchk = 0 

As described above, the RHSEG algorithm is prone to producing processing window 
artifacts in its segmentation results. These proces.c;ing window artifacts are eliminated by 
examining the segmentation results after the completion of the call to HSEG in recur _hseg, 
and changing the region membership of pixels that are more similar to a region other than 
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the region the pixels are currently a.c;signed to. How this process is efficiently implemented 
is described in [10] . 

2.1.6 Parameter Settings and Program Refinements 

As described in sections 2.1.3 and 2.1.4 above, the HSEG and RHSEG algorithms with 
the Euclidean spectral distance dissimilarity criterion tend to produce segmentations with 
a large number of small regions. Since these small regions are generally of little use in the 
ultimate analysis of the segmentation results, an option ha.c; been added to the HSEG and 
RHSEG algorithms to encourage these small regions to merge into other regions. When 
this option is selected, the dissimilarity function is multiplied by the factor 

_ [Pm- Ps] 
1 Pm ' 

where Pm is a user supplied parameter, and P5 is the number of pixels in the smaller of the 
two regions being compared. This bia.c; factor is applied only when P.s < Pm. In this paper 
we have used Pm = 16, Nmin = 256, Nchk = 64, and ¢ = 1.01. 

3 Results for Patuxent Wildlife Research Center 

On August 1, 2001 a series of AVIRJS scenes along a single flight line which included the 
Patuxent Wildlife Research Center (PWRC) in Laurel, Maryland was acquired. P\VRC 
is a research facility of the U.S Fish and Wildlife Services and is roughly 50 square km 
and comprises mostly forest with some meadows, lakes, ponds, wetlands, and the Patuxent 
Rjver. The data was radio-metrically corrected and geo-registered with a pixel size of 12.1 m. 
Scene 3 of flight-line, f010801t01p03_r08, was corrected for cross track illumination variation, 
due to the flight-line being flown at +60 deg from true north, and the bands were subset 
from 224 to 182 by removing bands with negative values due to water absorption and noise. 
To demonstrate the algorithm, a square subset of size 128 x 128 was subset out [11]. A 
preliminary use of recursive hierarchical segmentation RHSEG was performed to create 
masks for the clouds and cloud shadows in the scene. In this case 17 levels were found a.c; 
shown in Fig. 1. 
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Fig. 1: The 17 levels of the hierarchical segmentation with an arbitrary 
color map that is the same for each level. Level 1 is the top left and 
follows left to right and then down. Note that there are 64 different 
colors in level 1, but they cannot all be resolved. At level 17 there are 
only 3. 

This involves the use of the region labeling tool developed by Tilton [12]. The tool 
provides a Gui , typically with two windows, one showing a reference image such as an 
approximate true color image, and a second window in which the user can move up and 
down the segmentation hierarchy. The mouse is used as a pointing tool to track and show 
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the same spatial location in both windows, and the mouse buttons allow the user to select a 
single region at any level in the hierarchy window and then track that region up and down, 
as it either remains the same or coalesces with other regions going up or remains the same 
or splits into sub-regions going down the hierarchy. 

Thus a feature in the reference image is used to select regions in the hierarchy. If, in 
tracking that region of the hierarchy, it is found to be stable over several levels, then it is 
taken to mean it is a region in the final segmentation. The user then can select a color from 
a palette, and a label for the region. For example in Fig. 1 at level 16 the yellow, brown, and 
tan regions match the clouds and cloud shadows, and these regions persist, though resolving 
to additional colors with the same external boundary down to level 10, The region labeling 
tools allows the selection of those three regions at level 17 to then be tracked down to lower 
levels to see how those regions break up into sub regions. To the extent that they maintain 
the same shape over several levels is an indication of their describing a real region feature 
in the scene. The analyst can also use the region labeling tool to select regions of interest 
by enclosing them with drawn closed loops in order to add pixels to a region in an existing 
segmentation. 

In this way a cloud/cloud shadow mask was derived. Then the mask was applied to the 
original hyperspectral cube and RHSEG was applied to the masked hyperspectral cube. 
That resulted in the segmentation shown in Fig. 2, for which 18 levels occurred. 
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Fig. 2: The 18 levels of the hierarchical segmentation with a cloud 
mask, in grey, where the arbitrary color map as used in Fig. 1 has 
been changed so that the colors agree with color choices used in the 
right part of Fig. 3. This was done after the user manually selected the 
colors for the classification in the right part of Fig. 3 using the region 
labeling tool. Then the default color map was modified to substitute 
these colors for the original colors in this segmentation to make it easier 
to see the relationship of this segmentation to the result in the right of 
Fig. 3. 
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A second application of the region labeling tool to the segmentation in Fig. 2 was then 
used to obtain the result shown in the right of Fig. 3. The approximate true color image is 
shown in the left of Fig. 3. Note that segmentation result in the right of Fig. 3. is close, but 
not identical to level 15 in Fig. 2. For example the road features (in yellow) are continuous 
in our final segmentation, are broken in level 15, but are seen to be continuous in levels 11 
down to 6 in Fig. 2. 

Fig. 3: On the left the approximate true color image, and on the 
right a classification based on cloud/cloud shadow masking followed 
by hierarchical segmentation and subsequent use of the region labeling 
tool. Here gray represents the cloud/cloud shadow mask. Note it is 
similar, but not identical to level 15 in Fig. 2 

4 Conclusion 

The hierarchical segmentation algorithm has been described together with its implementa
tion on a Beowulf computer using a recursive approach. The algorithm performs both spatial 
region growing and spectral clustering, thereby using both spectral and spatial information 
in the hyperspectral cube. It yields a new representation of hyperspectral imagery as a hier
archy of images that show how regions coalesce as one ascends the hierarchy. By examining 
the stability of regions across levels in the hierarchy, a segmentation can be found that can 
form the basis for unsupervised classification. To help in this examination across levels, the 
region labeling tool is introduced to assist an analyst in extracting these stable features. We 
have demonstrated the algorithm and the region labeling tool on a small AVIRIS hyperspec
tral cube, and obtained a reasonable segmentation into recognizable features. While this is 
a preliminary result, and it does involve the analyst interpreting the scene, the hierarchical 
segmentation together with the region labeling tool provides a new method to analyze hy
perspectral data. In the future we plan to further automate this process by taking advantage 
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of the rich representation of the data that the hierarchical segmentation provides. 
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I. INTRODUCTION 

Land degradation impacts on several critical environmental issues such as food security, diminishing quality and 
quantity of fresh water resources, preservation of natural resources, loss of biodiversity, and global climate change. 
Land degradation is responsible for soil erosion and can eventually lead to desertification . The International 
Convention to Combat Desertification (CCD) defines desertification as " land degradation in arid, semi-arid, and dry 
sub-humid areas resulting from various factors, including climate variations and human activity" . The resulting loss 
of soil cover, the loss of genetic diversity, the physical and chemical degradation of soi Is, and sedimentation of river 
basins and dams creates major environmental constraints for sustainable development. 

General information and data regarding the degree and extent of land degradation are lacking and effective 
monitoring and detection programs are hampered by the lack of a comprehensive set of guidelines for survey, 
assessment, and monitoring of land degradation, including early warning indicators. Remote sensing offers a 
quantifiable and replicable technique to assess desertification under a unified methodology at regional and global 
scales. To manage or reverse land degradation, one needs early warning signals, given the high costs for 
remediation. There are many indicators of land degradation and desertification, many of which lend themselves to 
remote sensing- based monitoring. These include ( 1) loss of vegetative cover; (2) changes in vegetation 
composition; (3) landscape instability due to wind and water erosion; (4) soil salinization; (5) soil structure 
deterioration; (6) less soil moisture; (7) increases in albedo; and (8) higher land surface temperatures. 

Aguiar eta!. ( 1988) produced maps of desertification in Patagonia with NOAA-A VHRR and Landsat MSS. Their 
methodology included recording data on degradation of vegetative cover and of soil water erosion, wind erosion, 
soil crusting and compaction, and salinization/alkalinization. Pickup and Nelson ( 1984) showed that changes in the 
variance of pixel subareas in Australia could be the most sensitive indicator of landscape instability, with an increase 
in variance indicating erosion and a decrease in variance indicating the possibility of deposition. In a study on the 
Jornada Experimental Range in New Mexico, an increase in the spatial and temporal heterogeneity of water, 
nutrients, and other soil resources has favored the invasion of desert shrubs (Schlesinger eta!., 1990). Archer et al, 
( 1995) have coupled shrub invasion mechanisms with climate and land use activities. Indicators of soil erosion and 
land degradation were the loss of vegetative cover and spatial variation of soil spectral properties owing to the loss 
of topsoil and exposure of subsoil layers. As erosion proceeds, more of the parent material mineralogies and 
spectral properties become evident while the optical properties of the organic rich upper layers become less 
pronounced. The undisturbed, well-developed soil and the underlying parent material represent the two endpoints 
from which the various degrees of soil erosion and land degradation can be assessed . These characteristics can be 
monitored with satellite imagery, using spectral indices and mixture models (Tucker and Nicholson, 1999). 

Hyperspectral remote sensing has improved the feasibility of unambiguously identifying numerous soil and 
vegetation absorption features, related to mineralogy, liquid water, chlorophyll, cellulose, and lignin contents (Smith 
et al., 1990; Gao and Goetz, 1994; Asner and Green, 2002). This is potentially useful in the analysis of land 
degradation in semiarid regions which often entail simultaneous changes in both soil and vegetation biophysica l and 
optical properties. In this study we attempt to fu lly characterize a set of natural and altered land cover sites in order 
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to determine the potential of hyperspectral imagery for characterization of land degradation. Here, we specifically 
report on the use of spectral mixture analysis and multi-component fraction extracts for assessments of land health. 

2. STUDY SITES AND METHODS 

The Nacufi<in Biosphere Reserve comprises and area of 12,271 ha at a mean altitude of 540 m and is 
located in a warm semi-desert shrub land ecosystem in the province of Mendoza (34°02'S; 67°54'W). With an 
average annual temperature of 15.8 C and 200 mm annual precipitation, the site is characterized by open forests of 
mesquite (Prosopis spp.) and creosote bush (Larrea divaricata and L. cuneifolia), locally known as algarrobal and 
jarilla! communities, respectively (Ojeda et al. , 1998). These open forest communities were totally cut down 
between the years 1907 and 193 7 and are now protected under a restoration and protection plan. The algarrobal 
community of mixed mesquite-creosote bush is the main cover type inside the reserve followed by the jarilla! 
(creosote bush) community. The dark green leaves of the creosote bush render this community very dark in 
appearance in satellite imagery relative to the algarrobal vegetated areas (Fig. I). There are two additional 
vegetation formations resulting from previous and current phases of land degradation, including a 'medanal' 
community consisting of both mesquite and creosote bush species and characterized by sand dune formations and a 
'peladal' community which is severely degraded, has stunted creosote bush, and appears very bright (Fig. 1). These 
degraded vegetation communities are present inside the reserve but are much more prominent outside the reserve, 
particularly to the north (Fig. I a). 

Nacufi.an 
Biosphere 
Reserve 

Figure I. Ikonos image depicting the vegetation communities at the Nacui'i{m Biosphere Reserve, Argentina (right) 
and the extensive degraded areas found north of the Reserve (left). 
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Field optical and biophysical measurements were conducted from January 28 through February 6, 2001. 
An ASD FieldSpec radiometer with a spectral range from 370 nm to 1050 nrn, and GPS unit were mounted on a 
yoke device 2 m above the surface and used over I 00-m transects for canopy optical characterization. The I 00-m 
transect measurements were only made through the medanal and peladal canopies as the vegetation was too tall for 
transect measurements in the algarrobal and jarilla! communities. In addition, we conducted 50-m transects through 
two bare soil playas, denuded of vegetation. All ASD spectra were collected between I Oam and noon and converted 
to reflectance values with the use of a standard reference, Spectral on panel. We also made simultaneous 
measurements of leaf area index (LAI) and fractional component covers (green vegetation (GV), non-photosynthetic 
vegetation (NPV), litter and soil) along the 100m transects using the line intercept method with a spacing of20 em, 
yielding 500 cover points per transect. 

Low level Airborne Visible/ Infrared Imaging Spectrometer (A VIRIS) flights were made at the Nacuiian 
Reserve on February 15, 2001. The A VIRIS imaging spectrometer operates in the 400 to 2450 nrn region collecting 
224 spectral bands with a nominal 10 nm spectral response function. AVIRIS flew at an altitude of 4 krn yielding 4 
m pixels. The hyperspectral imagery was corrected for atmosphere and converted to surface reflectances with the 
aid of an atmosphere correction program, ATREM, constrained with field ASD radiometric measurements. With 
the aid of GPS data and Ikonos images, we co-registered the averaged ASD field spectra over the denuded playas 
and peladal areas to serve as the calibration ground control points. 

We performed a basic, linear spectral mixture analyses to decompose the A VIRIS data into its fractional 
components, including a soil component, a non-photosynthetic vegetation (NPV) signal (wood/litter), and a green 
vegetation (GV) sensitive measure. The basis of the mixture model is that the measured spectral response of a pixel 
is equal to the weighted sum of multiple reflecting surface features, 

n 
dik I rii cik + e 

j=l 
(1) 

where dik is the measured spectral response of the spectral mixture k in waveband i, n is the number of independent 
reflecting components in the mixture, rii is the response of component j in waveband i, Cjk is the relative 
contribution of component j in spectral mixture k, and e is the residual error. In matrix notation, Eq. (1) is 
expressed as 

[D] = [R] [C] + [e] (2) 

where [D] is the spectral data matrix, [R] is the response matrix of the independent reflecting materials or 
'endmembers', [C] is the fractional component contributions or 'loadings' matrix, and [e] are the residual errors. The 
dimensionality, n, represents the number of unique reflecting materials in the mixture data set and is determined 
with the aid of principal components analysis (PCA), which decomposes the spectral data matrix [D] into an abstract 
feature matrix [R]A and an eigenvector matrix [C]A such that [D] = [R]A [C]A. The abstract-based principal 
components analysis results were then converted (rotated) into physical-based results through the use of 
'endmembers' . We used pure pixel endmembers for the green vegetation and soil endmembers, field-based spectra 
for the NPV endmember, and a shade endmember was created using a signature of zero reflectances. 

3. RESULTS 

The averaged spectral signatures (n- 1 00) from the A VIRIS derived reflectances across normal and 
degraded vegetation communities are depicted in Fig. 2. Most of the transect spectra contain very weak vegetation 
signals and resemble soil spectra. The two peladal sites consisted of sparse creosote bush with different soil 
backgrounds, one being darker and more clayey with large dry, cracks on the surface. The moderately degraded 
medanal site had lower reflectances with a weak, red absorption feature in its signature (Fig. 2). This was nearly 
equivalent to the spectral signatures of the algarrobal sites. The jarilla! vegetation community had the lowest 
spectral reflectance signature. In the shortwave-infrared (SWIR) region, all the vegetation communities, with the 
exception of the peladal sites, showed lignin absorption features, allowing for spectral separation of soil from NPV 
and GV (Asner and Lobell, 2000). 
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Figure 2. Averaged AV IRIS spectra of the main vegetation communities within and outside the Nacufuin Biosphere 
Reserve. 

An eigenanalysis of the A VIRIS hyperspectral data revealed a data dimensionality of 4 with 99.86% of the 
variance accounted for. The first 4 eigenvectors reveal the important spectral structure and signature curve shapes 
of the AVIRIS image (Fig. 3). The first eigenvector is equivalent to the mean spectral signature for the entire image 
and provides a brightness measure. The second eigenvector resembles green vegetation spectra. The 3'd and 4th 
eigenvectors resemble the non-photosynthetically active vegetation (NPV) spectral absorption features in the SWIR 
with unique abso~tion features relevant to the separation ofNPV from soil and green vegetation (2080, 2210, and 
2270 nm). The 4 eigenvector also show increasing secondary variations related to instrument noise but was 
retained for the information it contained in the SWIR. 

Spectral mixture analysis was conducted by supplying 'pure' reference endmembers ofknown biophysical 
properties to transform and rotate the abstract PCA solution into a set of physically useful, fractional component 
images. The resulting fractional component images show very little difference in green vegetation (GV) between the 
inside and outside portions of the Nacufian reserve and there was no clear, discernable pattern ofGV fractional 
values among the algarrobal, jarilla!, and medanal communities inside the reserve (Fig. 4). The green vegetation 
fraction was lowest in the severely degraded peladal and moderately degraded medanal areas in the northern portion 
of the image. Green vegetation fractional amounts were also most variable in the peladal areas exhibiting minimal 
values in the severely degraded areas with adjacent high values due to clusters of cottonwood trees and mesquite 
growing at the edges of the denuded playas. These playas are used to harvest and store water, which sustain the 
cottonwood trees. 
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Figure 3. The first 4 primary eigenvectors derived from a principal components analysis of the AVIRIS image 
acquired over the Nacui'ian Biosphere Reserve. 

The NPV signal was generally lower in the degraded northern part of the image consisting ofmedanal 
communities and was extremely low over the peladal areas (Fig. 4). As with the GV fraction, there were no 
discernable patterns ofNPV among the vegetation formations within the reserve as well as in the immediate 
adjacent portions outside the reserve. There were larger differences in the soil fraction with darker soil values inside 
the reserve (Fig. 4 ). The soii fractional values were lowest in the jarilla! communities (creosote bush) and highest in 
the degraded peladal communities outside and north of the reserve. The medanal site was of intermediate brightness 
and the algarrobal communities were slightly lower. The soil fraction for the algarrobal communities also appeared 
slightly darker inside the reserve compared with outside (Fig. 4). Fractional shade amounts also exhibited strong 
variability in the degraded peladal areas as a result of the dense trees casting shadows, surrounded by bare playas 
nearly devoid of vegetation canopy shade. Some of the clay playas, however, were extremely dry and cracked with 
crevices 20 - 30 em wide and I 0 - 20 em deep, creating significant amounts of shade. · 

A scatterplot of the green vegetation fraction (GV) plotted against the NPV vegetation fraction for the range 
of sites, shows a general positive relationship in which increasing greenness is associated with higher values ofNPV 
(Fig. 5). Both GV and NPV increase as the amount of vegetation increases, from the severely degraded peladal sites 
to the moderately degraded medanal (sand-dune) sites, and finally the healthy jarilla! (creosote bush) and algarrobal 
(mesquite) communities. This formed a primary axis of total vegetation cover (GV + NPV) that enabled the 
separation of the various land degradation classes. A second axis of variation can also be seen whereby, within a 
given vegetation community, there is an inverse relationship between NPV and GV. This basically depicts the 
vegetation cover as either foliated (green leaves) or defoliated exposing the woody, NPV signal. For a given level of 
total plant cover, the proportions of GV and NPV will vary inversely, depending on environmental variables (soil 
moisture, meteorology) and phenology (dry season to wet season). 
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GV NPV Soil Shade 

Figure 4. Fractional component images of the AVIRIS image data set over the Nacuiian Biosphere Reserve, (a) GV, 
(b) NPV, (c) Soil, and (d) Shade images. 

The two algarrobal sites represent sparse and dense 'green' vegetation, respectively. Note that the GV axis 
does not differentiate between the algarrobal andjarillal communities. The medanal site decreased in both GV and 
NPV, while the peladal areas were discriminable through either the GV or NPV fraction. Figure 5 depicts quite well 
the need for multiple landscape parameters for characterization and monitoring of land degradation. Neither 
greenness (GV) nor NPV components alone can discriminate the various vegetation communities and stages of land 
degradation due to the large overlap in vegetation properties. With these ambiguous signals, it would take much 
longer to reliably assess if land degradation is actually occurring. However, when GV and NPV are combined, one 
can note distinct clusters among the degradation classes and the trend of decreasing PV and NPV in shifting towards 
the origin with increasing degradation. A shift towards the origin indicates less total vegetation cover, which may 
be used as one reliable measure of land degradation. 

The discrimination of the land degradation classes can also be observed in a plot ofGV against the soil 
brightness signal (Fig. 6). There is an overall inverse relationship whereby as the vegetation fraction decreases as 
the soil component increases. However, the soil component not only increases in response to the greater proportion 
of exposed soil but also due to the 'brighter' soils found in the degraded areas (lower organic matter). This caused a 
shift toward higher soil values for a given amount of vegetation cover over the severely degraded peladal areas 
(Fig. 6). The soil component may thus be useful as a third landscape parameter for land degradation studies. As an 
example, the GV values of the medanal community were similar to those of the algarrobal community but were 
separable through the 'brighter' soil signal found in the degraded medanal site. Thus, the addition of the soil 
component information provided a means for further discrimination and landscape degradation analysis. 
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Similarly, Fig. 7 shows the much higher content of variance and information present in the fractional images 
ofNPV, soil, and shade compared with green vegetation (GV) for the highly degraded areas north of the Reserve. 
Fence line boundaries with differing grazing patterns and management schemes are readily seen in the NPV, soil, 
and shade images but are nearly absent in the green vegetation fraction image. 

Figure 5. The green vegetation fractional component (GV) plotted against the NPV component for the major 
vegetation communities inside and outside the Nacuiian Biosphere Reserve. 

4. CONCLUSIONS AND DISCUSSION 

The results of this study showed that simple 'greenness' measures, such spectral vegetation indices and GV 
fraction components, were not well adapted to the assessment of land degradation and desertification at the Nacunan 
Biosphere Reserve in Argentina. Land degradation in semiarid regions result in simultaneous changes in soil and 
vegetation optical properties involving the amount and composition/ structure of vegetation, the proportion of green 
(GV) and non-green (NPV), and the soil background. Spectral vegetation indices are limited in their ability to 
characterize such complex environments and may lead to ambiguous conclusions concerning land degradation. 
Greenness by itself will decrease with land degradation but will also shift greatly in response to seasonal variations 
as well as plant community composition changes with different proportions ofGV and NPV (e.g., shifts from 
herbaceous to woody vegetation or shifts from perennial to annual vegetation). 
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Figure 6. The green vegetation fractional component (GV) plotted against the soil component for the major 
vegetation communities inside and outside the Nacuiian Biosphere Reserve. 
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Figure 7. Fractional component images of the A VIRIS image data set in the degraded areas north of the Nacuiian 
Biosphere Reserve, (a) GV, (b) RMSE, (c) Shade, (d) Soil, and (e) NPV images. 
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We found that land degradation was significantly improved with the inclusion of fractional NPV 
component information derived from spectral mixture analysis. The combination ofNPV with PV enabled a more 
efficient and accurate characterization of the landscape with respect to natural vegetation communities and various 
stages of degradation. Whereas the separate GV and NPV fractional components could not differentiate many of the 
land degradation classes, they were able to do so in combination. The GV and NPV fractions enabled the assessment 
of total vegetation cover and allowed one to decouple differences in green vegetation resulting from phenology and 
vegetation composition across the landscape. 

The soil fraction component also added useful information for better interpretations of land degradation. 
The soil background component is especially relevant for the monitoring ofland degradation since the soil signal is 
generally dominant, highly variable, and vulnerable to large changes in areas undergoing degradation. Soil changes 
associated with land degradation are due to surface erosion, subsoil exposure, loss of soil carbon and moisture, and 
soil spatial heterogeneity. Land degradation invariably results in a stronger soil signal component to measured 
spectra and the spatial and temporal variations associated with the soil background must be decoupled from 
variations associated with vegetation in order to better interpret land degradation. 

The extracted soil component from the mixture analysis was determined by two factors that created a 
certain degree of ambiguity to the interpretation of the mixture model results. The strength of the soil signal varied 
with the fractional amount of soil exposed as well as the inherent brightness of the soil. Thus, increases in the soil 
signal were the result ofless vegetation cover (GV and NPV) as well as higher soil reflectances associated with 
degradation (crusting, less moisture, less organic carbon, erosion). There are more advanced methods of spectral 
mixture analysis that aim to extract the soil reflectance signal independent of exposed soil fraction and vegetation 
influences (Okin et a!., 200 I; Palacios-Orueta et a!., 1999). 

The use of satellite observations to monitor land degradation processes has a promising future, particularly 
with the use of hyperspectral sensor systems that offer the potential of extracting soil and vegetation biogeophysical 
component information for a more complete land surface characterization. When these multiple optical parameters 
are combined with GIS, process models, and moderate resolution sensors for phenology determinations, then 
desertification can be more quantitatively evaluated and monitored and the different processes that contribute to 
desertification (erosion, salinization, denuding of soi I, overgrazing, water resources) can be assessed. The Earth 
Orbiter I (EO-I), launched in November 2000 as part ofNASA's New Millennium program, includes a 
hyperspectraJ imager, Hyperion. The Hyperion hyperspectral imager is a pushbroom sensor providing 220, 10 run 
bands covering the spectrum from 400 to 2500 run. A space-based hyperspectral sensor with consistent and repeat 
observation capabilities will greatly improve land degradation monitoring and provide early warning detection 
capabilities. 
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LEAF AREA INDEX AND COVER OF SHORTGRASS STEPPE 
USING A VIRIS IMAGERY 

I. INTRODUCTION 

E. Raymond Hunt, Jr.' 
Hydrology and Remote Sensing Laboratory 

USDA Agricultural Research Service 
Beltsville, Maryland 

Management of rangelands in the western United States requires data on vegetation community type, vegetation 
cover and productivity, and erosion potential in order to assess the sustainability of livestock grazing for food 
production. Remotely sensed imagery can provide attributes related to these data requirements over large areas. 
The Wyoming Hyperspectral ~magery Pilot Project was initiated in 1995 to determine the relationships between 
remotely sensed attributes and management data requirements using the best NASA sensor (at the time), the 
Airborne Visible Infrared Imaging Spectrometer (A VIRIS) from the Jet Propulsion Laboratory (Green et al. , 1998). 
The radiometric, spectral, and spatial characteristics of A VIRIS allow image degradation to simulate operational 
sensors such as the Landsat Thematic Mapper and Advanced Very High Resolution Radiometer. 

Bare soil cover, which is related to erosion potential, and vegetation cover can be determined from 
hyperspectral imagery using the method of spectral endmember urunixing (Roberts et a!., 1998). Endmembers must 
be spectrally distinct. Unfortunately most semi-arid vegetation have similar spectral signatures so determination of 
the cover fraction contributed by each species to the community composition is probably not feasible, except for 
some species (McGwire et al. , 2000; Parker Williams and Hunt, 200 I). However, green vegetation cover, non-green 
vegetation cover (litter), and bare soil are important community attributes directly applicable for rangeland 
management. 

Vegetation productivity and leaf area index (LAI) are usually estimated using remotely sensed vegetation 
indices, particularly the Normalized Difference Vegetation Index (NDVI): 

(I ) 

where RNIR is the reflectance in the near infrared and RRed is the reflectance of red wavelengths. Preliminary 
analyses of A VIRIS data over the Agricultural Research Service's (ARS) Central Plains Experimental Range 
(CPER), a shortgrass steppe community near Nllilll. Colorado, showed that NDVI were equal over a large range of 
biomass maintained by grazing intensity (Hunt, 2000). Various models of canopy reflectance show that fractional 
vegetation cover is an important variable determining NDVI (Carlson and Ripley, 1997; Myneni and Williams, 
1994; Rondeaux et al. , 1996). In particular, the SAIL model (Verhoef, 1984) has been used extensively to examine 
the responses ofvegetation indices such as the NDVI to different variables (Baret and Guyot, 1991; Rondeaux et al., 
1996). In addition to the SAIL model, reflectances of stacked leaves provide an empirical method to approximate 
changes of reflectance with increasing LAI, and when included in a two-component mixture model, could help 
elucidate the interactions between cover and LAI affecting NDVI. 

2.METHODS 

A VIRIS data were obtained over the CPER on two dates, 25 July 1995 and 6 August 1998. The first year had 
abnormally high amounts of summer precipitation, whereas the second year had normal amounts of summer rain. 
The vegetation of CPER is shortgrass steppe, which is dominated by blue grama grass (Bouteloua gracilis ). There is 
a long-term grazing intensity experiment (Figure I) with three stocking levels (high, medium, and light) in 0.5 mile2 

pastures, which strongly determine the amount of standing biomass (Hart and Ashby, 1997). The heavy-grazed 
pasture has a permanent water hole; all data surrounding this water hole were excluded from data analyses by 
defining regions of interest and using the statistics from only these areas. Furthermore, all dirt roads in each pasture 
were excluded from the regions of interest. The final treatment is the large number of permanent plots where cattle 

* Building 007 Room 104, 10300 Baltimore Ave., Beltsville, Maryland 20705 (email: 
erhunt@hydrolab.arsusda.gov) 
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grazing has been excluded. Species composition, biomass and cover data of these four areas are routinely collected; 
LAI was calculated from biomass using a specific leaf area of9 m2 kg· 1

• 

The flightline of the ER2 aircraft was east to west in 1995 and south-east to north-west in 1998; these flightlines 
resulted in a brighter northern edge of the image resulting from the sun-ground-sensor geometry and the vegetation 
bidirectional reflectance distribution functions. Fortunately, all the grazing experiments were near nadir in both 
flightlines. The atmospheric correction program, ATREM version 3.1 (Gao eta!., 1993), was used to calculate 
surface reflectances from the calibrated A VIRlS radiances. Then an empirical line correction was applied to the data 
using a dark target (US Highway 85) and a bright target (a gravelly dry bare stream bed of Owl Creek, near the 
CPER Headquarters). The ground reflectances of these targets were acquired on 21 June 2000 using an Analytical 
Spectral Devices Inc. (ASD) FieldSpec Pro spectroradiometer (350 to 2500 nm), and averaged into the 224 A VIRlS 
bands using the calibrated wavelength files for each year. NDVI was calculated from the final reflectances using 
A VIRlS bands 53 (846 nm center wavelength) and 33 (664 nm center wavelength). 

Four endmembers were used for spectral unmixing: bare soil, leaf litter, green vegetation, and shadow (Roberts 
et al., 1998). In both images, there were areas of plowed fields and recently harvested grain crops for the soil and 
litter endmembers, respectively. The vegetation endmember was obtained from the A VIRlS data in riparian areas 
with lush vegetation and deep soils. Finally the shadow end member was assumed to be I% reflectance for all 
wavelengths. 

On 21 June 2000, transmittances and reflectances of stacked sunflower (He/ian thus annuus) leaves were 
measured using the ASD FieldSpec Pro spectroradiometer. Because the spectral characteristics change rapidly when 
leaves are removed from the plant, fresh leaves were used for each new series of stacked leaves. Reflectances of the 
soil background were also measured, and the results were used in the SAIL model (Verhoef, 1984; M. Kim, personal 
communication). The leaf angle distribution was set to be entirely planophile. NDVI were also calculated for 
specific mixtures of LAI (from the stacked reflectances) and plant-soil cover. For total reflectance at either the 660 
and 850 nm wavelengths (R8) : 

Rg =(I -!> Rsoii + f RLAI (2) 

wherefis the fraction covered by green leaves, R.oil is the soil reflectance, and RLAI is the reflectance of the leaf 
stack where LAI equals the number of stacked leaves. The fraction/ was varied from 0 to 1 in increments of 0.1; 
NDVI was then calculated from Eq. I . 

3. RESULTS AND DISCUSSION 

The average green vegetation cover was not significantly different among treatments for either year, with the 
average cover for 62% in 1995 and 55% in 1998. In 1995, measured aboveground biomass were 86.4, 106.7 and 
175.3 g dwt m-2

, and in 1998, measured biomass were 129.8, 130.7, and 159.8 g dwt m-2 for the heavy, medium and 
light grazed pastures, respectively. This translates to LAI from 0.8 to 1.5 m2 m-2 for the lowest to highest 
aboveground biomass. The non-grazed permanent plots had an LAI of 1.8 m2 m·2 for 1995, which was assumed to 
be the LAI in 1998. 

The A VIRIS average reflectance spectrum for heavy-grazed pasture was highest at almost all wavelengths and 
the average reflectance spectrum for the non-grazed permanent plots was lowest at the visible and near-infrared 
wavelengths (Figure 2). The fraction of green vegetation cover from the endmember unmixing was approximately 
equal to the actual vegetation cover. The differences between the A VIRlS spectra in Figure 2 were from differences 
in the shadow endmember fraction. The amount of shadow followed one-to-one the amount of shrub cover on the 
plots (Figure 3 ). 

NDVI were not correlated with LAI (Figure 4), and NDVI were weakly correlated with cover (data not shown). 
SAIL model predictions ofNDVI for a grassland canopy are also shown on Figure 4, indicating that the range of 
LAI from 0.8 to 1.8 m2 m·2 should have a large increase in NDVI. The weak correlation between NDVI and cover 
may simply be the result from the small variation of the independent variable, because when the data from other 
pastures during 1995 are included (no biomass/LAI data are available for these pastures), the correlation increases 
with an R2 of0.72. 

For stacked sunflower leaves, reflectances at visible wavelengths decreased and the reflectances at NIR 
wavelengths increased as the number of leaves increased from one to four (Figure 5). Reflectances at 660 nm and 
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850 run were used to calculate NDVI. For a planophile canopy, NDVI predicted for LAJ of I, 2, 3, and 4m2 m-2 by 
the SAJL model were similar to the NDVI for stacks of one, two, three and four leaves, respectively (Figure 6). 
From the SAJL model, fractional LAJ from 0 to I m2 m-2 was also similar to the reflectance of a single leaf mixed 
with soil background reflectance. However, the NDVJ for two stacked leaves that covered only one-half of the area 
(LAJ = I m2 m-2

) was only 75% of the NDVI of one leaf spread over the entire area (LAJ also= 1 m2 m-2
). Four 

stacked leaves covering only 25% of the area (LAJ = 1 m2 m-2
) is about half the NDVI of the one leaf spread over 

the entire area and that predicted by the SAJL model (Figure 6). 

4. CONCLUSIONS 

These results demonstrate that NDVI are more strongly related to vegetation cover and less strongly related to 
LAJ. At continuous canopy cover, both with the SAJL model predictions and stacked leaf reflectances, changes in 
LAJ from I to 2 m2 m-2 were less important than changes in cover from 50% to I 00%. Whereas these simulations 
were done for an planophile canopy rather than an erectophile grass canopy (because it is easier to stack sunflower 
leaves), these simulations were done to test hypotheses on NDVI/LAJ suggested by the AVIRlS analyses for 
shortgrass steppe at CPER. 

With vegetation cover, and by estimate bare soil cover, being determined using vegetation indices, then a key 
data requirement for rangeland management can be provided by remotely sensed data. Continuity of record from 
the Landsat Thematic Mapper provided with Landsat 7 will provide managers with some estimates of long-term 
rangeland sustainability. One the other hand, more work needs to be done in explaining how changes in cover over 
a growing season are related to primary production through changes in the fraction of absorbed photosynthetically 
active radiation. 

5. ACKNOWLEDGMENTS 

First, Mr. Jim Foreman, a rancher from Ten Sleep, Wyoming, is thanked for starting the Wyoming 
Hyperspectral Imagery Pilot Project and providing continued leadership. Dr. Diane E. Wickland of NASA 
Headquarters supported the A VIRlS data acquisitions, and other financial support was provided to the University of 
Wyoming from the Wyoming Department of Agriculture, United States Forest Service, and the Upper Midwest 
Aerospace Consortium. Ms. Michele M. Barlow performed the initial image analyses, and Ms. Heidi Gurstung 
assisted with spectrometer data collection. Dr. Richard Hart (ARS, Cheyenne, Wyoming) and Dr. Mary Ashby 
(ARS, Fort Collins, Colorado) provided biomass and cover data at CPER. 

6. REFERENCES 

Baret, F. and G. Guyot, 1991, "Potentials and limits of vegetation indices for LAJ and APAR assessment," Remote 
Sensing of Environment, vol. 35, pp. 161-173. 

Carlson, T. N. and D. A. Ripley, 1997, "On the relation between NDVI, fractional vegetation cover, and leaf area 
index," Remote Sensing of Environment, vol. 62, pp. 241-252. 

Gao, B.-C., K. B. Heidebrecht, and A. F. H. Goetz, 1993, "Derivation of scaled surface reflectances from A VIRlS 
data," Remote Sensing of Environment, vol. 44, pp. 145-163. 

Green, R. 0., M. L. Eastwood, and 0 . Williams, 1998, "Imaging Spectroscopy and the Airborne Visible Infrared 
Imaging Spectrometer (AVIRlS)," Remote Sensing of Environment, vol. 65, pp. 227-248. 

Hart, R. H. and M. M. Ashby, 1998, "Grazing intensities, vegetation, and heifer gains: 55 years on shortgrass," 
Journal of Range Management, vol. 51, pp. 392-398. 

Hunt, E. R., Jr., 2000, "Analysis ofhyperspectral imagery for assessment of Wyoming Rangelands," In: Proceedings 
of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena 
Vista, Florida, 10-12 January 2000, ERlM, Ann Arbor. 

McGwire, K., T. Minor, and L. Fenstermaker, 2000, "Hyperspectral mixture modeling for quantifying sparse 
vegetation cover in arid environments,'' Remote Sensing of Environment, vol. 725, pp. 360-374. 

Myneni, R. B. and D. L. Williams, 1994, "On the relationship between FAPAR and NDVI," Remote Sensing of 
Environment, vol. 49, pp. 200-211. 

165 



Parker Williams, A. and E. R. Hunt, Jr., 2001, "Using hyperspectral remote sensing to map invasive plants on 
rangelands." In: Proceedings of the Third International Conference on Geospatial Information in Agriculture and 
Forestry, Denver, Colorado, 5-7 November 2001 , ERlM, Ann Arbor. 

Roberts, D. A., M. Gardner, R. Church, S. Ustin, G. Scheer, and R. 0 . Green, 1998, "Mapping chaparral in the Santa 
Monica mountains using multiple end member spectral models," Remote Sensing of Environment, vol. 65, pp. 
267-279. 

Rondeaux, G., M. Steven, and F. Baret, 1996, "Optimization of soil-adjusted vegetation indices," Remote Sensing of 
Environment, vol. 55, pp. 95-107. 

Verhoef, W ., 1984, "Light scattering by leaf layers with application to canopy reflectance modelling: the SAIL 
model," Remote Sensing of Environment, vol. 16, pp. 125-141. 

166 



Figure 1. Grayscale NDVI image of the Central Plains Experimental Range 
from the 1995 A VIRIS data. The treatments are (A) light grazing, (B) medium 
grazing, and (C) heavy grazing. Un-grazed permanent plots are scattered over 
CPER. 
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Figure 2. Average reflectance spectra for the four grazing treatments at CPER. 
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Figure 3. Relationship between the fraction of the shadow endmember and shrub 
cover from 1995 and 1998 A VIRlS data for the four grazing treatments. 

0 . 70.--------------------~-=~· 

-··-----
> 0 
0 
z 

./"··- -~ 

~ 
i 

,~ • • • 
... 

,I 
JA. 

... SAIL 

.. 1998 

... 1995 

0 00o!....o----lo-5--1"-. o---111-.5--2~.~o --2"". 5----~3.1-0--3~. 5----14.0 

LAI 

Figure 4. Relationship between NDVI and LAI for the four grazing treatments 
and simulations for an erectophile grass canopy using the SAIL model. 
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Figure 5. Reflectances of stacked Helianthus annuus (sunflower) leaves. 
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Figure 6. Relationships between NDVI and LAI for stacked Helianthus 
annuus leaves using a mixture model approach. Circles shows SAIL model 
predictions for H. annuus leaf reflectance and transmittance. Triangles show the 
NDVI of one leaf mixed at different proportions with bare soil. Diamonds show 
the NDVI of two stacked leaves mixed at different proportions with bare soil. 
Inverted triangles show the NDVI of three stacked leaves mixed at different 
proportions with bare soil. Squares show the NDVI of four stacked leaves mixed 
at different proportions with bare soil. NDVI for stacked leaves was calculated 
from the reflectances in Figure 5. 
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1.0 Introduction 

Comparison between A VIRIS and Hyperion for 
Hyperspectral Mineral Mapping 

Fred A. Kruse1 

The 0.4 to 2.5 ~m spectral range provides abundant information about many important Earth-surface minerals (Clark 
et al., 1990). In particular, the 2.0 to 2.5 ~m spectral range covers spectral features of hydroxyl-bearing minerals, 
sulfates, and carbonates common to many geologic units and hydrothermal alteration assemblages. Imaging 
Spectrometers, or "Hyperspectral" sensors provide the unique combination of both spatially contiguous spectra and 
spectrally contiguous images of the Earth's surface that allows spatial mapping of these minerals(Goetz et al., 
1985). Airborne hyperspectral data have been available to researchers since the early 1980s and their use for 
mineral mapping is well established (Goetz eta!., 1985; Kruse and Letkoff, 1993; Boardman and Kruse, 1994; 
Boardman et al., 1995; Kruse, et al., 1999). Current airborne sensors provide high-spatial resolution (2-20m), high
spectral resolution (I 0--20 nm), and high SNR (>500: I) data for a variety of scientific disciplines (Green et al., 2001; 
Kruse et al. , 2000). 

NASA's E0-1 Hyperion sensor, launched in November 2000, is a test bed instrument designed to demonstrate 
hyperspectral imaging from space (Pearlman et al., 1999). Science validation efforts are in progress and selected 
AIG/CSIRO Hyperion results demonstrating mineral mapping have previously been presented and published (Kruse 
et al., 2001, 2002). New details and accuracy assessment compared to A VIRIS data are presented here. 

2.0 Comparison of A VIRIS And Hyperion Specifications 
The Airborne Visible/Infrared Imaging Spectrometer (A VIRIS) represents the current state of the art airborne 
hyperspectral system (Porter and Enrnark, 1987; Green et a!., 2001 ). A VIRIS, flown by NASA/Jet Propulsion 
Laboratory (JPL) is a 224-channel imaging spectrometer with approximately 10-nrn spectral resolution covering the 
0.4-2.5-~m spectral range. The sensor is a whiskbroom system utilizing scanning foreoptics to acquire cross-track 
data. The IFOV is 1 rnilliradian. Four off-axis double-pass Schmidt spectrometers receive incoming illumination 
from the foreoptics using optical fibers. Four linear arrays, one for each spectrometer, provide high sensitivity in the 
0.4 to 0.7 ~. 0.7 to 1.2 ~m, 1.2 to 1.8 ~m, and 1.8 to 2.5 11m regions respectively. A VIRIS is flown as a research 
instrument on the NASA ER-2 aircraft at an altitude of approximately 20 km, resulting in approximately 20-m 
pixels and a I 0.5-km swath width. Since 1998, it has also been flown on a Twin Oner aircraft at low altitude, 
yielding 2--4 m spatial resolution. 

The launch ofNASA's EO-I Hyperion sensor in November 2000 marked the establishment ofspaceborne 
hyperspectral mineral mapping capabilities. Hyperion is a satellite hyperspectral sensor covering the 0.4 to 2.5 ~ 
,spectral range with 242 spectral bands at approximately 10 nm spectral resolution and 30 m spatial resolution from a 
705-km orbit (Pearlman et a!., 1999). Hyperion is a pushbroom instrument, capturing 256 spectra over a 7 .5-km
wide swath perpendicular to the satellite motion. The system has two grating spectrometers; one visible/near 
infrared (VNIR) spectrometer (approximately 0.4-1.0 J!ffi) and one short-wave infrared (SWIR) spectrometer 
(approximately 0.9-2.5 ~). Data are calibrated to radiance using both pre-mission and on-orbit measurements. 
Table 1 shows a comparison ofkey AVIRIS and Hyperion characteristics. 

Table I: A VIRIS/Hyperion Sensor Characteristics Comparison 

HSI Spectral Spatial Swath SWIR 
Sensor Resolution Resolution Width SNR 
A VIRIS-High Altitude IOnm 20m 12km -500:1 
Hyperion 10 nm 30m 7.5 km -50:1 

1 Analytical Imaging and Geophysics LLC, Boulder, Colorado, USA, E-mail: kruse@aigllc .com 

171 



3.0 Basic Hyperspectral Mineral mapping- Cuprite, Nevada 

3.1 Site Description 
Cuprite, Nevada, located approximately 200 krn northwest of Las Vegas (Figure 1) 
is a relatively undisturbed acid-sulfate hydrothermal system exhibiting well 
exposed alteration mineralogy consisting principally of kaolinite, alunite, and 
hydrothermal silica. The geology and alteration were previously mapped in detail 
(Abrams et al., 1977; Ashley and Abrams, 1980). Swayze (1997) includes a good 
geologic summary, a generalized geologic map, and detailed mineral maps derived 
from 1990 and 1994 A VIRIS data. Cuprite, has been used as a geologic remote 
sensing test site since the early 1980s and many studies have been published (Goetz 
et al., 1985; Ashley and Abrams, 1980; Goetz and Strivastava, 1985; Swayze, 1997; 
Shipman and Adams, 1987; Kruse et al., 1990; Hook, 1990; Swayze et al., 1992; 
Goetz and Kindel, 1996; Kruse et al., 2002) 

This study compares mineral mapping results from A VIRIS data acquired 19 June 
1997 to Hyperion data collected I March 2001. Figure 2 shows reference images 
for the A VIRIS and Hyperion data. 
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Figure I: Cuprite, Nevada, 
Location map. 

Figure 2: Reference images showing the A VIRIS (left) and Hyperion (right) coverage of the Cuprite, Nevada, site. 
The site is typically described as consisting of two hydrothermal centers (Swayze, 1997). These can be 
seen in the images as bright areas to the right and left of the road running from NW to SE across the 
scenes. 
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3.2 Methods 
AIG has developed standardized methods for analysis ofhyperspectral data (Figure 3) (Kruse et al., 1996; Kruse and 
Boardman, 2000). Both the A VIRIS and Hyperion data were processed to geologic products using these AIG
developed approaches for extraction of mineralogic and geologic information. This hyperspectral analysis 
methodology includes 1) data pre-processing (as required), 2) correction of data to apparent reflectance using the 
ACORN™ atmospheric correction software, 3) linear transformation of the reflectance data to minimize noise and 
determine data dimensionality, 4) location of the most spectrally pure pixels, 5) extraction and automated 
identification of endmember spectra, and 6) spatial mapping and abundance estimates for specific image 
endmembers. A key point of this methodology is the reduction of data in both 
the spectral and spatial dimensions to locate, characterize, and identify a few ~ 
key end member spectra that can be used to explain the rest of the 
hyperspectral dataset. Once these endmembers are selected, then their 
location and abundances can be mapped from the original data. These 
methods derive the maximum information from the hyperspectral data 
themselves, minimizing the reliance on a priori or outside information. 

3.2.1 Destriping for Hyperion area array data 
If required, preprocessing/data clean-up may be applied to the data prior to 
atmospheric correction. In the case ofHyperion data, though radiometric 
corrections were applied prior to data delivery to AIG, there was still a 
pronounced vertical striping pattern in the data (visible in individual bands, 
but more pronounced when using the linearly transformed data). Such 
striping is apparently caused by dark current imbalances (DC Bias) of the 
detectors across the pixel direction of the detector (Dykstra and Segal, 1985). 
This is often seen in data acquired using push-broom (area array) technology 
(e.g., AIS, Hyperion). Destriping was accomplished using custom software 
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Figure 3: AIG Standardized Proc
essing methods for hyperspectral 
data analysis. 

(following the model of software written for the original pushbroom imaging spectrometer AIS) (Dykstra and Segal, 
1985; Kruse, 1988). This approach adjusts each image column brightness (in all bands) based on a calculated offset 
relative to the scene average detector response. Assumptions made were that individual detectors were reasonably 
well behaved (stable) and that over the course of a data collect ("flightline"), that each of the cross-track detectors 
has covered, on the average, very similar surface materials. Implementation consisted of calculation of an average 
spectrum for each of the 256 Hyperion detectors followed by determination of a global scene average spectrum. 
Each column spectrum was then subtracted from the global spectrum to determine offsets to be added to each pixel 
in the corresponding column. Each pixel in each column of the radiance data was then adjusted accordingly using 
the calculated offset. Destriping is only required for correcting the pushbroom Hyperion data and thus no destriping 
was applied to the A VIRIS data. 

3.2.2 Atmospheric Correction 
The AIG analysis methods are generally applicable to both airborne and satellite data. The methodology requires 
processing radiance-calibrated data to apparent reflectance. ACORN, currently used by AIG for correction of both 
airborne and satellite hyperspectral data (AIG, 2001), is a commercially-available, enhanced atmospheric model
based software that uses licensed MODTRAN4 technology to produce high quality surface reflectance without 
ground measurements. The Cuprite A VIRIS and Hyperion data were both converted to apparent reflectance using 
ACORN. Appropriate model parameters for each instrument and collection date were used, otherwise, all other 
parameters were identical for both datasets. 

3.2.3 Standardized AIG Hyperspectral Analysis 
Standardized AIG hyperspectral analysis methods used for both the airborne sensors and Hyperion data 
(implemented in the ENVI™ image analysis software) include spectral polishing using "EFFORT" (Boardman, 
1998a), spectral data reduction using the Minimum Noise Fraction (MNF) transformation (Green et al., 1988; 
Boardman, 1993), spatial data reduction using the Pixel Purity Index™ (PPI) (Boardman, 1993), ann-Dimensional 
Visualizer™ to determine image endmembers (Boardman, 1993 ), identification of endmembers using their 

reflectance spectra(Kruse et al., 1993a) in the Spectral Analyst™, and mineral mapping using both the Spectral 
Angle Mapper (SAM) (Kruse et a!., 1993b) and Mixture-Tuned-Matched Filtering (MTMF™) (Boardman, 1998b ). 
This approach is shown in Figure I below and also outlined in Kruse et a!. ( 1996) and Kruse and Boardman (2000). 
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3.2.4 Geometric Corrections 
The final step in the analysis is usually to present the results 
on a map base. In this case, to facilitate comparison of the 
Hyperion data to A VIRIS mineral mapping results and 
minimize resampling artifacts, the A VIRIS data were used as 
the base rather than a map. The Hyperion data were 
geometrically corrected to match the A VIRIS data by picking 
ground control points (GCP) and using a I st degree 
polynomial warp with nearest neighbor resarnpling. 
Approximately 20 GCPs were used and the residual errors 
were on the order of2 pixels. Hyperion image-maps (not the 
full data cube!) were geocorrected to match the A VIRIS data. 

3.3 Results 
Operationally, spectral bands covering the short wave 
infrared (SWIR) spectral range (2.0 - 2.5 11m for A VIRIS 
and 2.0 - 2.4 1J.ffi for Hyperion) were selected and these 

5 10 15 
~alue N~ (MNF Band) 

Figure 4: MNF eigenvalue plots for the Cuprite, 
Nevada, A VIRIS and Hyperion data 

20 

bands were linearly transformed using the MNF transformation. Figure 4 shows a plot of the MNF eigenvalues for 
both datasets. Higher eigenvalues generally indicate higher information content. The MNF results indicate that the 
A VIRIS data contain significantly more information than the Hyperion data covering approximately the same spatial 
area and spectral range. The actual data dimensionality is usually determined by comparing both the eigenvalue 
plots and the MNF images for each dataset (Figures 4, 5, and 6). In the .case of A VIRIS, the MNF analysis indicates 
a dimensionality of approximately 20. The Hyperion data exhibits dimensionality of approximately 6. 

Figure 5. MNF images for the A VIRIS SWIR data. Images from left to right, MNF band 1, MNF band 5, MNF 
band 10, MNF band 20. 

Figure 6. MNF images for the Hyperion SWIR data. Images from left to right, MNF band 1, MNF band 2, MNF 
band 5, MNF band 10. 
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The top MNF bands for each data set (20 for A VIRIS, 6 
for Hyperion), which contain most of the spectral 
information (Green et a!., 1988), were used to determine 
the most likely endmembers using the PPI procedure. 
These potential endmember spectra were loaded into an n
dimensional scatterplot and rotated in real time on the 
computer screen until "points" or extremities . on the 
scatterplot were exposed (Boardman, 1993). These 
projections were "painted" using region-of-interest (ROI) 
definition procedures and then rotated again in 3 or more 
dimensions (3 or more MNF bands) to determine if their 
signatures were unique in the MNF data. Once a set of 
unique pixels were defined, then each separate projection 
on the scatterplot (corresponding to a pure endmember) 
was exported to a ROI in the image. Mean spectra were 
then extracted for each ROI from the apparent reflectance 
data to act as endmembers for spectral mapping 
(Figure 7). These endmembers or a subset of these 
endmembers (in the case of AVIRIS) were used for 
subsequent classification and other processing. Mixture
Tuned-Matched Filtering (MTMF), a spectral matching 
method (Boardman, 1998b ), was used to produce image
maps showing the distribution and abundance of selected 
minerals. (Note: MNF endmember spectra, not 
reflectance spectra are used in the MTMF). The results 
are generally presented as gray-scale images (not shown) 
with values from 0 to 1.0, which provide a means of 
estimating mineral abundance. Brighter pixels in the 
images represent higher mineral abundances. Results 
images for both A VIRIS and Hyperion were produced by 
correcting the Hyperion data to match the A VIRIS spatial 
scale and orientation as described above. Selected results 
were combined as color-coded images to show the 
distribution of the principal (spectrally predominant) 
minerals (Figure 8). 

Visual comparison of the two classified datasets shows 
that Hyperion identifies similar minerals and produces 
similar mineral mapping results to A VIRlS. In this case, 
the difference in pixel size is generally inconsequential 
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Figure 7: Comparison of selected AVIRIS endmember 
spectra (left) and Hyperion endmember spectra 
(right). Note that A VIRIS detected several 
varieties of alunite plus an additional kaolinite
group mineral (dickite) that were not detectable 
using the Hyperion data. Other A VIRIS minerals 
and vegetation not shown. 
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(causing only slight loss of spatial detail in Hyperion results). It seems likely that the lower SNR of the Hyperion 
data (specified at approximately 50: I vs >500: 1 for A VIRIS) does affect the ability to extract characteristic spectra 
and identify individual minerals. (See the Hyperion buddingtonite spectrum in Figure 7 above, which does not 
clearly show the characteristic buddingtonite spectral feature shape near 2. 11 !liD, which is well resolved in A VIRIS 
[Figure 7] and other hyperspectral aircraft data) (Kruse et al., 1990, 2000; Swayze, 1997; Green eta!., 2001 ). This 
spectrum could also, however, be an effect of the pixel size causing greater mixing in the Hyperion data for 
relatively small buddingtonite occurrences. Additionally, bear in mind that Figure 8 shows a basic A VIRIS mineral 
map. It is possible to extraCt more detailed mineralogic information from the A VIRIS data (Swayze, 1997; Green et 
a!., 2001; Kruse eta!., 2001, 2002;) as well as abundance information (Boardman and Kruse, 1994; Boardman et al., 
1995, Kruse et al, 1999). Determination of abundances for minerals identified by Hyperion is possible, but not 
illustrated here. Our analysis also indicates that the Cuprite Hyperion data do not allow extraction of the same level 
of detailed mineralogic information as A VIRIS (eg: within-species separation of micas and temperature mapping of 
Alunites) (Swayze, 1997; Swayze et a!., 1992). Actually though, Hyperion performs surprisingly well considering 
the overall SWIR SNR. 

175 



Figure 8: MTMF mineral maps for AVIRJS (left) and Hyperion (right) produced using the endmember spectra in Figure 7. 

3.4 Accuracy Assessment and Error Analysis 
Visual comparison of the Hyperion and A VIRIS MTMF image maps in Figure 8 using the A VIRIS data as the 
"Ground Truth" indicates that in general, using these mapping methods, the two datasets produce similar mapping 
results. Figure 9 shows a comparison of MTMF results for the minerals kaolinite and alunite, presented as binary 
images covering the data's overlapping area (white is a specific mineral, black is unclassified), and it can be seen 
that these have similar patterns of classified pixels for the selected minerals. 

Detailed direct comparison of the mapping results demonstrates, however, that the correspondence is not as great as 
may be thought from visual comparison. Comparison of the MTMF spectral mapping results using a confusion 
matrix approach shows that many pixels classified using AVIRIS are unclassified on Hyperion (up to 60%, but 
variable by mineral). These are errors of omission. This is probably explained by the differences in SNR between 
the two datasets. Some spectral features are simply below the level of detection on the Hyperion data (This issue is 
explored further in a later section). The same analysis, but excluding the unclassified areas, yields approximately 
75% overall agreement of Hyperion to AVIRIS, with a Kappa Coefficient of 0.66 (Table 2) (Richards, 1994). This 
highlights errors of commission (where pixels mapped as one mineral by A VIRIS are mapped as another mineral by 
Hyperion). First, some pixels unclassified using A VIRIS are misclassified as a specific mineral on Hyperion 
(around 5% commission error). Additionally, some pixels classified by A VIRIS as specific minerals are 
misclassified as different minerals on Hyperion (-25% commission error). Specifical ly, there is minor classification 
error between: Kaolinite mapped by Hyperion as Muscovite (7%), Kaolinite and Silica (4%), Muscovite and Calcite 
(2%), Silica and Alunite (6%), Silica and Muscovite (3%), Silica and Calcite (I%), Buddingtonite and Kaolinite 
(7%), Calcite and Muscovite (5%), and Calcite and Silica (4%). Moderate errors occur between:, Kaolinite mapped 
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by Hyperion as Alunite ( 15%), Alunite and Kaolinite ( 16%), and Silica and Kaolinite (13%). The highest errors 
occur between: Buddingtonite mapped by Hyperion as Alunite (58%), and Muscovite mapped by Hyperion as 
Kaolinite (25%). Table 2 summarizes the error relationships between minerals. 

Figure 9: Comparison ofMTMF mineral mapping results for kaolinite and alunite. White pixels indicate successful 
classification. 

T bl 2 C fu . a e on s10n matnx companng H ypenon MTMF mappmg resu ts to AVIRIS "Gr d T th" MTMF oun ru resu ts. 

A VIRIS "Ground Truth" Class (Percent) 
Hyperion Kaolinite% Muscovite% Silica% Buddingtonite % Alunite% Calcite% Total% 
Kaolinite 73.13 25.09 12 . 87 7.02 16 . 39 2.66 36 . 20 

Muscovite 7 . 14 72.58 2 . 52 0.00 0.88 4.56 2 0.63 

Silica 4.33 0.79 76 . 96 0.00 2.23 4.18 8.70 

Buddingtonite 0.02 0.00 0.00 35.09 0.49 0.00 0.61 

Alunite 14.83 0.00 6.39 
I 

57.89 79.68 0.00 31.38 
I 

Calcite 0.55 1. 54 1.26 0.00 0.33 88.59 ' 2.48 

Total 100.00 100.00 100 . 00 100.00 100 . 00 100.00 100.00 

While this comparison serves to highlight the accuracy and overall performance of the Hyperion dataset compared 
to A VIRIS, several other issues may affect the accuracy assessment. These include: I) the data coverage (spatial 
extent) of the two datasets- they cover substantially the same ground, but not exactly (affects unclassified class), 2) 
the data pixel size (A VIRIS is 20m, Hyperion 30m), 3) Image acquisition differences (date/time, atmospheric 
conditions, SNR), 4) slightly different spectral characteristics (2.0 - 2.5 Jlm for A VIRIS vs 2.0 - 2.4 Jlffi for 
Hyperion; varying band centers and spectral resolution), 5) different image-based endmembers spectra used for 
MTMF (endmember spectra not identical), 6) MTMF threshold consistency and class combining (A VIRIS), and 7) 
Hyperion to A VIRIS image registration accuracy. 

4.0 SNR COMPARISONS- EFFECT ON MINERAL MAPPING 
Previous Hyperion investigations show that there is a strong relationship between the acquisition time of year and 
the signal-to-noise ratio (SNR) of the Hyperion data (Kruse et al., 2001, 2002). SNR for the same targets are higher 
in the summer and lowest in the winter. This has a direct effect on spectral mineral mapping, with lower SNR 
resulting in extraction of less detail (also see A VIRIS vs Hyperion MNF comparison above). Calculation of data 
SNR using a Mean/Standard Deviation method for a homogeneous target (Stonewall Playa) produces the results 
shown in Figure 10 for the Cuprite A VIRIS (June 1997) and Hyperion (March 2001 ). While these SNR are 
representative of those that can be extracted directly from the data, slightly higher SNR could probably be obtained 
through analysis of the data dark current signal. Figure 10 also shows calculated SNR for Hyperion data collected 
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during July 2001 (northern hemisphere summer) for a site in northern Death Valley, California. All SNR are 
normalized to 50% reflectance. Note that the SWIR SNR is significantly higher than the calculated Cuprite SWIR 
SNR for the March 2001 data (SWIR SNR -50: I vs 25: 1). The implications of the decreased Hyperion winter SNR 
are evident in endmember spectra extracted from both the Cuprite AVIRIS and Hyperion (Figure 7) and the northern 
Death VaiJey Hyperion data (Figure 11). 

Figure 10: SNR Comparisons for June 1997 A VIRIS, July 200 I 
Hyperion, and March 2001 Hyperion. 

I 

Figure 11: Northern Death VaHey 
Hyperion Spectral 
Endmembers 

While the Cuprite Hyperion data allow basic mineral identification, more detail (additional endmembers) are 
detected and mapped using the higher SNR A VIRIS and Hyperion data. This is also important for geologic/mineral 
mapping, because higher SNR allows separation of similar endmembers such as calcite from dolomite (Figure 11) 
and within-species variability such as kaolinite vs dickite (Figure 7). In the northern Death Valley case, the high 
SNR allows detection of 3 different mica endmembers with different aluminum substitution (Kruse et al., 1999). 
Previous investigations have indicated that SNR is critical for this determination (Kruse et al., 1999, 200 I, 2002). 

5.0 Conclusions 
Analysis of Hyperion data for Cuprite, Nevada, which has established ground truth and years of airborne 
hyperspectral data, show that Hyperion is performing to specifications and data from the short wave infrared 
(SWIR) spectrometer can be used to produce useful geologic (mineralogic) information. Airborne Visible/Infrared 
Imaging Spectrometer (A VIRIS) data collected during June 1997 served as the "ground truth" for this investigation. 
Comparison ofHyperion results to the known mineralogy derived from A VIRIS data generaiJy validate on-orbit 
mineral mapping and Hyperion performance. Minerals mapped at Cuprite using Hyperion include kaolinite, alunite, 
buddingtonite, calcite, muscovite, and hydrothermal silica. This case history demonstrates the analysis 
methodologies and level of information available from these Hyperion data. It also demonstrates the importance of 
high signal-to-noise performance for hyperspectral sensors. The Cuprite Hyperion data represent an "early" 
Hyperion acquisition for the northern hemisphere (a winter scene); thus the SWIR signal-to-noise ratio (SNR) 
(Mean/Standard Deviation method on Stonewall Playa) is approximately 25:1. Other Hyperion scenes collected 
under optimum (summer) conditions exhibit SWIR SNR ·as high as approximately 50: I . The level of mineralogic 
information available from the data is directly tied to the SNR. 

Standardized hyperspectral data processing methods applied to the Cuprite Hyperion data lead to definition of 
specific key minerals, however, it is more difficult (than for AVIRIS) to extract the information because of the 
Hyperion data's lower SNR. The effect of this reduced response compared to AVIRIS is lower data dimensionality, 
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thus fewer endmembers can be identified and mapped than with AVIRIS. Accuracy assessment and error analysis 
indicates that with these Cuprite Hyperion data that, in many cases, mineral identification is not possible where 
specific minerals are known to exist. Detailed direct comparison of mixture-tuned-matched-filtering (MTMF) 
spectral mapping results using a confusion matrix approach shows that many pixels classified using A VIRIS are 
unclassified on Hyperion (up to 60%, but variable by mineral). These are errors of omission. This is probably 
explained by the differences in SNR between the two datasets. Some spectral features are simply below the level of 
detection on the Hyperion data. The same analysis, but excluding the unclassified areas, yields approximately 75% 
overall agreement of Hyperion to A VIRIS, with a Kappa Coefficient =0.66. This highlights errors of commission 
(where pixels mapped as one mineral by A VIRIS are mapped as another mineral by Hyperion). First, some pixels 
unclassified using A VIRIS are misclassified as a specific mineral on Hyperion (around 5% commission error). 
Additionally, some pixels classified by A VIRIS as specific minerals are misclassified as different minerals on 
Hyperion (-25% commission error). The highest errors occur between: Buddingtonite mapped by Hyperion as 
Alunite (58%), and Muscovite mapped by Hyperion as Kaolinite (25%). 

As a technology demonstration, Hyperion performs surprisingly well for mineral identification and mapping. We 
expect (and have demonstrated) improved mineral identification and mapping results from "summer" season 
Hyperion acquisitions with higher SNR than the Cuprite data. These improvements principally take the form of 
mapping of subtle distinctions such as determining the difference between calcite and dolomite and mapping within
species variability caused by molecular substitution (eg: aluminum substitution in micas). Unfortunately, Hyperion 
data collected under less than optimum conditions (winter season, dark targets) have marginal SWIR SNR and allow 
mapping of only the most basic mineral occurrences and mineral differences (Kruse et al. , 200 I, 2002). This results 
in a recommendation that future HSI satellite sensors have significantly higher SNR performance specifications than 
Hyperion for the SWIR (at least 100:1 based on dark current measurements). 
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Integrated Multispectral and Hyperspectral Mineral Mapping, Los Menucos, Rio Negro, 
Argentina, Part 1: Landsat TM Reconnaissance and A VIRIS Prospect Mapping 

Fred A. Kruse,1 Sandra L. Perry/ and Alejandro Caballero3 

1. 0 Introduction 

The Los Menucos gold district was discovered in I998 by Arrninex, S.A. using regional 
exploration methods employing Landsat Thematic Mapper (TM) satellite imagery and field 
investigation (Franco et al., 2000; Gemuts and Perry, 2000; Perry and Gemuts, 2000). This 
district has the largest significant concentration of advanced argillic, altered Permian ignimbrite 
and rhyolite assemblages in Argentina. Alteration is related to the intrusion of Triassic-age (?) 
rhyolite dome complexes below thick Permian-age felsic volcanic rocks. Associated with dome 
fields are large areas of phreatic breccias and hematite-rich altered oxidized zones. Alteration is 
characterized by vuggy silica, quartz stockwork, kaolin, and alunite. The region has potential for 
low-sulfidation style gold mineralization. The Los Menucos region was submitted and selected 
as a NASA EO-I collection site during 2000 to evaluate other earth observation sensors, 
including hyperspectral (airborne A VIRIS and satellite EO-I Hyperion) as well as multispectral 
data sets (Landsat 7 Enhanced Thematic Mapper and ASTER imagery). The results of the TM 
reconnaissance and A VIRIS analysis are presented here. The Hyperion, ETM and ASTER 
results are presented in a companion paper (Kruse et al., 2002a). 

2.0 Landsat TM Reconnaissance 

Over 100 sites were predicted as alteration anomalies resulting from digital enhancement of 
Landsat TM imagery analyzed by Perry Remote Sensing LLC (PRS). These results were used to 
drive field exploration, and in less than one year, a field crew of six geologists systematically 
visited and sampled all of these anomalies. Eighty percent ofthe areas visited exhibited 
epithermal-style alteration, and five percent were mineralized. The exploration effort led 
Arminex to assemble 80,000 hectares near the village of Los Menu cos and established the area 
as the first gold district in Rio Negro province. Early in 2000, Rio Tinto Mining & Exploration 
(RTZ) took an option on the Anninex property and agreed to continue drilling and testing at key 
prospect areas. 

3.0 Airborne Visible/Infrared Imaging Spectrometer (A VIRIS) 

The Airborne Visible/Infrared Imaging Spectrometer (A VIRIS), flown by NASA/Jet Propulsion 
Laboratory (JPL) is a 224-channel imaging spectrometer with approximately I 0 nm spectral 
resolution covering the 0.4- 2.5-Jl.ID spectral range. It was flown for the Los Menucos site, 
Argentina on a Twin Otter aircraft at low altitude on I4-15 February 200 I. The A VIRIS dataset 
consists of 6 overlapping, approximately 2. 7km x 30km north-south flightlines, at 3.5m spatial 
resolution. Each flightline was processed and analyzed separately in reconnaissance mode 
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(optimized for the entire dataset, not individual sites). Two spectral ranges were analyzed; l) 
0.4-1.3 !lJl1 (iron oxides), and 2) 2.0--2.5 !lJl1 (clays, carbonates, etc) . Processing consisted of 
standardized hyperspectral analysis developed by AIG (Boardman and Kruse, 1994; Boardman 
et al., 1995; Kruse eta!., 1996; Kruse et al., 2002b, 2002c; Kruse, 2002) to allow identification 
and mapping of key alteration minerals. This hyperspectral analysis methodology includes 1) 
correction of data to apparent reflectance using the ACORN atmospheric correction software 
(AIG, 2001), 2) linear transformation of the reflectance data to minimize noise and determine 
data dimensionality, 3) location of the most spectrally pure pixels, 4) extraction and automated 
identification of endmember spectra, and 5) spatial mapping and abundance estimates for 
specific image endmembers. A key point of this methodology is the reduction of data in both the 
spectral and spatial dimensions to locate, characterize, and identify a few key endmember spectra 
that can be used to explain the rest of the hyperspectral dataset. Once these endmembers are 
selected, then their location and abundances can be mapped from the original data. These 
methods derive the maximum information from the hyperspectral data themselves, minimizing 
the reliance on a priori or outside information. The results were map-corrected and combined 
into an image mosaic covering an approximately 1 Okm x 30km area covering several key 
mineral prospects. 

The high spatial resolution A VIRIS data allowed identification and mapping of common 
alteration minerals such as hematite, goethite, kaolinite, dickite, alunite, pyrophyllite, 
muscovite/sericite, montmorillonite, and calcite. Distinguishing between similar minerals such as 
kaolinite and dickite was possible because of the high signal-to-noise (SNR) ofthe A VIRIS 
sensor. The A VIRIS data pointed out minerals and mineral assemblages that would not have 
been readily apparent utilizing conventional field mapping methods. In particular, a large zoned 
hydrothermal system, dominated by several different muscovite species was mapped, and in 
addition, several previously unknown pyrophyllite occurrences cross-cutting predominant 
structural trends were detected and mapped. 

4.0 Field Verification 

A VIRIS mineral maps were used along with the Landsat TM mapping as base maps for field 
verification. Field reconnaissance was conducted during April2001 with the assistance ofRTZ 
geologists. Several prospects and other mineralogically interesting areas shown by the A VIRIS 
mineral maps were visited, the rocks and alteration were examined, and samples were collected 
utilizing real-time GPS positioning. Over 160 field-spectrometer readings were compiled to 
generate spectral libraries of key alteration minerals throughout the district. The field 
reconnaissance and spectral measurements verified the accuracy of the A VIRIS mapping. 
Known mineralized areas were accurately characterized and several new prospects identified 
(Kruse et al., 2002c). Spectral libraries were later used to refine AVIRIS results and to apply to 
EO-I Hyperion and Landsat/ ASTER multispectral evaluation. 

5.0 Conclusions 

The Los Menucos district provides an excellent case history of a complex epithermal gold 
system initially identified using satellite imagery and further mapped and explored using 
hyperspectral imaging systems. The district offers a host of argillic and advanced argillic 
alteration minerals at the surface, including many which are difficult to visually identify, thus it 
has proved to be an excellent test area for hyperspectral mapping. The combination of Landsat 
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TM reconnaissance with detailed AVIRIS mineral mapping provides powerful exploration tools. 
In the span of three field seasons, the district was explored, mapped, and further refined for 
sampling and drilling, using remote sensing technology to optimize man-hours in the field. 
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Integrated Multispectral and Hyperspectral Mineral Mapping, Los Menucos, Rio Negro, 
Argentina, Part II: E0-1 Hyperion/AVIRIS Comparisons and 

Landsat TM/ASTER Extensions 

Fred A. Kruse, 1 Sandra L. Perry/ and Alejandro Caballero3 

1.0 Introduction 

The Los Menucos gold district was discovered in I998 by Arminex, S.A. using regional 
exploration methods employing Landsat Thematic Mapper (TM) satellite imagery and field 
investigation (Franco et al., 2000; Gemuts and Perry, 2000; Perry and Gemuts, 2000). This 
district has the largest significant concentration of advanced argillic, altered Permian ignimbrite 
and rhyolite assemblages in Argentina. Alteration is related to the intrusion of Triassic-age(?) 
rhyolite dome complexes below thick Permian-age felsic volcanic rocks. Associated with dome 
fields are large areas of phreatic breccias and hematite-rich altered oxidized zones. Alteration is 
characterized by vuggy silica, quartz stockwork, kaolin, and alunite. The region has potential for 
low-sulfidation style gold mineralization. The Los Menucos region was submitted and selected 
as a NASA EO-I collection site during 2000 to evaluate other earth observation sensors, 
including hyperspectral (airborne A VIRIS and satellite EO-I Hyperion) as well as multispectral 
data sets (Landsat 7 Enhanced Thematic Mapper and ASTER imagery). The results of the TM 
reconnaissance and AVIRIS analysis are presented in a companion paper (Kruse et al., 2002a). 
The Hyperion, ETM and ASTER results are presented here. 

2.0 Landsat TM Reconnaissance and A VIRIS Verification 

Over 100 sites were predicted as atteration anomalies resulting from digital enhancement of 
Landsat TM imagery analyzed by Perry Remote Sensing LLC (PRS). These results were used to 
drive field exploration, and in less than one year, a field crew of six geologists systematically 
visited and sampled all of these anomalies. Eighty percent of the areas visited exhibited 
epithermal-style alteration, and five percent were mineralized. The exploration effort led 
Arminex to assemble 80,000 hectares near the village of Los Menucos and established the area 
as the first gold district in Rio Negro province. Early in 2000, Rio Tinto Mining & Exploration 
(RTZ) took an option on the Anninex property and agreed to continue drilling and testing at key 
prospect areas. 

Since the district was initially identified by field testing Landsat, and hosts an array of alteration 
minerals, the location was also submitted and selected as a NASA EO-I site to evaluate the EO-I 
Hyperion sensor as well as multispectral data sets (Landsat 7 Enhanced Thematic Mapper and 
ASTER imagery). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were flown 
by NASA/Jet Propulsion Laboratory (JPL) in support ofHyperion during February 2001. 
A VIRIS is a 224-channel imaging spectrometer with approximately I 0 nm spectral resolution 
covering the 0.4- 2-Jlm spectral range. Six overlapping flightlines at 3.5m spatial resolution 
were analyzed and used to identify and map common alteration minerals at the Los Menucos site 
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(Kruse et al., 2002b ). These detailed mineral maps were compiled as "ground-truth" for the 
Hyperion analysis and were used along with the Landsat TM and field reconnaissance conducted 
during April 2001 to validate the Hyperion data. 

3.0 E0-1 Hyperion 

Hyperion, launched in November 2000, is a new satellite hyperspectral sensor covering the 0.4-
to 2.5-f.UTI spectral range with 242 spectral bands at approximately 1 0-nrn spectral resolution and 
30-m spatial resolution from a 705km orbit. A typical dataset covers an approximately 7.5-km
wide swath 165 km long. Hyperion data for the Los Menucos, Argentina, site were first acquired 
on 25 February 2001, close to the 14-15 February AVIRIS acquisition date. Unfortunately, the 
Hyperion data were predominantly cloudy, however, several RTZ prospects were mostly clear on 
the 25 February date. Additional datasets were acquired on 30 April (mostly cloudy), 16 May 
(cloudy), 1 June (mostly cloudy), 17 June (clear - but low signal-to-noise), 3 July (cloudy), and 
19 July (cloudy). 

The 25 February Hyperionion data were processed to geologic products using AIG-developed 
approaches for extraction of mineralogic and geologic information (Boardman and Kruse, 1994; 
Boardman et al., 1995; Kruse et al., 1996; Kruse et al., 2002c; Kruse, 2002). This hyperspectral 
analysis methodology includes 1) data pre-processing (pushbroom data destriping), 2) correction 
of data to apparent reflectance using the ACORN atmospheric correction software (AIG, 200 I), 
3) linear transformation of the reflectance data to minimize noise and determine data 
dimensionality, 4) location of the most spectrally pure pixels, 5) extraction and automated 
identification of endmember spectra, and 6) spatial mapping and abundance estimates for 
specific image endmembers. A key point of this methodology is the reduction of data in both the 
spectral and spatial dimensions to locate, characterize, and identify a few key endmember spectra 
that can be used to explain the rest of the hyperspectral dataset. Once these endmembers are 
selected, then their location and abundances can be mapped from the original data. These 
methods derive the maximum information from the hyperspectral data themselves, minimizing 
the reliance on a priori or outside information. 

Several characteristic mineral spectra (silica, kaolinite, muscovite) were extracted from the Los 
Menucos Hyperion data. Mineral maps were produced and compared to those derived from the 
AVIRIS data. Comparison ofthe two datasets shows that Hyperion identifies similar minerals 
and produces grossly similar mineral mapping results as A VIRIS, however, it doesn't produce 
the level of detail available from the A VIRIS data. Some minerals are missed, and others are 
confused (dickite/kaolinite). This is largely the effect of reduced Hyperion signal-to-noise
performance compared to the AVIRIS (-50: l and less for Hyperion, compared to >500: l for 
AVIRIS) (Kruse, 2002). The Hyperion data are most useful for small-scale reconnaissance 
mapping and are attractive because world-wide acquisitions are possible. In the Los Menucos 
case, however, the problem was that no cloud-free data were acquired during the southern 
hemisphere summer - this would have maximized the SNR. 

4.0 Extending Mineral Mapping using Landsat ETM+ 

Multispectral image analyses were also conducted to extend fieldwork to adjacent regions, based 
on known mineraJ locations and hyperspectral results. This approach is worth testing because it 
could vastly aid regional exploration for areas lacking ground truth or hyperspectral coverage. 
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Landsat 7 was launched by NASA in 1999 and carries the Enhanced Thematic Mapper (ETM) 
sensor, offering 8 spectral bands (3 visible, 1 near IR and 2 shortwave IR bands at 30 meter 
spatial resolution, plus 1 thennal IR band at 60 meters, and I panchromatic band at 15 meters). 
In evaluating ETM, known mineral locations were outlined as training sites followed by 
minimum distance (MD) image classification on decorrelated reflectance bands (PCs). Landsat 
results proved helpful in predicting mineral mixtures and general mineral groups, such as iron 
oxides (FeOx) and alteration-clay minerals. The broad bandwidth of Landsat 7, however, was 
not capable of segmenting specific clays, carbonates, or Fe minerals. Nonetheless, Landsat 
classes were distinct for kaolinite/muscovite and alunite/kaolinite mixtures, as documented at 
three known mineralized sites inside the project area. In addition, Landsat analysis appeared to 
spectrally differentiate soil caliche (carbonates) associated with altered alunite locations. Nine 
exploration targets were identified outside the exploration block for further field investigation 
based on ETM evaluation. 

5.0 ASTER Data Analysis 

The ASTER system is on-board the NASA "Terra" satellite, launched late in 1999. ASTER is 
composed of three Japanese sensors offering a total of 14 spectral bands (3 visible and near IR, 6 
shortwave IR, and 5 thennal IR) at spatial resolutions ranging from 15 to 90 meters. ASTER 
imagery offers better spectral resolution as compared to Landsat ETM, especially in the 
shortwave IR spectral region. For evaluating ASTER imagery, minerals from Los Menucos 
spectral libraries (compiled in the field) were selected as endmembers in a Spectral Angle 
Mapper (SAM) image classification on atmospherically-corrected ASTER bands. Minerals used 
included alunite, kaolinite, illite, dickite, geothite, hematite, jarosite, and pyrophyllite. ASTER 
results correlated well with known kaolinite and alunite locations but were less useful in 
predicting pyropyllite and illite, as well as FeOx minerals (as compared to Landsat ETM). 
Results suggest that ASTER can be useful in predicting mineral suites, although its bandwidth 
does not appear capable of differentiating slight spectral differences, such as those needed to 
identify dickite versus kaolinite or pyrophyllite versus alunite. Nonetheless, ASTER results did 
coincide with known field locations of alunite and kaolinite inside the project area and also 
identified twelve areas outside the exploration block. 

6.0 Conclusions 

The Los Menucos district provides an excellent case history of a complex epithennal gold 
system initially identified using satellite imagery and further mapped and explored using 
hyperspectral imaging systems. The district offers a host of argillic and advanced argillic 
alteration minerals at the surface, including many of which are difficult to visually identify, and 
therefore is an excellent area to test and gauge spectral sensors. Hyperion provides basic 
mineralogic infonnation, however, reduced SNR perfonnance with respect to A VIRJS and 
persistent cloud cover during Hyperion data collection efforts have limited its effectiveness. The 
combination of detailed A VIRIS mineral mapping with multispectral data produced promising 
results that may allow extended mapping utilizing multispectral sensors such as Landsat and 
ASTER. 
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COMPARISON OF AVIRIS AND LANDSAT ETM+ FOR THE ESTIMATION OF LEAF AREA INDEX 

Kyu-Sung Leeu and Warren B. Cohen2 

1. INTRODUCTION 

Although there are several parameters of interest in the quantitative aspects of vegetative remote sensing, 
leaf area index (LAI) has been one of the most useful and important parameters to characterize the vegetation 
activities from local to global scales. LAI, defined as the sum of the leaf area per unit ground area, can be used to 
measure the activities (photosynthesis, transpiration, and evapotranspiration) and the production of plant ecosystems 
(Pierce and Running, 1988; Bonan, 1993). The measurement of LAI on the ground is very difficult and requires a 
great amount of labor and cost (Gower et al., 1999). Since the plant canopy is composed of leaves, which is a direct 
source of the energy-matter interactions in most earth-observing remote sensing systems, LAI has been an attractive 
variable of interest in vegetative remote sensing. 

There have been many attempts to estimate LAI using various types of remote sensor data since the early 
stage of space remote sensing (Badhwar et al., 1986; Peterson et al., 1987; Turner et al., 1999). Remote sensing 
estimation of LAI has been primarily based on the empirical relationship between the ground measured leaf area 
index and sensor observed spectral responses (Curran et al., 1992; Peddle et al., 1999). Beside such empirical 
approaches, there have been a few studies to estimate LAI by the inversion of canopy reflectance models (Smith, 
1993; Jacquemoud et al., 1995; Kuusk, 1998). However, these studies were mostly based on broadband multi
spectral data, such as Landsat TM and SPOT images. Recent development of imaging spectrometry technology has 
brought a new form of remote sensor data, which has shown great potential for many applications. In particular, the 
Airborne Visible!Infrared Imaging Spectrometer (A VIRJS) data, which have been provided since the late 1980s, 
were used to study specific features of vegetation targets. The 224 continuous spectral band data demonstrated the 
capability to depict certain characteristics of vegetation canopy, such as biochemical constituent (Wessman et al., 
1988; Johnson et al., 1994). There have been a few studies using hyperspectral data in relation to leaf area index. In 
recent years, hyperspectral data has been used to estimate LAI by the inversion of radiative transfer models, which 
simulate the mechanics of canopy reflectance (Asner et al., 2000). 

The objective of this study is to evaluate the capability of narrowband hyperspectral data for estimating leaf 
area index by comparing them with those of broadband multispectral instruments. Although there were many 
studies dealing with the remote sensing estimation of LAI by various types of image data, it has been rare to find the 
advantage of using the narrowband hyperspectral data over the broadband multispectral data. The lack of 
comparative studies might be explained by the shortage of both hyperspectral and broadband data sets available at 
the same location. Even though it was a simulated form ofhyperspectral data, the hyperspectral-based vegetation 
indices did not provide better results than broadband data for estimating LAI (Jacquemoud et al., 1995; Broge and 
Leblanc, 2000). Lefsky et a!. (200 I) have compared several data types, including Landsat TM, high spatial data, 
A VIRJS, and scanning lidar data, for estimating forest stand structures and found that A VIRJS data were not better 
than other data types for relating stem diameter, biomass, and basal area. Some studies have compared vegetation 
indices derived from both narrowband and broadband data to relate them for discriminating different vegetation 
groups or cover types (Teillet et al., 1997; Galvao et al., 2000). Hyperspectral data may or may not be better than 
broadband data to estimate LAI. The empirical approach is often very useful for analyzing and comparing different 
types of remote sensing data by relating them to the ground-measured biophysical variables. This study attempts to 
compare AVIRJS and Landsat ETM+ data by relating them to LAI over the two study sites of tall-grass prairie and 
mixed forest, which have well-established ground measurement plots. 

1 Inha University, Department ofGeoinformatic Engineering, Inchon, Korea (ksung@inha.ac.kr) 
2 USDA Pacific Northwest Research Station, Forestry Sciences Laboratory, Corvallis, Oregon 
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2. DATA AND METHODS 

2.1 Study Sites and Data 

This study was conducted in collaboration with the BigFoot project, which was designed to provide local 
validation of global estimates of biophysical variables and processes using MODIS data (Cohen and Justice, 1999). 
Study areas include two sites of mixed forest and grass prairie. These areas are also the sites of the long-term 
ecological research plots and a rich source of ground information. The Harvard Forest (HARV) site has a 5 x 5 km2 

area located about 50 km northwest of Worcester, Massachusetts. The forest has mixed species of eastern hemlock, 
red pine, and eastern hardwood. The Konza Prairie (KONZ) site is located approximately 10 km southwest of 
Manhattan, Kansas, and mostly covered by grass and shrub. 

At each site there were one hundred, 25 x 25 m2 plots where land cover, LAI, absorbed radiation, and net 
primary production were measured/observed. Each plot has four to nine subplots. Subplot measurements were 
averaged to provide a single value for each measured variable at each plot. Plot locations were determined using a 
real-time differential GPS. The accuracy of the system was <0.3 min both the x andy dimensions. At the HARV 
site, LAI was measured at two time periods (June and August) during the growing season in 2000. Due to 
unexpected problems during the field measurements, only 73 of the 100 plots were measured. At the KONZ site, 
LAI measurements were made in all the 100 plots in June 2000. 

Considering the phenological variation of vegetation target, both A VIRJS and Landsat ETM+ data were 
obtained as close to the ground data collection as possible (Table 1). For the KONZ study site, the data acquisition 
date was close in time to the ground measurements. The HARV study site, however, shows some discrepancy 
between image acquisition and ground measurement. We used two sets of LAI measurements separately for 
analyzing A VIRJS and ETM+ data. A VIRJS data were analyzed with the field LAI data of June while ETM+ data 
were analyzed with the LAI measurement of June. 

Table I. Date of data acquisition for A VIRJS and TM image data and ground measurements of LAI. 

Harvard Forest (HARV), Massachusetts May 16,2000 June 18, 2000 
August 31 , 1999 August 4, 2000 

Konza Prairie (KONZ), Kansas June 22, 2000 June 7, 2000 June 6, 2000 

2.2 Preprocessing of Image Data 

Both A VIRIS and ETM+ images were georeferenced, radiometrically calibrated, and converted to surface 
reflectance value. Initially, Landsat ETM+ data were georeferenced to UTM coordinates by using USGS digital 
orthophoto quadrangles. The A VIRJS data were then georectified into the ETM+ image by image-to-image 
registration. The average positional accuracy of the geometric correction was less than 0.5 pixels. 

In quantitative analysis of remote sensing images, atmospheric correction is a critical step to convert the 
digital number (DN) value to a more absolute magnitude of surface reflectance. Due to the carefully designed 
experimental sensor system, A VIRJS data have relatively well-developed atmospheric correction algorithms. 
Atmospheric water-vapor absorption is the most influential factor in the atmospheric correction of remote sensing 
data. The atmospheric correction of hyperspectral data has a clear advantage over multispectral data since the 
magnitude of water-vapor effects can be directly assessed from certain spectral channels of their own data sets. 
A VIRJS data used in this study were atmospherically corrected by using the ATREM program (Gao et al., 1993), 
which is based on a radiative transfer model. ATREM uses two water absorption spectra (around 940 nrn and 
1140 nrn) channels in the A VIRJS channels to estimate the amount of water vapor at the time of data acquisition. 
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Although there have been several studies dealing with the atmospheric correction of Landsat TM and 
ETM+ data, all of them have certain limitations to calculate the absolute magnitude of waver vapor absorption. For 
our study, we used the COST radiometric correction model of Chavez ( 1996), which is an empirical model based 
upon 'dark' objects. Radiometrically 'dark' objects were assumed to have 2% reflectance across all bands. 
Excluding the thermal infrared band, the six reflective bands ofETM+ data were converted to surface reflectance. 

2.3 A VIRIS Data Manipulation 

From the aspect of the number of spectral bands and the range of spectrum involved, the relative amount of 
information content of A VIRIS may be far more than that of Landsat ETM+. Therefore, any absolute comparisons 
between these two data types may not be reasonable. Also, the comparison between ETM+ and A VIRIS can be 
subjective, depending on the method applied. [n this study, we generated four sets of A VIRIS data to be compared 
with the six reflective bands of Landsat ETM+. These A VIRIS data sets were mostly out of 89 channels covering 
the wavelength range of six ETM+ bands, with the exception of the data set obtained by principal component 
analysis, which used all A VIRIS channels excluding the water-absorption and high-noise channels. Table 2 shows 
the list of A VIRIS data sets generated for the comparison with ETM+ data. 

Table 2. Sets of A VIRIS data to be compared with Landsat ETM+ data. 

Number of A VIRIS 
channels used 

89 channels covering • Weighted average ofTM corresponding channels 
Simulated ETM+ (sim_ TM) the spectrum of six • Weighting factors were determined to represent 

ETM+ bands ~ectral res_ponsivities of each ETM+ band 
• ch 12 (48lnm) for ETM+ band 1 

6 channels matching • ch 21 (568nm) for ETM+ band 2 

Center wavelength ofTM (cen_TM) 
with the center • ch 31 (665nm) for ETM+ band 3 
wavelength of each • ch 52 (837nm) for ETM+ band 4 
ETM+band • ch 137 (1653nm) for ETM+ band 5 

• ch 195 (2220nm) for ETM+ band 7 

Selected combination (sel_AVIRIS) 
7 channels (HARV) Selection by multiple stepwise regression using 89 
14 channels (KONZ) channels covering ETM+ spectrum 

Principal component transformation of all 187 
Principal component (pc_A VIRIS) 187 channels 11

1 

channels (excluding water-absorption and noise 
channels from original 224 channels) 

2.4 Multiple Regression and Canonical Correlations Analysis 

At first, we extracted surface reflectance values from the all sets of A VIRIS and Landsat ETM+ data for the 
location of every ground plot for each study site. Field-measured LAI was then related to spectral reflectance values 
extracted from the image data by using the multiple regression method. The coefficient of determination (R2

) of 
each regression equation is used as a simple measure of predicting LAI by the image data. The 89 A VIRIS channels 
would have too many independent variables for relating LAI by the multiple regression method. We used the 
stepwise selection method to select the best sets of A VIRIS channels. 

Another way of looking at the closeness between LAI and image-extracted spectral reflectance was 
canonical correlation analysis (CCA). Canonical correlation analysis is a multivariate statistical method to look at 
the relationships between two sets of variables (multiple Xs and multiple Ys) (Tabachnick and Fidel!, 1989). CCA 
maximizes the correlation between a composite of variables from one set with a composite of variables from another 
set. When there is only one X (such as the LAI in this study), CCA provides a set of coefficients to transform the Ys 
(selected image bands) such that they have the maximum correlation with X. The canonical correlation coefficients 
were used as a single measure of relationship between LAI and a set of multiple image bands selected for each data 
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set. Since CCA is a generalized form of multiple regression, canonical correlation coefficient (r) is basically the 
same as the square root of the coefficient of determination (R2

) of the multiple regression model. 

3. RESULTS 

As an initial effort to examine the relationship between the field-measured LAl and AVIRIS spectral 
reflectance, correlation coefficients were calculated. As can be observed in Figure 1, two study sites show a rather 
different pattern of correlation along the wavelength. In the HAR V study site, where the variation of LAI and 
species composition is relatively large, relatively high correlations were fmmd in visible and middle infrared spectra. 
The statistical significance level is proportional to the absolute value of correlation coefficients (r), and the 
confidence limit is less than 95% when lrl is below 0.15. It turned out that the near infrared spectrum (730-
1300 nm) showed no significant correlation with LAl. The weak correlations in the near infrared spectrum might be 
explained by the saturated spectral reflectance at the high LAl (around 5 on average) of the HARV study site. The 
strongest correlations were found at the red-edge position (around 720 nm) and the middle infrared spectrum (207o-
2400 nm). In the KONZ study site, where the range ofLAl is rather narrow and cover type is relatively 
homogeneous grass prairie, relatively high correlation coefficients with the field-measured LAl were found at the 
near infrared spectrum (73Q-1300 nm). The field-measured LAl in this study area were relatively small (less than 2 
on average), and they were relatively sensitive in the near infrared spectrum. Unlike the HARV study site, no 
significant correlations were found at the visible spectrum. In the middle infrared spectrum, significant correlations 
were only found in the wavelengths longer than 2100 nm. Such high correlations in the middle infrared spectrum 
have not been well explained and probably need further analysis. Again, the strongest correlation with the field
measured LAl was found at the red-edge position around 730 nm, which has been reported by several previous 
studies (Danson, 1996). 

For the comparison, the similar correlation coefficients were also obtained by using the ETM+ reflectance 
for each study site (Figure 2). Unlike with the A VlRIS reflectance, no significant correlations were found at the 
visible and near infrared spectra. The only statistically significant correlations were found in the second middle 
infrared band (ETM+ band 7), which has a spectrum range between 2090 and 2350 nm. 

Comparing the two correlation plots in Figures 1 and 2, we might anticipate the outcome of the multiple 
regression models using A VlRIS and ETM+ data. Due to the relatively weak correlations along the entire range of 
wavelength spectra in both A VlRIS and ETM+, the coefficients of determination (R2

) of the regression models were 
relative low. Overall, most A VlRIS data sets did not show any striking improvements of R2 values over the ETM+ 
data although certain combinations of A VlRIS channels showed some improvement to explain the LAl (Table 3). 
The simulated ETM+ data or the six A VlRIS channels matching the center wavelength ofETM+ bands was not 
much different from the ETM+ data in predicting the LAl for both sites. From the viewpoint of the sensor dynamic 
range, pixel gray level, and atmospheric correction procedure, A VIRIS can be said to have better radiometric 
resolution than ETM+ data. The simulated ETM+ data have exactly the same spectral range as the ETM+ and 
probably have improved radiometric quality than ETM+. However, the high radiometric resolution of AVIRIS does 
not help to explain the LAl as compared to the ETM+. 

Table 3. Coefficients of determination (R2
) of multiple regression models to relate the field measured LAl. 

Data set used 

ETM+ 6 bands 
A VIRlS (simulated ETM+) 
A VlRlS (6 channels ofETM+ center wavelength) 
A VIRIS (best subset channels) 
A VlRIS (first 15 principal components) 
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Harvard Forest 

0.1729 
0.3348 
0.3336 
0.5138 
0.4376 

Konza Prairie 

0.2815 
0.1986 
0.2557 
0.5571 
0.3486 
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Figure I. Correlation coefficients between the field-measured leaf area index (LAI) and reflectance along the 
AVIRJS spectral channels for Harvard Forest (a) and Konza Prairie (b). Statistical significance level is 
proportional to the absolute value of r (less than 95% confidence limits when [rl < 0.15). 
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Figure 2. Correlation coefficients between the field-measured leaf area index (LAI) and reflectance along the ETM 
six bands for the Harvard Forest (left) and Konza Prairie (right). Statistically significant correlations were 
not found in visible and near infrared spectra. 
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Principal component analysis (PCA) has been frequently used in dealing with multi-dimensional remote 
sensing data. In particular, with the capacity of assembling total variation of whole data into a reduced number of 
bands, the principal component transformation is often used in analyzing hyperspectral data. In our study, we 
applied PCA to the 187 A VIRlS channels after excluding those water-absorption and high-noise channels from the 
original224 channels. The first 15 principal components include 99.9% of total variations ofthe 187 channels 
A VIRIS data used. Even though the 15 bands of PCA transformed data have the most information content, they 
were not very helpful for explaining the LAI. The R 2 value of the regression model using PCA transformed data 
shows only a slight improvement. 

In both study sites, the best-fit regression model was achieved when we used only a few selected channels 
of A VIRIS data. The coefficients of determination (R2

) were higher than the ETM and other subsets of A VIRIS 
data. The best channel selection was performed by the stepwise multiple regression method. Table 4 shows the 
final results of the stepwise multiple regression to select the best A VIRIS channels to explain LAI. Although we 
could protect against including any channels that do not contribute to the predictive power of the regression model 
by specifying small significance level (i.e., 5 percent), we tried to include more channels that could contribute to 
predicting LAI by increasing the significance level up to 15 percent (SAS, 1988). Only 7 A VIRlS channels were 
selected in the HARV study site while 14 channels were selected for the KONZ study site. These selected A VIRlS 
channels do not correspond exactly for the two study sites except for the one middle infrared channel (231 0 nm). 

Table 4. The result of stepwise multiple regression analysis to select the best A VIRIS channels 
to explain the field measured LAI for each study site. 

Harvard Forest Konza Prairie 
channel entered (nm) Rz channel entered (om) Rz 

I Ch II (471) 0.2914 Ch 56 (876) 0.0731 
2 Ch 53 (847) 0.3225 Ch 54 (856) 0.2141 
3 Ch 204 (2310) 0.3628 Ch 201 (2281) 0.2781 
4 Ch 24 (597) 0.4059 Ch 186 (2131) 0.3358 
5 Ch 49 (808) 0.4523 Ch 59 (904) 0.3603 
6 Ch 15 (510) 0.4869 Ch 208 (2350) 0.3809 
7 Ch 58 (894) 0.5138 Ch 31 (665) 0.4025 
8 Ch 185 (2121) 0.4423 
~ Ch 204 (2310) 0.4663 
----w- Ch 205 (2320}_ 0.4867 
~ Ch 192 (2191) 0.5100 r----u- Ch 196 (2231) 0.5274 
~ Ch 199 (2261) 0.5447 
~ Ch 206 (2330) 0.5571 

Although the magnitude ofR2 for each regression model is the same as the squared value of the canonical 
correlation coefficient, the scatter plot between the canonical variable and LAI shows effectively the 
interrelationships (Figures 3 and 4). In both study sites, there was not much differences among the three scatter 
plots (on the left side) for the canonical variable of ETM +, simulate ETM and 6 ETM center channels although the 
canonical correlation coefficients were slightly different. As indicated by the R2 value of the regression model, the 
highest canonical correlation was found for the canonical variable of the best subset of A VIRIS channels. 
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Figure 3. Canonical correlations of ETM and selected sets of A VIRIS data aligned with the leaf area index 
for the Harvard Forest study site. 

4. CONCLUSIONS 

• 
.! 
• 

7 

It has been more than ten years since hyperspectral images were introduced. There are several airborne 
imaging spectrometer systems around the world. Further, we have already seen the spacebome imaging 
spectrometers and are expecting more hyperspectral sensor systems in the near future. Although hyperspectral 
image data are known to have great potential in many applications of vegetative remote sensing, there have been 
very few studies that actually show the advantages of narrowband hyperspectral data over the traditional broadband 
multispectral data. 

In an attempt to compare the predictive power of A VIRIS and ETM+ data, several subsets of A VIRIS data 
were analyzed in relation to the field-measured LAI for the two study sites of mixed forest and grassland. Among 
the four subsets of A VIRIS data, the best combination of selected A VIRIS channels was better than ETM+ or other 
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Figure 4. Canonical correlations of ETM and selected sets of A VIRJS data aligned with the leaf area index for the 
Konza Prairie study site. 

subsets of A VIRJS in predicting LAI. There was no difference between the ETM-Iike subsets (simulated ETM+ and 
the six channels corresponding to the center wavelength ETM+ bands) and the actual ETM+. Although principal 
component analysis has been frequently used in hyperspectral data analysis, the transformed principal components 
were not necessarily aligned to predict the LAI. 

In many applications of hyperspectral data, it may be rare to use all the spectral channels of the original 
hyperspectral image. As seen in this study, the 7 to 14 selected channels worked better to predict LAI than the 
principal component transformed data set. This empirical study demonstrated that narrowband hyperspectral data 
could be better than the broadband ETM+ data in estimating LAI. Our next question would be how we can select 
those best channels to use for certain applications. We believe that channel selection should be based on the 
integrated approach of theories, effective data processing, and empirical validation. 
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Characterizing Mineral Alteration Using Airborne Visible-Infrared Imaging 
Spectrometer Data at Questa, New Mexico 

K. Eric Livo and Roger N. Clark 

U. S. Geological Survey, Mail Stop 973, Box 25046 Federal Center, Lakewood, Colorado 80225 

Introduction 

A baseline and pre-mining ground-water quality study of the Red River Basin in New Mexico is 
being undertaken by the U.S. Geological Survey. As part of this study, Airborne Visible-Infrared Imaging 
Spectrometer (AVIRIS) data were analyzed to characterize mined and non-mined ground along the Red 
River between the towns of Questa and Red River, New Mexico. This area has zones of intensely 
mineralized and altered ground that effect the water quality of Red River. Analysis of the reflectance data 
has identified mineral assemblages that can affect water quality by lowering the pH and introducing metals, 
salts, and sediments. 

Data 

The A VIRIS data (Green et al. , I 998) were acquired by a single west to east NASA/JPL overflight 
on June 30, 1999. The flightline trends parallel to the Red River (that flows westward into the Rio 
Grande), starting at the town of Questa and ending east of the town of Red River imaging both sides of the 
river. The line starts at the west-bounding fault of the Taos Range with the Rio Grande Valley, and 
continues eastward following the deeply incised Red River valley. 

Methods 

NASA/JPL A VIRIS data were calibrated to ground reflectance, and analyzed using custom U.S. 
Geological Survey software and spectral mineral library {Clark et al., 1993a., 1993b, 1993c). Field 
examination was used to verify these results. This analytical approach has been developed and used over 
the past 13 years to map a range of geologic terrain, including porphyry systems and other hydrothermally 
altered ground. Identifiable minerals include a variety of iron hydroxides, sulfates, clays, micas, and 
carbonates. 

A two stage process was used to calibrate the airborne radiance data to surface reflectance. An 
atmospheric model was first applied to remove atmospheric gas effects and convert the radiance data to 
estimated ground reflectance. The data was converted using the Atmosphere REMoval (ATREM) Program 
(Gao eta!., 1997). Second, this estimated reflectance data was then calibrated to apparent ground 
reflectance using field spectra from a ground calibration site, to remove residuals from the A TREM 
processed data. Soil from this site was measured using an Analytical Spectral Devices (ASD) FR field 
spectrometer, then a multiplier and offset were derived using the ASD field spectra, the A VIRIS calibration 
site spectra, and AVIRIS spectra collected nearby in shadowed-heavily vegetated terrain (Clark et al., 
2002a, this vol.). 

During analysis of A VIRIS data, the U.S. Geological Survey's Tetracorder version 3. 7a program 
(Clark et al., 2002b) was used to spectrally test the data against the U.S. Geological Survey's spectral 
library. Pixel spectra from A VIRIS were tested against several hundred mineral and mineral mixture 
library spectra using a goodness-of-fit algorithm. The fit value for the continuum removed absorption 
features between the pixel spectrum and each mineral library spectrum was used to indicate the likelihood 
of mineral identification. Further tests by the Tetracorder program used absorption band depth, continuum 
slope, and mineral exclusion rules to guide mineral identification. Mineral identification was completed 
through interactive analysis of the spectral data and output images and verified using selected sites in the 
field. 
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Spectral analysis identified and mapped a variety of minerals that were then associated with 
mineral assemblages. As an example, spectral features of one mineral assemblage (quartz-sericite-pyrite) 
are seen in the middle spectrum in 
figure I, with the absorption 
features of sericite seen at 2.2 
microns and jarosite (after pyrite) 
seen at 0.42, 0.50, 0.92, and 2.27 
microns. Occurrence of sericite and 
jarosite are diagnostic in associating 
areas with the quartz-sericite-pyrite 
assemblage. The other spectra in 
figure 1 show representative 
absorption features for supergene 
kaolinite (2.17 & 2.22 microns) and 
geothite (0.50 and 0.92 microns). 
These two minerals are common 
throughout the district. 

Constraints on mineral 
mapping at Questa were the lack of 
spectral character and low abundance 
of several important alteration, ore 
fonning, and rock forming minerals, 
such as quartz, feldspar, pyrite, topaz, 

0 
v 

Sp~d rol Profile 

Kaolimte and Goeth!k 

0.5 2.0 

Figure 1. Single pixel spectra extracted from the Questa 
A VIRIS data showing absorption features of: Kaolinite 
(2.17 & 2.20), Sericite (2.2 & 3.5), Goethite (0.50 & 0.92), 
and Jarosite (0.42, 0.92, & 2.27 microns) 

2.5 

and biotite. Most quartz and feldspar do not have spectral responses in the A VIRIS wavelengths suitable 
for identification, while topaz and biotite are in low abundance. Abundant vegetation, especially on north 
slopes, covered rock and soil in many areas, preventing mineral identification. 

Geologic History 

The Red River flows westward from the Taos Range into the Rio Grande River, cutting through 
Precambrian rocks overlain in part by Tertiary volcanic rocks of the Latir volcanic field, along the southern 
edge of the 26-MA Questa caldera (Bethke and Lipman, 1989). The cogenetic volcanic and plutonic rocks 
host the alteration mineral assemblages and molybdenum mineralization in zones that trend east-west along 
the southern boundary of the caldera. The silicic alkalic rhyolite tuff ash-flow sheet that initially ponded 
within the caldera was subsequently fault tilted and brecciated, then intruded by batholithic granite rocks 
which set up the hydrothermal systems that altered and mineralized the country rock. Later faulting and 
deformation related to the Rio Grande Rift mechanically and chemically prepared the contact between the 
Tertiary granite stocks and the overlying tuff, allowing mineralizing fluids to form sheet vein and 
disseminated molybdenwn ore bodies (Meyer and Foland, 1991). 

Altered Mineral Assemblages 

Igneous activity at Questa created hydrothermal (hot water) systems that episodically altered 
minerals within the country rock resulting in the formation of new minerals stable under the thermal, 
chemical, and pressure conditions of the hydrothermal cells. These altered minerals formed discrete 
assemblages that reflect or represent changes in chemistry and temperature of the hydrothermal system. 
The driving force for the system was the thermal energy derived from the cooling granite stocks, releasing 
hot magmatic solutions and heating ground waters. These hydrothermal fluids were driven upward, away 
from the granites, exchanging ions with the surrounding wallrock. A particular mineral assemblage is a 
function of its place in the hydrothermal system and the chemistry of the fluids at that point. Alteration 
assemblages recognized in the Questa A VIRIS data are: 

Propylitic assemblage: an acid buffering assemblage of minerals including calcite, chlorite, and epidote, 
that are spectrally identified in the A VIRIS data. In particular, calcite is useful in buffering acid-water to 
more neutral pHs and precipitating metals held in solution. Propylitic alteration generally forms as a 
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regional early stage alteration, distal to the mineralizing center and can be locally replaced by later more 
intense alterations. The assemblage can also form also as a retrograde late stage product in the 
hydrothermal system. 

Quartz-sericite-pyrite (QSP) assemblage: a suite of minerals whose sulfide content is potentially acid
generating. Sericite can be spectrally identified directly, while pyrite is inferred through the spectral 
identification of jarosite, an iron sulfate formed through the weathering of pyrite and other sulfide minerals. 
QSP alteration commonly is a moderately intense alteration assemblage that can be wide spread, altering 
the country rock into material that may have high acid-water generation potential and high leachable metal 
content, that formed later in the alteration process. Sericite, as used in this manuscript, refers to various 
grain-sizes of muscovite, and the clay illite, which have similar spectroscopic features. 

Advanced argillic assemblage: an assemblage that indicates higher formation temperatures with associated 
sulfur, such as found in local hydrothermal feeder systems and pipes. Kaolinite, pyrophyllite, and alunite, 
common minerals associated with advanced argillic alteration, have been spectrally identified in peripheral 
zones at Questa. These minerals are also created through supergene weathering at Questa. 

In addition to altered mineral assemblages, later supergene weathering has formed altered minerals that 
have potential for effecting the environment. In the moist, oxygenated near neutral pH surface 
environment, iron-rich minerals have been converted to goethite; in a lower pH setting, pyrite and other 
sulfides have been converted to jarosite, gypsum, and alunite while feldspar is altered to kaolinite. 
Occurrence of jarosite, gypsum, alunite, and kaolinite suggest acidic conditions with sulfur content in the 
country rock (Meyer and Leonardson, 1990; Titley, 1994). Further weathering and neutralization will 
convert jarosite into goethite. 

Mineral Maps 

The iron-bearing mineral map (fig. 2) shows the supergene weathering minerals jarosite (after 
pyrite) and goethite (after iron-rich minerals). Jarosite indicates areas of potential acid-water generation 

jarosite (potassium) 

Iron Hydroxides and Iron Sulfates - Questa Mining District, NM 

Scale: 5 Miles 

Figure 2. Iron bearing altered minerals; with the Landslide 'Scar' areas on the east and the Moly 
Mine complex on the west-center. 
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created by the breakdown of pyrite and other sulfides that form sulfuric acid. Jarosite is not stable under 
surface conditions and will break down into iron-oxides as its environment becomes neutralized (Bigham et 
al., 1992). Goethite indicates less acidic regions, where ferric iron is released by mafic minerals, or where 
neutralization of sulfide rich ground converts jarosite to goethite (Swayze et al., 2000). Note, the map 
indicates, and field examination confirms, little if any, hematite in contrast to acid-sulfate systems like 
Cuprite, Nevada. 

The clays, micas, and sulfates mineral map (fig. 3) show the main alteration minerals due to ore 
forming processes. Most importantly, the quartz-sericite-pyrite assemblage is expressed by the wide 
occurrence of sericite at the Moly Mine site and also at the eastern landslide 'scar' areas. Kaolinite, some 
of which could be primary, is most commonly a secondary mineral due to supergene weathering and is 
associated with sericite. Other supergene minerals are gypsum and jarosite. The presence of these 
minerals suggest strong acid-water generation potential. 

Clays, Micas. and Sulfates - Questa Mining District. NM 

Scale: 5 Miles 

Figure 3. Clay, Mica, and Sulfate altered minerals. 

gypsum +jarosite 
+sericite 

• pyrophyllite 

• sericite+pyrophyllite 

• 
kaolinite (75%) + 

pyrophyllite (25%) 

kaolinite 

kAolinite, poorly 
crystallized 

sericite + kaolinite 

sericite (low 
aluminum) 

• sericite (medium 
aluminum) 

• sericite +jarosite 

sericite + chlorite 

montmorillonite 

The carbonates, alunite, and epidote mineral map (fig. 4) show regions potentially buffered by the 
propylitic assemblage minerals calcite and epidote, and includes chlorite (fig. 3). Calcite an important 
neutralizer of acid-water, occurs down gradient from the altered areas, and may serve to naturally buffer the 
groundwater. The extensive propylitic zone forms distal halos surrounding the more intensely altered 
centers seen in figure 2 and 3. 

(For digital copies of these mineral maps, see: Livo and Clark, 2002) 
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Carbonates, Alunite, and Epidote - Questa Mining District, NM 

Scale: 5 Miles 

Figure 4. Carbonate, Alunite, Epidote, and Pyrophyllite altered minerals. 

alunite (potassium) 

dry long grass 

Figure 5. Eastern landslide 'Scar' areas with debris 
flow. Looking northeast at Lt. Hansen and Hansen 
landslide 'Scar' surfaces. 

Figure 6. Goat Hill Gulch, looking north. 

203 



Results 

Mineral maps of the eastern landslide 'scar' areas (Little Hansen, Hansen, Straight Creek, 
Hottentot, and June Bug- east side of the figs . 2, 3, and 4 image; and fig. 5) show key altered minerals that 
comprise the propylitic and quartz-sericite-pyrite assemblages, and the minerals due to supergene 
weathering. Sericite, goethite, jarosite, kaolinite, pyrophyllite, and gypsum are found in the scar areas, 
suggesting strong sulfide mineralization that is also expressed by the denuded terrain . Supergene jarosite, 
gypsum, and kaolinite signify on-going erosion and weathering of fresh steep surfaces that form the 
commonly seen debris flows along the steep gully floors . The weathering of altered minerals within the 
landslide areas breaks up the rock, weakens the slopes, and exposes metals confined within the rock to 
dissolution (Crowley and Zimbelman, 1997). The erosion rate in the landslide areas is moderate to high, 
especially during storm events, so metal leach and solid transport rates are potentially moderate to high. 
These conditions suggest that the potential for acid-water conditions exist with the possibility of metal 
leaching in these drainages. Noteably, the altered mineral package of sericite with kaolinite, jarosite with 
goethite, and gypsum indicate that the supergene weathering in the scar areas is in a semi-steady-state 
condition. Propylitically altered rock surrounds the scars, notably on the downhill side, which could 
mediate any acid-drainage. During storm events, however, altered mineral debris flows will overwhelm 
any steady-state buffering the down-gradient propylitic minerals may supply, as demonstrated by the 
alluvial fans at the base of each landslide drainage. 

Between the Moly Mine and eastern scar areas lies a block ofpropylitically altered ground. 
Calcite (fig. 4) is identified throughout the region (where the ground surface is exposed), suggesting a 
break in near surface mineralization between the Moly mine and eastern scar areas. 

The Moly Mine site (the large altered area in the west-central part of the image) encompasses the 
Goat Hill Gulch scar area (western part of area), the Sulfur Gulch (north) scar area and associated open-pit 
mine (northeast), and the surrounding mine waste-rock piles (north, east, and south part of the Moly Mine 
area). These regions are all highly altered, mainly with a quartz-sericite-pyrite assemblage, although, 
advanced argillic (or supergene) pods do occur peripheral to the core zone. Abundant epidote occurs at the 
top of the ridge that separates Goat Hill Gulch from Sulfur Gulch, suggesting that the ridge forms the top of 
the hydrothermal system that is exposed to the west and east, in topographically lower ground. The degree 
of alteration identified in the AVIRIS data is similar at the non-mined Goat Hill Gulch area (fig. 6) and 
Sulfur Gulch, with its mined ground and non-mined scar areas. Of note is the relation of jarosite, which 
indicates acid-water and metal leaching potential, with elevation at Sulfur Gulch. It appears that jarosite 
abundance decreases with depth from the top of the alteration system (from the pre-erosion and pre-mining 
surface), suggesting a strong decrease in sulfide content of the wall rock. This relation is also expressed in 
the waste-rock piles, with rock extracted from the top of the alteration system (and dumped topographically 
high) containing higher abundance of jarosite. The erosion rate of the Moly Mine scar areas appears to be 
similar to the eastern scar region, though open-pit mining has highly accelerated the exposure of fresh 
material to weathering and possible leaching of metals (Shaw, Wels, and Robertson, 2002), as seen by the 
high abundances of jarosite in the mine-waste rock. The overall intensity of the quartz-sericite-pyrite 
alteration appears to be stronger at the Moly Mine area than in the eastern scar areas. Jarosite is more 
abundant at the non-mined Goat Hill Gulch and the non-mined top of Sulfur Gulch, in comparison with the 
non-mined eastern scar areas. Similar to the eastern scar areas, calcite and chlorite occur on the downhill 
sides of the alteration cores, possibly buffering to an extent, any acid-drainage. The lesser amount of 
goethite, the abundance of jarosite, and the lower abundance of kaolinite and gypsum indicate the higher 
degree of mineral alteration and the lack of steady-state weathering of the Moly Mine area (mined and non
mined), compared to the landslide areas. While no mine waste pile material is seen entering the Red River 
in figures 2, 3, and 4, historic altered material from debris fans at Goat Hill and Sulfur Gulches do and the 
southwestern part of the Goat Hill altered area extends to Red River. 

The northeastern extent of the Log Cabin (far southwest part of image) area of alteration shows 
small, dispersed occurrences of kaolinite and goethite within a highly vegetated region, indicating the 
occurrence of mineralization that was known to exist on the basis of previous field mapping. At the 
northern edge of the area (most westward part of image bisected by Red River) a small advanced argillic 
(or supergene weathered) center containing pyrophyllite, sericite, gypsum, and alunite, is surrounded by 
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propylitically altered rock containing calcite and epidote. This area suggests a potential for acid-water 
generation with some buffer capability. 

Conclusions 

Hydrothermally altered and weathered minerals were mapped at Questa, New Mexico using the 
AVIRIS JPLINASA imaging spectrometer. These minerals were grouped in propylitic and quartz-sericite
pyrite mineral assemblages and as supergene minerals that were used to infer surface environmental 
conditions and effects on the water quality of Red River. 

Altered materials from the eastern landslide areas (Hottentot, Straight Creek, June Bug, Hansen, 
and Little Hansen Gulches and the Moly Mine area), mined ground and Sulfur and Goat Hill gulches have 
the potential to adversely effect the water quality of Red River. Debris trails and fans are associated with 
all the gulches that have mineralized rock that produce sedimentation in Red River, which possibly could 
introduce metals either through mass transport or through leaching into the river. These materials have low 
pHs and could generate acid-water that could strongly alter water quality, especially during spring runoff or 
during a storm event. Both mined and non-mined Moly Mine areas appear to have slightly more intense 
mineral alteration and less of a steady-state supergene weathering environment compared to the eastern 
landslide areas, though both mineralized regions are intensely altered. The Moly Mine area is well exposed 
through mining in the A VIRIS data, but the landslide areas appear to have similar environmental degrading 
potential as expressed by similar mineral alterations and the large area of altered ground seen through the 
vegetation. 
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Inventories of forests are essential for managing and protecting these natural resources. Models 
to determine carbon cycling, global warming, etc. also depend on accurate and efficient mapping 
of forested areas. This paper explores different classification methods of multi- and hyperspectral 
data as a supplement to traditional forest inventories. Results were evaluated towards accuracy, 
efficiency and costs. 

The success of a classification depends on the land cover and the remotely sensed data type, but 
also on the classification method (Kenk et al. 1988), season (Wolter et al. 1995, Schriever and 
Congalton 1995), and to a large extend on the reference data (Congalton 1991). In this project we 
tested the importance of seasonality and the relatively new method of Decision Tree 
classification on TM and A VIRIS data. As a general guide for preprocessing A VIRlS data we 
published a white paper on the web at: http://aviris.de.vu In order to increase the number of 
training sites needed for best decision tree performance, we developed a unique approach to 
extend the usefulness of the available reference dataset. 

Objectives 

The main objective was to generate a land cover map ofthe northern Black Hills, SD. Along 
with this main goal we pursued the following questions: 1. How well does the new classification 
technique Decision Tree perform in comparison to other techniques? 2. What role does 
seasonality play? 3. Can TM data that combines two seasons overcome the drawbacks of 
multispectral data and provide similar accuracies as single-season hyperspectral data? 

Methods 

Study Site 

The study site lays in the northern Black Hills, SD. The 'black' appearance of the Hills results 
from dense stands of forest vegetation, particularly ponderosa pine (Pinus ponderosa). This 
conifer covers approximately 84% of the Black Hills and comprises 95% of the forested area 
(Bennett 1984). Other trees in the study area include, white spruce, aspen and birch. Aspen and 
birch usually occur as a species association and, like white spruce, form medium to dense stands. 

Reference Data Acquisition 

Reference (training and test) data of high quality and quantity is the foundation for a successful 
and robust classification (Congalton 1991). Especially for the classification of AVIRIS imagery 
it is important to have a sufficient number of training and test data due to the so-called 
dimensionality problem: A large number of bands can decrease the accuracy without sufficient 
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training data (Swain and Hausk.a 1977). We sampled species and crown cover of more than 200 
plots. 30-m diameter plots were laid out with a range fork and a timber cruise prism following 
the techniques described in Korhonen (1979), White and Lewis (1982) and Mannel et al. (in 
progress). With a sighting tube we measured crown cover (as an indicator for density) and 
species (Ganey and Block 1994, Cook et al. 1995). 

Using GIS we overlaid the field data on top of aerial Digital Ortho Quads (DOQ). On the DOQs, 
we identified the land cover type boundaries depicted by a field-sampled plot and picked 
additional points in this area. These points were labeled based on the original field plot. This 
procedure led to a reference data set of more than 3000 points (Figure 1 ). 

+ Medium pine 

Open pine based on DOQ 

Field measured plot 

1:::. Aspen (field measured) 

Figure 1. Additional reference points based on ground data collection and DOQ. To avoid 
autocorrelation, the entire cluster is either training or test data. 

Densities of aspen and white spruce were combined because open white spruce and open aspen 
were rare (only two field plots). Mixed areas were also eliminated because mixed stands were 
rare and of small size, so that only an insufficient number of reference data could be generated. 
Furthermore, the database currently employed by the Forest Service does not include mixed 
classes. The fmal reference data set contained the following classes: open pine, medium pine, 
dense pine, meadow, aspen, white spruce, water and non-vegetated areas. 

TMIAVIRIS 

The high-altitude A VIRIS flight took place in the summer of 2000. The 7 flight lines resulted in 
30 scenes. We gee-registered all scenes into the UTM Zone 13 map projection based on DOQs. 
We employed ACORN to correct for atmospheric absorption. As a general guide on processing 
A VIRIS data we published a white paper on the web at: http://aviris.de.vu. This guide explains 
how to prepare A VIRIS data and provides steps for atmospheric correction with ACORN and 
georeferencing. A good source of information is also the ACORN tutorial (Analytical Imaging 
and Geophysics, LLC 2001) and ENVI manual (Research Systems, Inc. 2001). 
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We utilized the solar bands of two Landsat TM5 images from May 5, 1998 (early spring, leaves 
not yet fully developed) and September 24, 1998 (early fall, "leaves on"). The images were 
georegistered into the UTM Zone 13 map projection using a 1 :24,000 vector layer and 50 ground 
control points for each images. Each image was dark corrected to reduce atmospheric scatter 
effects. We built a "hybrid ratio composite" by adding the Normalized Difference Vegetation 
Index (NDVI) to the solar bands (Lillesand and Kiefer 1994). Both seasons were classified 
separately and as a multidate scene to test the influence of seasonality. 

Decision Tree 

Decision Trees for remote sensing applications were already evaluated in the 1970s (Swain and 
Hauska 1977). Yet, only in recent years did this method gradually emerge from business 
applications into natural science and provided successful land cover classifications (Hansen et al. 
1996, Brodley et al. 1999, Lawrence and Wright 2001, Vogelmann et al. 2001 ). A decision tree 
is a representation of branches and nodes. Each node is connected to a set of possible answers 
that split the cases into subsets corresponding to different test results (Figure 2). Decision trees 
have similarities to other machine learning approaches. They use recursive partitioning 
algorithms to derive classification rules from training samples, which is often referred to as data 
mining (Read 2000). One of the strengths of decision trees is the flexibility in handling large 
datasets (De'ath and Fabricius 2000), making this approach interesting for hyperspectral data. 
For this study we employed the decision tree program "See5" distributed by RuleQuest (Quinlan 
2002). 

B7 <= 37 

B4 <= 29 B4>29 

/ 
B2 > 6 B2 <=6 

.----- -------. 
B4 <= 12 B4 > 12 

Water 

~ ~ 
Water Spruce 

Figure 2. Example of a sub-decision tree that utilizes spring Landsat TM5 data. The tree was trained on reference 
data based on the summer 2000 survey. 

Besides decision trees we tested Maximum Likelihood Classification on TM data and Spectral 
Angle Mapper (SAM) on A VIRIS data. In the case of SAM, aspen was largely overestimated 
and this technique was not further investigated. Mixture Tuned Matched Filtering (MTMF) is 
commonly applied when classifying A VIRIS data. MTMF requires a minimum noise fraction 
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(MNF) transformed input file (Research Systems, Inc. 2001 ). The MNF is area-specific, i.e. it 
needs to be applied to the entire study area, because it gives different results for different scenes. 
However, this approach quickly becomes intractable when applied over a large area. Our 
available computer power did not permit us to combine the 20 A VIRIS scenes covering the 
major part of our study area. Thus MTMF was not applied in this study. 

Results 

Decision tree classification was successfully applied to both TM and A VIRIS data. The overall 
accuracy of the A VIRIS classification was 82%, and the accuracy of the multi-date TM 
classification was 86%. A VIR.IS was superior to TM in detecting aspen (>90% ), but had 
difficulty separating the different densities of pine ( <70% accuracy for medium and dense pine). 
See Table I. 

Seasonality was decisive. When classifying TM data using decision trees we found that early 
spring, before leaves were fully developed, gave about 5% better results than using early fall 
("leaf on" before senescence set in). However, best results were achieved when combining 
spring and fall (86% overall accuracy). Decision tree classification of multi-date TM data was 
superior for non-vegetated bare areas and meadow. Maximum Likelihood Classification of the 
multi-date TM gave better results for separating densities of pine, but had problems with white 
spruce and non-vegetated bare areas. 

Table 1. Comparison of different classification methods and datasets 

Land cover 
type 

Water 
Aspen 

Pine open 
Pine medium 

Pine dense 
Spruce 

Non-vegetated 
Meadow 

Accuracy 

••• > 90% 

•• >80% 

• >70% 
<70% 

Decision tree 
AVIRIS 

••• 
••• ••• 

-(confusion med/dens) 

- (confusion med/dens) 

•• 
•• 
•• 

Decision tree multi-date TM 

••• 

• 
•• 
••• •• 
••• ••• 

Maximum -likelihood 
multi-date TM 

• •• 
•• • •• 
••• 
• • 
• •• 

Both Maximum Likelihood and Decision Tree Classification were easily implemented. 
Classifications based on Decision Trees were more robust than Maximum Likelihood, because 
the user and producer accuracy were numerically closer, which is considered a sign of robustness 
(Congalton 1991 ). 
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Discussion/Conclusion 

The classification technique Decision Tree was easy to implement, efficient and accurate. 
However, the use of A VIRIS did not offer significant advantages over TM in this particular 
application. The overall accuracy achieved was similar for both data types. Multiple-season 
imagery, easily available with TM but less practical for A VIRIS, helped offset the higher 
spectral resolution of A VIRIS in the classification. It is possible that A VIRIS might have done 
better if the data were collected in late spring or early fall. According to Schriever and 
Congalton ( 1995), summer is not the best season for a forest classification. Other studies 
confirm that times when leaves are either senescent or not fully developed are best for forest 
classification. However, the time and computer processing required to classify large areas of 
A VIRIS proved a significant disadvantage for applications covering many A VIRIS scenes. 
Atmospheric correction and georeferencing was time and computer intensive-it took about 10 
hours of operator time and three COs (2GB) to prepare one scene for the actual classification; 
and 20 scenes were used for a total processing time of 200 hours. Moreover, the area classified 
constituted only a third of the entire forest. For classification work over large areas, A VIRIS 
does not appear to provide sufficient improvement in results over multi-date TM that would 
justify the amount of work and cost required. Unfortunately, the usual procedure of reducing the 
data dimensionality through a MNF transform cannot be applied, because the MNF must be 
performed on all the scenes simultaneously. This procedure quickly becomes intractable for 
more than a few scenes. The development of an algorithm to perform an MNF on a collection of 
individual scenes, rather than on a single scene, would greatly benefit the application of A VIRIS 
over larger areas. 
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The Evolution and Present State of Tree-Kills on Mammoth Mountain, California: 
Tracking Volcanogenic C02 and Its Lethal Effects 

Brigette A. Martini and Eli A. Silver1 

1.0 INTRODUCTION 

In May 1989, a small magnitude earthquake swarm hit the east-central region of the Sierra Nevada in the 
state of California. The swarm was located beneath the Pleistocene-aged Mammoth Mountain - a rhyodacitic 
stratovolcano located on the southwestern rim of the much larger, 760,000 year-old Long Valley caldera (see Figure 
1 ). Early earthquakes of the swarm were probably due to magmatic dike intrusion at depth (Hill et a!., 1990) and 
recent relocations by Prejean (2001) indicate magma movement from initial depths of7-9 km to within 
approximately I km of the mountain's surface over that six 
month time period. 

The following spring ( 1990), an unusually heavy 
loss of needles was observed at several places on Mammoth 
Mt. by U.S. Forest Service personnel (Farrar et al., 1995), 
especially surrounding the popular recreation area of 
Horseshoe Lake. Approximately 4 ha of trees were dead at 
this lake alone, affecting all species of trees and other forest 
vegetation. Their deaths were initially attributed to the 
Sierran drought of the 1980's. In 1994 however, soil gas 
measurements made by the USGS confirmed that the kills 
were likely due to asphyxiation of the vegetation via the 
presence of 30-96% C02 in the ground around the volcano 
(Farrar, 1995). Current flux estimates for the entire 
mountain are approximately 300-500 tons/day, while flux at 
the Horseshoe Lake tree-kill is 93 ± 22 tons/day (Rogie, 
2001 ). Background concentrations of C02 in this region are 
approximately 360 ppm, however concentrations in tree-kill 
zones can be upwards of 10,000-100,000 ppm early in the 
day (Rogie, pers. comm., March 2000). Many areas of COr 
induced kills are now identified on Mammoth (Figure 2). 

Traditional mapping of C02 discharge zones on 

Figure 1. Shaded relief digital elevation model 
image of Long Valley Caldera. Tbe scene 
boundaries of botb years of A VIRIS data are 
shown as well as the approximate boundary of 
aerial photo and HyMap data scenes used. 

Mammoth Mt. is done on-foot with portable accumulation chamber instruments and GPS. The remote sensing 
techniques described in this study are accomplished remotely, making the spatial and temporal mapping of 
volcanogenic-assisted forest deaths easier and quick to do. Such mapping is vital for geological, forest, ski, and city 
personnel in charge of determining areas and level of hazard at Mammoth Mt. Mapping of tree-kill zones with 
aerial photography and hyperspectral imagery was done previously (Hausback et a!. , 1998; Sorey et al., 1998; de 
Jong, 1998; Martini et al., 2000), however this study presents the kills through time. It also attempts to utilize the 
superior calibration and fine spectral sampling of Advanced Visible/Infrared Imaging Spectrometer (AVIRlS) to 
identify and map the characteristic spectral absorptions of C02 gas within the near-infrared portions of the 
electromagnetic spectrum (2.00-2.50 J.1lll). The following sections address the genesis of the tree-kills on Mammoth, 
their growth through time, and initial attempts at detection and mapping of anomalous C02 in the atmospheric 
column above Mammoth Mt. A compilation of aerial photo, HyMap data, and A VIRIS data are used in this 
endeavor. 

1 University of California Santa Cruz, Earth Science Department, Santa Cruz, California 95064, USA 
bmartini@es.ucsc.edu 
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Figure 2. Picture on the left looking northeast with Horseshoe Lake in the forefront and 
Mammoth rising to the left. The tree-kill is visible on the northern shore of the lake. Map 
on the right showing known C02-induced tree-kills on Mammoth Mt. 

2.0 PREVIOUS TREE-KILL BOUNDARY AND C02 MAPPING EFFORTS 

The tree-kill distributions on Mammoth Mountain were initially mapped using large-scale 1: 14,500 aerial 
photography dating from 1995 (Farrar et al., 1995; Sorey et al. , 1998). The boundaries of a few specific kills were 
also surveyed using handheld GPS receivers, as well as two-color geodimeter measurements. Horseshoe Lake 
garnered early attention due to the massiveness of the kill and the large measured C02 flux: its boundary was 
measured twice using GPS; once in 1994 (Farrar eta!., 1995) and once more in 1998 (Rogie and Colvard, unpub. 
data, 1998). The above methods are time-intensive and necessarily limited by the subjectivity of human observers 
on the ground. 

Two separate studies in the late 1990's used hyperspectral imaging to assess the boundaries of tree-kills on 
Mammoth Mountain. The results of both de Jong ( 1996; 1998) and Hausback eta!. ( 1998) provided initial success 
at mapping tree mortality using 20 meter resolution A VIRIS data. Hausback et a!. also attempted to spectrally 
discriminate stressors or sources of tree-morbidity on the mountain (eg. the differences between trees killed by C02 

versus those killed by drought, insects, fire, flooding, etc.). This proved to be less straightforward. 
Initial attempts at mapping volcanogenic C02 with A VIRIS data was completed on the northern flank of 

Mammoth Mt. (de Jong and Chrien, 1996). Their results were inconclusive: both C0 2 endmembers acquired in the 
field and a ratio algorithm targeted at C02 band depth at 2.0 I 11m did not reveal zones of known C02 flux in 1994 or 
1995 A VIRIS data. There is also ongoing work to quantify C02 concentrations in the atmosphere (Green, 2001). 
Such work has been successful, however detection of small increases or decreases in C02 concentration in the 
atmospheric column (several tens of ppm) appear difficult to track and measure. 

3.0 A TEMPORAL ANALYSIS OF HORSESHOE LAKE TREE-KILL GROWTH SINCE 1989 

3.1 Timeline of tree-kill growth: unanswered questions 
Tree-kills were first noticed in 1991 at several locations around Mammoth Mountain including Horseshoe 

Lake on the southern flank and Chair 12 and Reds Lake on the northern flank. Several other kills around the 
mountain appeared in the years following 1991 including Reds Creek on the western flank and several kills on the 
north face of the mountain inbounds of the resort. Cook et a!., 2001 detennined through radiocarbon measurements 
at the Horseshoe Lake kill that almost all the trees sampled there began fixing less carbon- 14 beginning in 1990. 
This deficiency in carbon-14 in 1990 due to magmatic C02 uptake was also measured at Reds Creek. The work of 
Cook et a!. indicated that peak flux occurred in 1991 , decreased steadily from 1991 to 1995, and was fairly constant 
till 1998. In addition, measurements of trees near cold COr rich springs on the flanks of Mammoth indicate that 
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degassing via groundwater has been occurring in at least one tree, since 1967. This is some of the only quantitative 
knowledge we have about how the tree-kills have grown through the years. However, we still don't know how the 
tree-kills grew spatially, as none of their boundaries were actually surveyed until 1995. Knowing their initial region 
of death and the subsequent trajectory of growth of the kill boundaries reveals important information about the 
subsurface structural system and how the C02 propagates. We have attempted to determine a semi-quantitative 
measure of the growth of the tree-kill at Horseshoe Lake via a multi-temporal airborne remote sensing data analysis. 
Several techniques are used in this study to accurately identify the boundaries of the tree-kill at Horseshoe Lake over 
a period stretching from pre-kill times to recent ( 1977 -1999). It elucidates how the kill at Horseshoe Lake began, 
how it grew, and whether it has continued to expand. The success of this analysis is grounds for its employment at 
other kills on the mountain. 

3.2 Historical air photo analysis 

3.2.1 Methods 
Air photos of differing scales and seasonal character were acquired and analyzed for the years, 1977, 1990, 

1993, 1994, and 1995. A hyperspectral 1999 HyMap image was also used in this analysis. Each photograph was 
scanned in at 800dpi and saved as a TIFF. The photos were subset to include the Horseshoe Lake tree-kill and 1-2 
km of area surrounding the lake. The approximate location of these photos and hyperspectral image is shown by the 
smallest rectangle over Mammoth Mt. in Figure I. 

Several different methods were used to determine the boundaries of the kills in each photo. Simple 
enhancement techniques such as linear and gaussian stretching were used for delineating kill boundaries. All of the 
color photos were actually color-infrared, and hence dead or dying vegetation appeared less red and thus less healthy 
in near-infrared photography. Stretching of the data values contained in each photo allowed for simple tree-kill 
boundary identification and mapping. More sophisticated methods such as the Minimum Noise Fraction (MNF) 
algorithm contained in ENVI© were also applied to the photos. The black and white photo from 1993 was a bit 
more difficult. The tree-kill is visible in this photo, but doesn't stand out as well as it would in the color-infrared 
photography. Simple stretching didn't work well with this photo and the single panchromatic band precludes MNF 
analysis impossible. All the boundaries are hand-digitized into regions of interest (ROJs) and exported to separate 
vectors. The area of each vector polygon was calculated in hectares and is reported in the inset table of Figure 3. 

Each photo was then georectified using 30-50 ground control points. RMS errors were generally below 1 
to just around 2, but never went above 5. This translates to approximately 2-3 pixels ( 40-60 m) of emor. Visual 
comparison of georectified photos with each other was very good. 

3.2.2 Results 
The MNF mapped the tree-kills well, however the simple stretching techniques were equally successful. 

Considering the time, storage space and effort required for an MNF, we submit that stretching routines are adequate. 
Figure 3 shows the vectors from all five years including the vector from the 1999 HyMap data derived from 
unmixing methods within ENVI©. Horseshoe Lake is placed at the bottom for reference. Minor discrepancies in 
boundaries are likely due to georectification error and boundary delineation error. The boundary delineation for the 
panchromatic 1993 photo was least successful. We erred towards the conservative with this year and hence the 
boundary contains less detail. Excursions in the 1999 HyMap data are due to the increased measurability of tree 
morbidity and sub-morbidity (the so-called "halo zones" of the tree-kill). However major boundary excursions, such 
as that seen between 1993 and 1994, are likely real and not due to analysis error. A plot of the growth of the tree
kill through time is shown as an inset of Figure 3. 

3.3 The growth of the Horseshoe Lake Tree kill: new temporal and spatial patterns revealed 
The tree-kill as of I 990 was approximately 4 .1 Ha including the beginnings of the northern Borrow Pit kill 

which was previously thought to have appeared later in 1993 (Cook et al., 2001). From 1990 to 1993, the main kill 
didn' t change much in size. However, the Borrow Pit kill continued to grow, and a new satellite kill appeared to the 
south of the main kill . From 1993 to 1994, the tree-kill at Horseshoe Lake grew from approximately 5.2 Ha to I 0.9 
Ha, almost doubling in size. This is a previously unrecognized event. Cook et al. 's work doesn't indicate an 
increase in degassing in this time period. However, we may be seeing the delayed effects of the initial pulse of C02 

degassing at Horseshoe Lake. Cook et al. indicates that trees towards the center of the kill experienced the C02 
pulse first and hence died fastest. This is supported by the present analysis that shows initial kill in 1990 towards 
the center of the current kill zone (see Figure 3). Trees lying directly in ground zero of the C0 2 flux zone were 
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killed immediately. Transpiration and mineral and water uptake would have ceased. Initia lly high airborne C02 

levels seen in the kill during this initial time period (1200 tons/day (Farrar et al., 1995)) probably led to widening of 
the stomata in the conifer needles to accept more C02 (which plants normally like) (Larcher, 1995). However, to 
ward off increasingly noxious levels of C02, plant stomata probably closed completely. The trees quickly ceased 
respiration and photosynthesis. They were effectively suffocated. Their cells ceased to function and the trees died. 

.. / 
M - IS wl 

Trees towards the boundaries of the kill 
away from the main C02 source zone, might not 
have received such a strong initial pulse. The 
C02 received did cause initial stress on the 
physiological systems ofthe trees. Chronic flux 
continued to weaken these more peripheral trees 
until many of them finally died after the 

•• 
no{ olo particularly hard winter of 1993-1994. ]tis well 

Figure 3. Tree-kill boundaries through time at Horseshoe 
Lake. Boundaries determined through analysis of both 
historical aerial photography and hyperspectral data. 
Inset plot shows the growth of the kill in ha. 

known that a combination of stressors on an 
ecosystem is more lethal than merely one 
stressor and hence the heavy snows and late 
spring served to exacerbate the C02 stress 
problem. In addition, Cook et a!. found that 
peripheral trees tended to die approximately four 
years after initial deficiencies in carbon-14 were 
measured. The above scenario may explain why 
the tree-kill is not rapidly growing at present. 
Constant flux from an anchored point source 
keeps border trees in a state of heightened 
physiological stress. Other stressors such as 
drought or insect infestation may lead to new 
kills, but current kills will probably remain 
constant in size. Future kill zones may not be 
due to anomalous C02 flux and thus possible 

future kill sites should be surveyed for other external stressors such as insects or drought. 
The above set of analyses could easily be done for other kill sites on Mammoth Mt. As previously 

mentioned, Cook et al. 's radiogenic measurements on trees from Reds Creek indicated C02 flux in this region at 
least since 1967. Multi-temporal air photo analysis could reveal when trees began to die at Reds Creek historically, 
as well as when trees began to die around the Mammoth Mt. after the 1989 seismicity. Any correlation between 
timing of individual kills may indicate similar shared gas sources at depth and shared, networked, subsurface 
connections (such as faults and fractures). In fact, the current pattern of kills appears to coincide with hypothesized 
ring fractures on Mammoth Mt. (Prejean, 200 1). 

4.0 DETECTING AND MAPPING VOLCANOGENIC C02 IN THE ATMOSPHERIC COLUMN 
ABOVE MAMMOTH MT. 

4.1 Spectroscopy of C02 
Gas absorptions form primarily in response to vibrational absorption processes. For C02, there are nine 

fundamentals (vibrational modes). The stretching and bending of the bonds in the internal modes produces the 
infrared absorptions seen in C02 spectra. In addition, when C02 makes a vibrational transition, it usually makes a 
rotational one as well. C02 thence has three vibration-rotation bands (two of which are the same frequency) and a 
fourth band that is infrared inactive. Other absorptions are seen in C02 spectra, and these are due to overtones and 
combinations of the original fundamentals. The near-infrared absorptions of interest in this study are combination 
bands centered around 2.0 IJ.m. They have centers at 1.96 llffi, 2.01 11m and 2.06 IJ.m. Each absorpton is actually a 
doublet. The main absorption feature of interest used in this study is the 2.06 11m band whose doublet lays longward 
at 2.08 j..lm (see Figure 4). Intensity of absorptions are affected by both the level of fundamental mode 
(fundamentals have higher intensities of absorption than overtones and combinations do) (Gaffey eta!., 1993), and 
the relative amount of the material causing the absorptions (the total absorptance increases with the amount of 
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material present)(Schurin and Ell is, 1968). Widths of bands are greatly affected by temperature and pressure, with 
increasing values causing absorptions to widen. 

4.2 A VIRIS analysis: spectral detection of anomalous C02 

The analysis goal was to determine whether anomalous levels of C02 are detectable in the atmospheric 
column using AVIRlS radiance data. Two separate years of data were utilized in this study; 1996 and 2000. Scene 
boundaries were chosen to encompass the massif of Mammoth 
Mt. as well as some outlying regions known to be volcanically 
active in the recent geologic past. Boundaries for both the 1996 
and 2000 scenes are shown in Figure 1. 

Both years of data were subjected to the same analysis 
methodologies. The data were spatially subset, spectrally subset, 
and analyzed for unique, repeatable, spectral features in the 2.0 
).liD C02 absorption wavelength region. In the wavelengths 
measured by A VIRlS, there are three C02 absorption regions: 
1.4 ).lm, 1.6 ).lm, and 2.0 ).lm. This study was limited to analysis 
ofthe absorptions centered around 2.0 11m as the 1.4 ).liD 
absorptions lie too close to the H20 absorption maximum at 1.38 
!liD, and the shallow 1.6 11m absorptions were not discriminated 
from background noise. Though the 2.0 I !J.m feature has the 
highest absorption intensity, we chose the 2.06 11m absorption 
feature (seven bands spanning 2.04-2.10 11m). We found it to be 

Figure 4. Spectral signature showing 
major C02 absorption regions 

less vulnerable to contamination from the wings of the strong 1.87 11m H20 band. All major and minor water 
bodies were masked before any spectral analysis. This was done both to reduce the spectral variability encountered 
in the scene and to reduce the effects of the 1.87 11m water band on the 2.06 !J.m C02 absorption 

Continuum Removal (CR) and Minimum Noise Fraction (MNF) processing were applied to both years of 
A VIRlS data. We theorize that anomalous levels of C02 degassing from Mammoth Mt. will be detectable above 
background levels. Band depths in regions of elevated flux will be higher than expected given a certain elevation. 
Those regions with deeper than expected absorptions are possible point sources of magmatic C02 degassing. 
Normal C02 at these elevations is approximately 360 ppm, which is approximately 0.04% of the gasses in the 
atmospheric column measured by A VIRlS. Minor concentration variations from 360 ppm are difficult to measure 
(Green, 2002). However C02 concentrations at several locations on Mammoth Mt. reach levels of l 0,000 - l 00,000 
ppm. It may be possible to detect C02 concentrations approaching 10% in the atmospheric column. 

4.2.1 A VIRIS analysis: Continuum Removal 
CR was performed on the 2.06 11m absorption feature region in both years of A VIRlS radiance data. 

Theoretically, the more C02 there is in the atmospheric column, the deeper this absorption feature will be. Since 
there is a direct correlation between the amount of a gas and the relative depth of its absorption, a CR applied to the 
data should reveal those regions in an image dataset with higher amounts of C02 in the atmospheric column. 
Deeper absorptions should relate to increased levels of C02, while more shallow absorptions should relate to 
decreasing levels of C02. Differing depths of absorption were delineated with an arbitrary density slice ofthe final 
CR image. 

4.2.2 A VIRIS analysis: Minimum Noise Fraction 
The second analysis performed on the data was the MNF. The MNF is basically two cascaded principle 

component transformations, where the first transformation decorrelates and rescales the noise such that the noise has 
unit variance and no band-to-band correlations, and the second transform takes the noise whitened data and puts it 
through a standard Principle Components calculation. The MNF transformed data were analyzed on an image-by
image basis where each coherent image may emphasize a particular class of material. By focusing in on a particular 
absorption (2.06 !liD), it was hoped the material causing said absorption would be represented in one of the coherent 
MNF images. 
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4.2.3 A VIRIS analysis: Results 
Figure 5 shows the results of the CR with an eight level density slice applied. The deepest absorptions are 

shown in red. The next deepest are shown in green, then blue, yellow, cyan, magenta, maroon, and seagreen 
respectively. An elevation effect should be discemable in the data: higher elevations should have less overall C02 

and a shallow C02 absorption feature while lower elevations should provide a much deeper absorption feature due to 
the increased amount of C02 in the atmospheric column (Green, 200 1). Mammoth Mt. located in the lower 
southeast corner of the image rises approximately 600 m above the surrounding landscape. As such, higher 
elevations of the mountain are colored in green, blue, yellow, etc. while surrounding terrain is colored red. The blue 
coloration on the summit of the mountain indicates a more shallow absorption than the red coloration on its flanks, 
which indicates a deeper absorption. The CR algorithm appears to work at this regional scale, however regions 
known to host anomalously high C02 flux levels are not identifiable on this CR image. Average spectral signatures 
extracted from each density class show an expected pattern of deeper absorptions for lower elevations and more 
shallow absorptions for higher elevations (see Figure 5). Also of note, though the main absorption is located at 2.06 
!liD, CR analysis has brought out an absorption centered at 2.08 !liD. Its depth appears to be conversely related to 
elevation, i.e. the higher elevations have a deeper 2.08 11m absorption than the lower elevations. This is opposite to 
the absorption depth/elevation relationship for 2.06 11m. 

Figure 5. Subset of 2000 A VIRIS image shown on the left. A continuum removal has 
been applied to the 2.06 !liD C02 absorption feature from 2.04- 2.10 !liD. The resulting 
image was density sliced into eight arbitrary color levels. The spectra on the right are 
average signatures extracted from selected density classes. 

The results from the MNF analysis are more compelling than that achieved with the CR, however they are 
more complex. Four of the seven bands analyzed in the 2000 imagery were coherent, while only three of the seven 
bands were coherent in the 1996 imagery. In the 2000 A VIRIS image, MNF band 3 appears to contain a spatial 
distribution of degassing C02, while in the 1996 A VIRIS image, it's MNF band 2 that reveals a C02 distribution 
similar to that known to exist from previous field studies (Sorey et al., 1998; Rogie et al., 2001). Figure 6 shows 
results from the MNF analysis of2000 AVIRIS imagery. A density slice was applied to MNF band 3. The most 
extreme values of the MNF (i.e. the highest density slice) were then isolated and highlighted. These areas are 
plotted on top of the georectified MNF band 3 image along-side mapped faults of the region. 

Results from the MNF analysis on 1996 A VIRIS imagery produced similar distributions as those seen in 
the 2000 imagery. There are some high MNF value zones not seen in the 2000 imagery, as well as zones identified 
in the 1996 image that do not appear in the 2000 image. Figure 7 shows both years of extreme MNF-value zones. 
The zones appear around the mountain, occurring on varying rock types, differing elevations, and in both tree
covered and tree-less landscapes. 
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Figure 6. Results from the MNF transformation of 2000 A VIRIS imagery. MNF band 3 
is shown with a density slice derived map of extreme MNF values in red. A map of known 
tree-kills in red is shown on the right (note different scale). 
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Figure 7. Left: results of MNF analysis of the 2.06 11m C02 absorption for 1996 (darker) 
and 2000 Oighter) AVIRIS imagery. Extreme MNF values from MNF band 2 (1996) and 
MNF band 3 (2000) shown draped on a shaded lOrn USGS DEM. Right: Both years of 
extreme MNF values shown in plan view. 

4.3 Discussion: Feasibility and problems with anomalous C02 detection and mapping 

Horseshoe 
Lake kill 

The general success ofthe CR analysis in mapping gross amounts of C02 in the atmospheric column is 
encouraging. However, the inability to map regions of extremely high concentrations of C02 at several major tree
kill sites with a simple CR analysis was disappointing. One problem may be that the CR/density slice analysis only 
measures the depth of the 2.06 11m absorption at its maximum minima. The prominence of the 2.08 J.lm absorption 
longward of the main 2.06 11m absorption may hold the key to part of the problem. This 2.08 11m absorption is 
probably the second half of the 2.06 11m doublet. The fact that it appears to be sensitive to elevation in a converse 
way to the 2.06 J.lm absorption is undoubtedly important. A CR analysis of just this absorption (3 bands centered on 
2.08 J.lm) may reveal a more compelling C02 flux zone pattern. Another way to investigate the 2.06 ).lm absorption 
may be an area-of-absorption analysis. The calculation of band depth normalized to absorption feature areas is 
found to closely follow amounts of plant biochemical constituents such as water, chlorophyll, cellulose, sugar, etc. 
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(Kokaly and Clarke, 1999; Curran et al., 200 I). Perhaps similar area calculations would prove viable for C02 gas 
absorptions. 

The MNF results are quite compelling, though poorly constrained. We cannot know exactly what the MNF 
is detecting. It is mapping levels of coherence, but the classes produced from this procedure do not possess unique 
spectral signatures like other endmember classes we are used to. We initially assumed that extreme values of MNF 
band 3 (2000 data) were detecting anomalous levels of C02 via a deeper 2.06 ~m absorption relative to surrounding 
pixels containing more shallow absorptions in this wavelength region. We theorized that these deepest absorptions 
were different enough from neighboring pixel values, that they produced their own MNF coherence band. The 
resulting spatial distributions of the extreme MNF values for both 1996 and 2000 are almost perfect matches to 
known zones of volcanogenic C02 flux, some of which host tree-kill sites. However, there are a few exceptions, 
which may hold the key to determining what the MNF transform analysis is actually detecting. 

There are two major sites in the 2000 image mapped as extreme in MNF band 3 that do not correspond to 
any known zones of C02 flux or C02-induced tree-kill sites. These include zones mapped in the Rainbow Fire kill 
of 1992 and zones mapped at Chair 2 on the northern flank of Mammoth in-bounds of the ski area. Groundtruthing 
with a portable gas accumulation chamber in July, 2002 at these two sites revealed no anomalous C02 flux. 
However, both sites contained an excess of cellulose and lignin in the form of dead trees (at the Rainbow Fire site) 
and dry mulching grass (spread over the ski-runs at Chair 2 to increase slope stability). The grass possesses a good 
deal of cellulose, while the dead trees contain both cellulose and lignin within the bark and wood. The biochemicals 
cellulose and lignin have several distinctive absorptions, one of which is centered on 2.10 ~m (see Figure 8A). The 
2.06 ~m C02 absorption lies on the shortward wing of these broad biochemical absorptions (see Figure 8B). If you 
only look at straight reflectance data, the lignin/cellulose absorption doesn't appear capable of greatly affecting 
spectral analysis. However, analysis of the data included spectrally subsetting the image to only seven bands around 
the absorption, and CR processing. If we apply the same analysis steps to the spectra of lignin and cellulose, 
prominent absorptions are revealed at 2.06 ~m (see Figure 8C). 
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Figure 8. A: Spectral signatures of the plant biochemicals, lignin and cellulose, extracted 
from the USGS vegetation library B: A close up of these plant chemicals centered around 
2.06 Jllli C: Continuum removed spectral signatures of the same chemicals shown in SB. 

This suggests that the presence of excessive dead trees and grass may create a landscape that would be 
preferentially mapped when using a density sliced, directed MNF transform of the 2.06 ~ absorption. Most C02 

flux zones on Mammoth have an abundance of dead or dying trees accompanying them. Perhaps the MNF analysis 
described in this paper is merely mapping cellulose/lignin in the form of dead trees associated with volcanogenic 
C0 2 emission zones. However, there is one problem with this scenario. There are a myriad of other dead tree areas 
on and around Mammoth measured by A VIRIS that are not highlighted with the directed MNF analysis of the 2.06 
J.lm absorption. These include large areas of trees killed by avalanche, flooding, snow and trash burial, and insect 
infestations. This result suggests that there is something unique about the dead tree cellulose/lignin absorptions 
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highlighted with the MNF analysis in this paper. Perhaps the MNF analysis is capturing both sources of absorption, 
i.e. the cellulose/lignin absorption from the dead trees and grass is adding into the anomalous C02 absorption. We 
currently can't constrain how much of each spectral endmember is adding into the final spectral signature. What is 
unequivocal, is the creation of a map of volcanogenic C02 flux zones far surpassing those previously created, in 
detail and completeness, using standard surveying techniques. 

5.0 CONCLUSIONS 

Multi-temporal air photo analysis has revealed new spatial and temporal patterns of the C02-induced 
Horseshoe Lake tree-kill. The success of this analysis at Horseshoe indicates that similar analyses on other parts of 
Mammoth, would be an efficient way of determining the temporal growth of the kills as a whole. Our attempts at 
detecting and mapping anomalous volcanogenic C02 in the atmospheric column produced compelling spatial 
distributions of C02 flux zones that matched quite well with known, previously mapped flux zones. However, this 
analysis is ultimately complicated by an unknown relationship between C02 absorptions and those absorptions from 
plant biochemicals. Further work aimed at quantifying this relationship should be undertaken. 
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Constrained Least Squares Linear Spectral U nmixture by 
the Hybrid Steepest Descent Method 

Nobuhiko Ogura* and Isao Yamada** 

1 Introduction 

A closed polyhedron is the intersection of finite number of closed half spaces, i.e., the set 
of points satisfying finite number of linear inequalities, and is widely used as a constraint 
in various application, for example specifications or constraints in signal processing or 
estimation problems, resource restrictions in financial applications and feasible sets of 
probability distributions. By the progress of the convex analysis and the fixed point 
theory of nonexpansive mapping, a number of convex projection based algorithms are 
proposed (for example, Bauschke et aL 1997; Combett.es, 1993; Yamada et aL 1998-2002). 
In this paper, to apply efficiently such methods to problems with polyhedral constraints, 
we propose a simple solution to the problem of the best approximation to the certain 
polyhedron. By applying this solution t.o the the hybrid steepest descent method( Ogura 
et aL 2002; Yamada et al 1998; Yamada 2001 ), we also present two algorithms for a linear 
spectral unmixing problem. The proposed method enable us to deal with constraints and 
variety of cost function (for example, least square residual, Kullback-Leibler Divergence) 
as well as various a priori knowledge with great flexibility. 

The rest of this paper is organized as follows. The next section contains brief prelim
inaries on a linear unmixing problem and the hybdid steepest descent method. In the 
third section, we present a simple solution to the best approximation problem. In the last 
section , we show the algorithmic solution to the inversion of image spectrometry data by 
using projection based convexly constrained pseudoinverse algorithm. 

2 Preliminaries 

A. Best Approximation Problem to Polyhedron 

Let 'H. be a real Hilbert space with inner product (·, ·) and norm II· 11. Suppose that N 1 

hyperplains and N2 closed half spaces are given by S1 ,i := {u E 'H. I (p1,i, u) = c1,i} and 
S2,j := { u E 'H. I (P2,j, u) 2:: c2,j} respectively, where p1,i E 'H., cl,i E R P2,] E 'H. and 
c2,j E 1R ( i = 1, · · · , N1 , j = 1, · · · , N1). Then, the problem of our interests is 

( 1) 

for given u0 E 'H.. It is known that the problem ( 1) has unique minimizer. (This fact 
holds for general nonempty closed convex set C( C H) instead of the polyhedron S. In this 
case the minimizer is denoted by Pc(u0 ).) An algorithm found in (Wolfe, 1976) gives the 
solution of (1) if all vertex is known. Some algorithms based on the cycric projection or 
the parallel projection methods (Bauscheke 1997; Combettes, 1993; Stark, 1998; Yamada 
2001; Yamada et a!, 1998) can be applicable to compute such a projection (which are 
computationaly ea..c;y but. require infinitely many iterations in general). The quadratic 
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programming techniques can also be available, for example general active-set methods( Gill 
et al, 1978;Goldfarb et aL 1983) (which are finitely convergent. but somewhat complicated 
in handling active-sets selection). Although, thP method proposed in this paper can be 
essentially interpret.P.d a.c; an active-set method, we show in Section 3 that the complete 
determination of the active set is possible if the polyhedron satisfies condition (2). For 
example, the condition is fullfilled if 

(see Section 3 for other examples.) Based on this fact, we propose a simple algorithmic 
solution to the problem (1 ), which requires at most only N 1 + N2 times iterations to obtain 
the solution. 

B. Hybrid Steepest Descent Method 

A fixed point of a mapping T: H-+ His a point u E H such that T(u) = u. Fix(T) := 
{ u E H I T( u) = u} denotes the set of all fixed points of T. A mapping T : H -+ H is 
called n:-Lipschitzian (or n:-Lipschitz continuous) over S C H if there exists n: > 0 such 
that IIT(u)- T(v)ll ~ n;llu- vii for all u , v E S. In particular, a mapping T : H -+ H 
is called (i) nonexpansive if IIT(u)- T(v)ll ~ llu- vii for all u,v E H; (ii) attracting 
nonexpansive if T: H-+ His a nonexpansive mapping satisfying IIT(u)- !II < llu- !II 
for all f E Fix(T) f. 0 and u tf. Fix(T). The convex projection Pc onto a nonempty 
closed convex set C is attracting nonexpansive. A mapping F : H -+ H is called monotone 
over S C H if (F(u) - F(v) , u- v) 2:: 0 for all u, v E S. Indeed, a mapping F which is 
monotone over S C H is called TJ-stron_qly monotone or just strongly monotone over S if 
there exists TJ > 0 such that (F(u)- F(v),u - v) 2:: TJ IIu- vll 2 for all u,v E S (Zeidler, 
1990). Let II · ll(p) be the standard norm defined in Euclid space JRP. 

The following fact is an algorithmic solution to convex constrained pseudoinverse based 
on the hybrid steepst descent method (Yamada et al 1998; Yamada 2001). 

Fact 1 (Yamada, 1999, 2001) Suppose that C : = arg inf xEK II Ax - bll (m) f. 0 for 
a given bounded linear mapping A : H -+ JRm, a possibly perturbed vector b = 
(b1 , · · · , bmf and a nonempty bounded closed convex set K C H. Suppose ai E H 
(i = 1, .. · , m) are determined to follow Ax = ((a1 , x ), .. · , (am, x) ). Let T(x) := 

P "'m lla;ll2 ( (a;,x)-h; ) S h 8 . '1...1 m . K d 
K wi=l Ej=, llai 11 2 x - II a; 11 2 ai . up pose t at . 'L -+ lN. 1s convex over an 

Gateaux differentiable with derivative 8' K-Lipschitzian and TJ-strongly monotone over 
K. Then, the sequence (un)n ;.::o C H , generated by Un+l = T(un) - n~J 8'(T(un)) with 
arbitrary u0 , converges to uniquely existing minimizer of 8 over K. D 

Remark 1 If K is bounded, C f. 0 is ensured (Yamada et al, 1998). D 

The following is a variation of the hybrid steepst descent method, which plays impor
tant role to gjve a flexible linear unmixing algorithm in Section 4. 

Fact 2 (Ogura et a/, 2002a, 2002b) Assume that H is finite dimensional rea/ Hilbert 
space. Suppose that T : H -+ H is an attracting nonexpansive mapping with bounded 
Fix(T). Let a function 8 : H -+ lR be convex and Gtiteaux derivative over T(H) with 
derivative 8' K-Lipschitzian. Then, the sequence (un)n>O C H , generated by Un+l := 

T(un)- n:1 8'(T(un)) with arbitrary uo satisfies limn-+~d(un,arg infxEFix(T)8(x)) = 0 
(d(u, C) := infvEC llu - vii denotes the distance from u E H onto fi nonempty closed 
convex set C). D 
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3 Main Results 

Define a closed polyhedron S a.s in (l ) Under the assumption tha.t p~\N1 )~s, defined by 
' (3) , satisfy 

1 (1,N1) (1 ,N1)) < Of ll ·.....t. 
\ P2,i , P2,j _ or a z -r J, (2) 

the following algorithm enable us to compute P.s(u0 ) for arbitraty u0 E 'H if S =/= 0, as 
well as to verify S is empty or not. 

AI . h 1. L (1,o) . _ (1,o) ._ (J,o) ._ (J,o) ._ d (I,o) ·-gont m . et p 1,i .- PJ ,i: c1,i . - c 1,i, p2,i .- P2 ,i: c 2,i . - c 2,i an u .- uo. 
For simplicity, define a function (} : 'H x 'H x ~ - ~ as 

{ 

(u,v)-w 
0 B(u,v, w):= 11u112 (u=/=) 

0 (otherwise). 

D fi h ( (l ,i) ) ( (1,i)) ( (l,i ) ) d ( (1,i) ) f 11 . e net e sequences P1,j o~i~N1 , c 1,j o~i~N1 , p2 ,j o~i~N1 an c 2 ,j o~i~N1 as o ows: 

(1,i+l) · - (l,i) _ (}( (I ,i) (l,i) O) (1 ,i) 
P1 ,j .- P1,j P!,i+ l' PI,j ' P! ,i+1 

(l,i+l) ·- (l,i) _ (}( (I,i) (l ,i) O) (l,i) 
cl,j . - cl,j PJ,i+ l' PJ,j , cl,i+l 

( l ,i+l) ·- (l,i) - (}( (l ,i) ( l ,i) 0) (l ,i) 
P2,j . - P2,j PI ,i+ 1 ' P 2,j ' P1 ,i+ 1 

(l ,i+ l) · - ,(l ,i) - (}( (l ,i) (l,i) 0) (l,i) 
c2,j . - c2,j P1 ,i+ 1, P 2,j ' c , ,i+I· 

(3) 

If there exists i such tha.t c~~t~) =/= 0, then S = 0 and this algorithm completes. Otherwise, 
define (u(I,il)o?:i?: N

1 
by 

and let p~~io) := p~:t), c~~io) := 4~t) and u(2,o) := u(J ,NJ). While it hold for some i that 
(2,n) .....L. 0 d ( (2,n) ) f 0 h p 2,i 1 an p 2,i , Un < c2,i , repeat rom n = t at 

(2,n+ l) ·= (2,n) _ ()( (2~n) (2,n) O) (2~n) 
P2,1 · P2,1 P2,1 , P2,1 , P 2,1 

(2,n+l ) · - (2,n) ()( (2,n) (2,n) O) (2,n) 
c2,j · - C2 ,j - P2 i ' P 2J. : c2,i 
u(2,n+ l) := u(2,n)- (}(p(2~n). p(2,n) ' c(2~n) )p(2~n). 

2,1 . 2,] 2,1 2,t 

( 4) 

If h . . h th (2,N3 ) 0 d (2,N3) 0 h h' . . t ere ex1sts z sue , at p2 i = an c2 i > w en t IS 1terat10n stops at 
n = : N3 , then S = 0, otherwise u12,N3 ) is P8 (u0 ). ' D 

By the following lemma , it is easily verified that (a) the iterative step of ( 4) surely stops 

at some n( = N3 ) :S N2; (b) if there exists i such that c~ 1t1 ) =/= 0, then S = 0; (c) if 

c\~t~) = 0 for all 1 :S i :S N1 and there exists j such that ~~~t) = 0 and c~~t> < 0, then 

S = 0; (d) if c~~t~) = 0 for all 1 :S i :S N, and p~~/) ;:::: c~~J for all 1 :S j :S N2 , then 
u2

·n = Ps(uo). 
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(a) (p~~tl,p~~rl)::; 0 for all i-=/= j =? (p~~t+ 1 ),p~~r+l))::; 0 for all i-=/= j, 

(b) l{i E {L ... : N2} I A~t+l) = 0}1::; l{i E {1, ... 'N2} I p~~t) = 0}1- 1' 

(c) S(i,j) = 0 <=? S(i,J+l) = 0, 

(d) If c~~t,) = 0 for all i, then S(2 ,o) = 0 <:=;> S(l,N,) = 0, 

(e) S(i,j)-=/= 0:::} Ps<i,j+T>(u(i,j+l)) = Ps(i.n(u(i,jl) , 

(f) lfc~~t,) = 0 for all i, then S(J ,N, ) -=/= 0 =? Ps<2.o)(u(2•0>) = Ps<'.NTJ(u(I,Nd) . 0 

(The proof of this lemma is omitted.) 

Note: The following is an example of polyhedron satisfying (2): 

{ u ~ (x1 , • • • , Xm) E 111:m x, 2: 0 for all i and t W;X, = 1} 

where wi > 0 (i = J, ... , m). lfwi = 1 for all i = 1,··· ,m, this polyhedron represents 
the feasible set of probability distribution. The following is another example: 

{ u ~ (x~, · · · , Xm) E 111:m X; 2 0 for all i and t W;X; <; 1} 

where wi > 0 (i = 1, · · · , m). All closed affine spaces are also examples satisfying (2). 

4 Application to the Linear Unmixing for Imaging Spectrome-
try 

In this section, we apply the Algorithm 1 in the previous section to the problem of an 
inversion of image spectrometry data. In the imaging spectrometry, a pixel is generally 
mixed by a number of materials present in the scene as follows (Chang et aL 2000; Clark 
et aL 1998; Heinz et aL 2001; Settle, 1993, 1996; Shimabukuro et al, 1991): 

r = Mo: + e, (5) 

where r = (r1 , · · · , r1)T E JR.1 is an observed image pixel , ME JR.l xp is a material signature, 
a: = (a1 , · · · , ap)Y E JR.P is an abundance vector, e is a noise or a measurement error, l 
is the number of spectral bands and p is the number of reference materials. Each ri 

represents observed reflectance of each band, and each ai represents abundance fraction 
associated with i-th material and o:i 's satisfy :Lf=1 o:i = 1 and o:i ~ 0 for all i = { 1, · · · , p}, 
each component mi,j of signature matrix M is represents the reference reflectance of i-th 
band of the j-th material reference spectral signature. 

Then, a linear unmixing method attempts to estimate the unknown abundance vector 
a from the observed image pixel r . Such an inversion process of the linear mixture 
model is required to achieve the tasks of material discrimination, detection, classification, 
quantification, etc. 

The estimation problem is the following polyhedron constrained inverse problem: 

Minimize llr - Mall(!) 
subject to a E S 
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where S :={a E JRP I ai 2::0 for all i = {L · · · ,p} and :Lf=1 ai = 1}, and 11·11 (1) denotes 
the standard norm defined in Euclid spae:e IR1

. 

The quadratic programming based methods are developed in (Settle, 1993; 
Shimabukuro et aL 1991) to solve (6). To avoid the computational complexity of these 
method, an penalty function based method is employed in (Heinz et aL 2001; Chang et 
aL 2000). These methods assume that the matrix M has full rank . Unfortunately this 
assumption does not hold in some practical situations because there are so many reference 
signatures and sometimes signature vectors may automatically generated from observed 
image (Chang et aL 2000; Ren et aL 2000). 

Algorithm 2: By letting ai := mi,• : (mi,• denote i-th row-vector) and K := S , Fact 1 
realize the algorithm to Minimize a function 8(u) over the solution of (6). D 

Remark 2 This algorithm does not require for M to be full rank. Tn addition, unlike 
conventional techniques, Algorithm 2 can impose additional criteria 8 to the problem (6). 
Indeed, if M does not have full rank , the solution of (6) may not be unique. For such a 
case, Fact 1 can find unique minimizer of 8 over the set of all solution of (6). We can 
take 8 as energy function or other function reflecting some spatial information. D 

Algorithm 3: By letting 8(a) := llr- Afall{l): Fact 2 realize the algorithm to 1vlinimize 
llr- Afall(l) over Fix(T). D 

Note: \Ve can find a solution of (6) by using attracting nonexpansive mapping T := Ps 
because Fix(Ps) = 5. 

Remark 3 Unlike conventional techniques, Algorithm 3 can deal with more flexible con
straint than that of (6) by substituting T. By using T := Ps 2::~ 1 wiPe;, we can find a 
point u E arginfxEK<~> llr-Mall(l) where Ci is nonempty closed bounded set and wi E (0, 1] 

and K<t> := arg infxES '2.:~1 wid2 (x , Ci) - This T enable us to handle additional a priori 
knowledges reflected by c;s, which is expected to be obtained from spatial or statistical 
information in the hyperspectral imaging. See (Yamada, 2001) for the properties of K <t> 
and other example of attracting nonexpansive mapping T. Fact 2 can also take other 8 
for residual minimization, which means Fact 2 potentially has capability to use various 
distances, which is more suitable for the hyperspect.ral imaging, for instance, Kullback-
Leibler Divergence 8(a) := :L~=l (mi,•: a) log (m;;; ,n) or Spectral Information Divergence 

(Chang, 2000) 8(a) := L~=l (mi,•: a) log (m;;;,o) + L~=l r i log (m;:,o). D 

Numerical Experiment 1 

\Ve choose 3 independent reference spectral signature vector from USGS Digital Spectral 
Library: splib(vers.4) for AVIRIS. m.,1 is record No.120 Copiapite, m.,2 is record No.231 
J arosite, m.,3 record No.171 Gaothite (m.,j denote j-th column-vector of the matrix M). 
These signature has band number l = 224. Figure 1 shows the reference spectral signature 
vectors m.,1, m.,2 and m.,3 . 

Abundance of each material are set to Copiapite 60%, Jarosite 30%, Gaothite 10%, 
thus abundance vector is a = (0.6, 0.3, 0.1 f. 

Sample observation data r are randomly generated by (5) with 30: I SNR gaussian 
error e. 

T hen, inversion was made by (a) the algorithm of Fac:t 1 (with 8(u) := !lull) and (b) 
the algorithm of Fact 2 (with T := Ps) and (c) FCLS algorithm (o = JQ-5 ) proposed 
in (Chang et al, 2000; Heinz et aL 2001). The simulation results of 3 data are shown in 
Table 1. 
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Figure 1: The reference spectral signatures. 

estimated abundance a llr- M Ps(a) 11rn 
(a) , Data No.1 (0.603551, 0.305009, 0.091440) 1.853264252604 x 1 o-2 

(b), Data No.1 (0.603404, 0.305436, 0.091159) 1.853141617604 x w- 2 

(c), Data No.1 (0.603405, 0.305436, 0.091160) 1.853141617794 x w-2 

(a), Data No.2 (0.606399, 0.304080, 0.089520) 2.044290704859 X 10-2 

(b), Data No.2 (0.605570, 0.304144, 0.090286) 2.043725005123 X 10-2 

(c), Data No.2 (0.605570, 0.304144, 0.090286) 2.043725005186 X 10-2 

(a), Data No.3 (0.596860, 0.302069, 0.101 070) 1.604000824838 x w-2 

(b), Data No.3 (0.597202, 0.301896, 0.100902) 1.603884893825 x w-2 

(c), Data No.3 (0.597202, 0.301897, 0.100902) 1.603884893852 x w-2 

Table 1: Result of Experiment 1. 

estimated abundance a llr- M Ps(a) ilrn 
(d) , Data No.1 (0.451246, 0.198576, 0.350178) 1.902200569304 x w-2 

(e), Data No.1 (0.638525, 0.326029, 0.035446) 1.898692271721 x w- 2 

(d), Data No.2 (0.453241' 0.196296, 0.350463) 2.101749344546 x w-2 

(e), Data No.2 (0.640458, 0.324286, 0.035257) 2.096505360051 X IQ- 2 

(d), Data No.3 (0.447391' 0.202981 , 0.349627) 1.622697188668 x w-2 

(e), Data No.3 (0.636149, 0.328172, 0.035679) 1.622479447754 x w-2 

Table 2: Result of Experiment 2. 

Numerical Experiment 2 

To examine the case that signature vectors are dependent , replace m*,3 by 0.6m*,1 +0.4m*,1 

and make same experiment with (d) the algorithm of Fact 1 and (e) the algorithm of Fact 
2. The simulation results of 3 data are shown in Table 2. 

The results of Experiments 1 and 2 show that the proposed methods gives almost 
same accuracy a.." that given by conventional method although the proposed methods 
only requires loose assumptions and ha.." flexi bility to optimality criteria and constraints. 

228 



References 

Brmschke, H. H., .J . lvf. Borwein and A. S. Lewis, 1997, "The method of cyclic projections 
for closed convex sets in Hilbert space," Contemp. Math., vol.204, pp.l-38. 

Chang, C.-L 2000, "An Information-Theoretic Approach to Spectral Variability Simi
larity, and Discrimination for Hyperspectral Image Analysis," JERE Trans. information 
Theory , vol.46, pp.1927- 1932. 

Chang, C.-T. and D. C. Heinz, 2000, "Constrained Subpixel Target Detection for Re
motely Sensed Imagery,'' TEEE Trans. on Geoscience and Remote Sensing, vol. 38, 
pp.l144- 1159. 

Clark, C. and A. F. Clark, 1998, "Spectral Identification by Singular Value Decomposi
tion," International Journal of Remote Sensing, vol. 19, pp.2317- 2329. 

Combettes, P. L., 1993, "Foundation of set theoretic estimation,'' Proc. TEEE , vol.81, 
pp.l82-208. 

GilL P. E. and W. !viurray, 1978, "Numerically stable methods for quadratic program
ming," Math. Pro_qramming, vol.14 , pp.349-372. 

Goldfarb, D. and A. ldnani, 1983, "A numerically stable dual method for solving strictly 
convex quadratic programs," Math. Programming, vol.27, pp.1-33. 

Heinz, D. C. and C.-I. Chang, 2001, "Fully Constrained Least Squares Linear Spectral 
Mixture Analysis ·Method for l'viaterial Quantification in Hyperspect.ral Imagery," IEEE 
Trans. on Geoscience and Remote Sensing, vol.39, pp.529-545. 

lusem, A. N. and A. R. De Pierro, 1987 "A simultaneous iterative method for computing 
projections onto polyhedra," STAM J. Contr. Optim., vol.25, pp.231- 243. 

Ogura, N. and I. Yamada, 2002a, "Non-strictly convex minimization over the fixed point 
set of the asymptotically shrinking nonexpansive mappipg," to appear in Numer. Funct. 
Anal. Optim. , vo1.23, Nos.1&2. 

Ogura, N. and I. Yamada, 2002b "Non-strictly convex minimi7.at.ion over the fixed point 
set of the bounded fixed point set of the nonexpansive mapping," submitted for publica
tion. 

Ren, H. and C.-I. Chang, 2000, "A Generalized Orthogonal Subspace Projection Ap
proach to Unsupervised ivlultispectral Image Classification," TEEE Trans. on Geoscience 
and Remote Sensin_q, vol.38, pp.2515-2528. 

Settle, J. J., 1993, "Linear Mixing and the Estimation of Ground Cover Proportions," 
International Journal of Remote Sensing, vol.1 4, 115 7- 1177. 

Settle, J. J ., 1996, On the Relationship between Spectral Unmixing and Subspace Pro
jection, IEEE Trans. on Geoscience and Remote Sensing,vo1.34, pp.1045-1046. 

Shimabukuro, Y. E. and .l . A. Smith, 1991, "The Least-Squares !vJixing Models to Gen
erate Fraction Images Derived from Remote Sensing Multispectral Data," IEEE Trans. 
on Geoscience and Remote Sensin_q, vol.29, pp.l6- 20. 

Stark, H. andY. Yang, 1998, Vector Space Projection - A Numerical Approach to Signal 
and Image Processing, Neural Nets and Optics, John Wiley & Sons. 

Wolfe, P., 1976, "Finding The Nearest Point in a Polytope," Math. Prog., vol.ll , pp.1 28-
149. 

Yamada, I. , 1999, "Approximat ion of convexly constrained pseudoinverse by Hybrid 
steepest descent method," Proc. of 1999 IEEE international Symposium on Circuits 
and Systems, vol.5, pp.37- 40. 

229 



Yamada, L 2001 , The hybrid steepest descent method for the variational inequality 
problem over the intersection of fixed point sets of nonexpansive mappings, in Tnherentlu 
Parallel Algorithm for Feasibilitu and Optimization, (D. Butnariu, Y. Censor, and S. 
Reich, Eels.) , Elsevier. 

Yamada, I., N. Ogura, Y. Yamashita and K. Sakaniwa, 1998, "Quadratic optimization 
of fixed points of nonexpansive mappings in Hilbert space," Numer. Funct. Anal. Optim. 
vol.19, nos.l&2, pp.l65-190. 

Zeidler, E., 1990, Nonlinear- Functional Analusis and its Applications, TT/ B - Nonlinear 
Monotone Operator, Springer Verlag. 

230 



DERIVING QUANTITATIVE MONITORING DATA RELATED TO ACID DRAINAGE USING MULTI
TEMPORAL HYPERSPECTRAL DATA 

Cindy Ong1 and Thomas Cudahi 

Acid drainage (AD) has been recognized as one of the major problems facing the Australian mining 
industry. Much of Australia has a semi-arid to arid climate and is sparsely populated. The impact of AD is 
therefore less here than in many other countries. Nevertheless, community and shareholder expectations, and the 
globalization of Australian mining company activities, have ensured the industry is committed to best practice and 
due diligence in managing AD. 

Mapping the spatial extent of the AD affected areas, let alone monitoring the effectiveness of remediation 
programs has been difficult because of the cost and limitations of current methods. Therefore, low cost, accurate, 
spatially comprehensive methods for assessing the extent of affected areas, as well as the effectiveness of any 
subsequent containment and remediation programs is clearly necessary. Swayze et al. ( 1998) have shown the great 
potential of A VIRIS imaging spectrometer data for locating acid-generating minerals. However, no such account 
has been recorded in Australia and the accurate quantification of AD using hyperspectral techniques, such as 
measurement of surface pH level and the amounts of associated heavy metals, has not yet been demonstrated. 

This study aimed to develop and demonstrate operational methods for deriving critical environmental 
parameters related to AD using hyperspectral data. The study site is the Brukunga abandoned pyrite mine in South 
Australia where a multi-temporal dataset has been acquired from 1998 to 200 I. 

I Introduction 

The abandoned Brukunga Pyrite Mine is located in the Mount Lofty Ranges and is 50 kilometers east-south-east of 
Adelaide, the capital of South Australia. It was developed in the early 1950s to produce pyrite as a source of sulphur 
for the manufacturing of superphosphate fertilizer. The richest pyrite zones were mined and a concentrate was 
produced for processing into sulphuric acid at Port Adelaide. The acid was used to convert insoluble rock phosphate 
into a soluble fertilizer. About 300 000 tons of ore were mined annually, and the pyrite concentrate railed to the 
Sulphuric Acid Pty Ltd plant at Birkenhead, a northwestern suburb of Adelaide. 

Closure of the open pit mining operations in 1972 left large exposed quarry faces and benches, waste rock dumps 
and tailings from the flotation treatment plant. These, along with natural rock outcrops in the are~ contain remnant 
pyrite that will potentially oxidize and leach high levels of dissolved metals and acids. 

A study conducted by Agnew ( 1994) found that there is potential for 300 000 tons of sulfuric acid to form. The 
potential health and environmental impact is considered to be one of the largest in Australia as the mine is 
surrounded by a town site and the nearby Dawesley Creek is used for agricultural and recreational purposes. 

2 Methods 

2.1 Field and Laboratory Study 

The laboratory study was conducted to develop an understanding for the relationships between spectral data 
and physicochemistry (mineralogy, chemistry, pH). Concurrent with the 1999 airborne acquisition, field samples 
were collected from 43 locations across the mine environment. These were characterized in the laboratory using an 
ASD-Field Spec, collecting spectral data in the 350-2500 nm range, and a PIMA-SP, collecting higher resolution 
spectral data in the 1300-2500 nm SWIR range. Independent measurements of chemistry and mineralogy were 
made using XRD and chemical analysis from a commercial laboratory to measure heavy metals, pH and electrical 
conductivity. The pH was measured on the soil samples using a I :5 ratio sample to water to an accuracy of 0.0 1. 

1 CSIRO Exploration and Mining (Cindy.Ong@csiro.au) 
2 CSIRO Exploration and Mining (Thomas.Cudahy@csiro.au) 
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2.2 Airborne data 

Airborne hyperspectral data (HyMap (http://www.intspec.com) were acquired over the Brukunga Mine in April 
1998. The 128 channel HyMap4 data (450-2500 nrn) were acquired at 5 meter pixel resolution. Three additional 
datasets were acquired over the next three years at approximately the same time each year but at 3.5 meter pixel 
resolution. 

Atmospheric correction, bi-directional reflectance distribution functions (BRDF), calibration and cross-calibration 
are essential issues to be considered when using airborne hyperspectral data for multi-temporal monitoring. The 
successful implementation of the laboratory results to the airborne data depended on successful cross-calibration of 
all the datasets. To achieve this, the airborne data were first processed to remove instrument, atmospheric and bi
directional reflectance distribution function (BRDF) effects. The HyMap datasets were reduced to apparent surface 
reflectances using Atmospheric Correction Now (ACORN) (http://www.aigllc.com). Ground validation data from 
three man-made invariant sites were collected proximal to the mine site. These targets consist of three homogenous 
large areas (>15 by 15m each) of concrete paving bricks, concreted pavement and bitumen. These data were used 
to remove artifacts associated with incorrectly modeled atmospheric conditions including systematic errors in 
estimating the water vapor bands at 1400 and 1900 nm, the 760 nm 0 2 and the 2050 nrn C02 features, as well as 
residual instrument effects. 

Instrument wavelength calibration was performed on each year's dataset, hence waveband centers and widths differ 
for each acquisition. Thus, spectral resampling was performed on the 1998, 1999 and 2000 data to produce 
comparable results between the four dates. After spectral resampling, each pixel's spectrum was normalized with 
respect to its own mean reflectance of all wavelengths. The normalization was applied to all the datasets to remove 
differences seen in the overlaps between adjacent flight lines. These differences are related to residual radiative 
transfer correction differences, topographic shading and wavelength-independent and multiplicative BRDF effects. 

3 Results 

3.1 Laboratory Analysis 

Partial least squares (PLS) (Haaland et al., 1988) explores for linear correlations between multivariate data 
and a parameter of interest. In this study, PLS analysis was performed on the VNIR-SWIR spectral data and and pH 
measurements of the field samples. If a significant linear correlation is found, then the resultant linear comibination 
of bands that provides this correlation can be used to assess which wavelengths are critical. This linear combination 
of bands is called the final regression coefficient (FRC), which is a linear combination of weighted spectral bands 
that transforms each input spectrum to a predicted value of the parameter of interest. The spectral bands showing 
high FRC weightings, positive or negative, can be interpreted as bands that are important for the related correlation. 

Figure 1 shows the results of the partial least squares analysis. To assist in the interpretation of the FRC, typical 
secondary minerals related to AD, namely ferrihydrite, hematite, goethite and jarosite (plotted in navy, blue, green 
and cyan, respectively) are also plotted. In this analysis, the wavelength regions with large weightings are centered 
at 437,582, 910, 1917 and 2267 nm (black arrows show their location). Relating these high FRCs to spectral 
attributes of the AD-related secondary minerals, the highest contribution is attributed to the ferric iron absorption 
band centered at 582 nrn caused by a charge transfer absorption (Curtis, 1985). Superimposed on this broad feature 
is a sharper and smaller excursion of the FRC related to a small feature at 437 nrn attributed to jarosite. Equally 
important is the 910 nm ferrous iron crystal field absorption (Curtis, 1985). It is interesting to note the comparison 
of the contribution of the combined 910 nrn and 437 nrn features relative to the 2267 nm jarositefeature, which 
although has significant weightings, is nonetheless much smaller. Taken altogether, this result implies that pH 
predictions are related primarily to ferric iron mineralogy. Given that much of the correlation is driven by the 
wavelengths less than 550 nm, it is important that additive atmospheric effects are properly corrected when applying 
these FRCs to remotely sensed data. Note that the high FRC weightings at 1917 nrn, related to water, would not be 
detectable in airborne data because of strong atmospheric absorption. 
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Figure I : Final regression coefficient results from partial least squares analysis of pH (red) and spectra 
plotted in conjunction with typical AD related secondary minerals (blue, dark blue, cyan and dark green). 
The arrows illustrate high coefficients. 

3.2 Airborne data 

The result from the laboratory analysis was used to enable predictions of pH from the fully corrected and 
calibrated airborne hyperspectral imagery. The resultant pH maps are shown on Figure 2. Spectral-based masking 
was applied to the derived products in order to remove small commission problems, including man made materials 
in the township and areas of standing water. All pixels with pH> 7 were also masked. These relate essentially to 
pixels with a significant vegetation component. The four dates of predicted pH maps are presented over gray-scale 
albedo image backgrounds in Figure 2. These are color coded for the range of pH values from <2 to 7 from red 
through to blue. 

These predicted maps of surface pH effectively demonstrate the capabilities of airborne hyperspectral data for 
spatially mapping of critical AD information over a multi-temporal sequence. This series of maps can then be used 
to assess the success of rehabilitation and/or remediation procedures used as part of the mine environment 
management practices over the four years. For example, they may be used to assess the remediation efforts at the 
North-Eastern waste rock dump (marked A on Figure 2) identified previously to potentially be acid generating 
materials. The multi-temporal sequence shows this area to contain pH of 4-6 and this value remains constant over 
the monitoring period possibly showing this area to be of a fairly stable nature. Conversely, another example is the 
mine benches that span the Western extent of the mine and marked Bon Figure 2. Major changes are mapped in 
this area over the four years evolving from an average pH value of 4-6 to pH of 4 and below. This sequence of pH 
maps is able to map the spatial extent of the areas that may need further attention or evaluation of remediation 
strategies as well as determine the acid generating potential of these affected areas. . 
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Figure 2: Time series pH predictions derived from hyperspectral data collected between 1998 to 2001. A marks the North Western waste rock dump 
and B marks the mine benches. 



3.3 Validation of pH maps 

The accuracy of the 1999 map was checked with laboratory pH measurements of field samples collected also in 
1999. The first validation site consists of samples collected along a wall of a filled tailings dam at the site of the 
acid treatment facility (Site C in Figure 2). The pH mean and STD of samples is pH 2.31 +/- 0.44 which is 
consistent with the mean airborne prediction for this site of pH 2.4. The airborne and field spectra of this site also 
compares well, with both showing jarosite-related ferric iron absorption at 930 nm and jarosite-related hydroxyl 
absorption at 2265 nm. The second validation site was a transect along a mine bench (SiteD in Figure 2). A total of 
I 0 samples were collected along this transect. Comparing the transect data and the pH map, there is good 
correlation between the airborne predicted (pH 4.50 +I- 0.45) and field sample (pH 4.05 +I- 0.51) pH values. 

4 Discussion and conclusion 

The results from the laboratory study showed that pH is related to iron mineralogy.· From this information, 
a model was developed to predict pH from hyperspectral data. It was shown that it is possible to use this laboratory
derived model to produce pH maps from a multi-temporal airborne hyperspectral dataset. However, for predictions 
of pH to be accurately derived from the airborne spectral data or other ground spectral data, apart from those that 
formed the calibration set, it is important that proper calibration of the dataset to accurate ground reflectances be 
obtained. Cross-calibration between airborne and laboratory sensors are also important considerations. 

It was shown that is it possible to derived maps of pH from a multi-temporal dataset using the pH model 
developed in the laboratory. However, to be able to use the data in a quantitative manner, further work has to be 
undertaken. This include for the laboratory investigations: ( 1) the collection of a comprehensive set of calibration 
and validation data to build a robust model for the predictions of pH from these data; (2) understanding the 
secondary minerals produced from AD; and (3) the changes related to environmental conditions; and for the 
airborne processing: (4) methods for proper correction of the airborne dataset to accurate ground reflectances 
especially in view of the stability of the VIS region for mapping iron mineralogy. 
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USING A VIRJS IMAGERY TO MAP INVASIVE PLANTS ON RANGELANDS: 

1.0 INTRODUCTION 

LEAFY SPURGE IN NORTHEASTERN WYOMING 

Amy Parker Williams 
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and 
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Invasions of exotic organisms have been proposed as one of the largest components of global environmental 
change, second only to habitat destruction (Vitousek et al. 1996). Leafy spurge, Euphorbia esula L. (sensu Jato), is 
only one of hundreds of successful exotic plant species that have invaded North America. It is an adventive, 
perennial weed that infests approximately 1.2 million hectares ofland in North America (Lajeuness et al. 1999). Its 
distribution includes the northern Great Plains ofthe U.S. and the prairie provinces of Canada (DeLoach 1997). It 
often forms dense stands that displace native vegetation and useful forage plants on rangelands and in riparian 
habitats. Infestations of leafy spurge destroy the quality of grazing lands for cattle and horses (Hein and Miller 
1992), degrade the forage base and structure of wildlife habitat (Trammell and Butler 1995), decrease plant diversity 
(Belcher and Wilson 1989), and reduce land value (Leistritz et al. 1992). 

Using remotely sensed data to map leafy spurge would provide a valuable tool for documenting leafy spurge 
distribution and infestation levels over larger regional areas. Differentiation of individual green plant species can be 
problematic because all green plants have similar spectral characteristics. Leafy spurge is a good candidate for 
detection via remote sensing because the distinctive yellow-green color of its bracts is spectrally unique when 
compared to the co-occurring green vegetation (Everitt et al. 1995). Because spectral detail is necessary for 
differentiating similar materials, high spectral resolution data is the most appropriate data for mapping individual 
plant species with a high level of accuracy and precision (Clark et al. 1995). Imaging spectrometers, or 
hyperspectral sensors, provide remotely sensed data in which each pixel in the image has a detailed set of reflectance 
values that allow interpretation of the pixel's spectrum. From its spectrum two primary characteristics can be 
identified, the physical materials of which the pixel is composed on the ground, and a quantitative estimate of their 
abundances. By using spectral mixture analysis to model each pixel spectrum as a linear combination of a finite 
number of spectrally distinct signatures or "endmembers," subpixel estimates of endmember abundance can be 
obtained (Adams et al. 1985, Smith eta!. 1990). The main goal of this research was to map leafy spurge from 
hyperspectral imagery using spectral mixture analysis to obtain sub-pixel estimates of leafy spurge cover. This was 
compared to ground estimates of leafy spurge cover to assess the ability ofhyperspectral remote sensing data to 
estimate leafy spurge cover. 

2.0 METHODS 

2.1 RESEARCH AREA 

The study area for this research is in Crook County in northeastern Wyoming, on the northwestern edge of the 
Black Hills, a small mountain range that extends from northeastern Wyoming southeast into western South Dakota. 
It consists of approximately 65 square-kilometers of private land about 8 kilometers west of Devils Tower National 
Monument (DTNM). The land is used extensively for livestock grazing (cattle and sheep) with some areas of 
dryland farming and hay production. 

·Building 007 Room 104, 10300 Baltimore Ave., Beltsville, Maryland 20705 (email: erhunt@hydrolab.arsusda:gov) 
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The vegetation of the study area is a mosaic of ponderosa pine (Pinus ponderosa) communities, grasslands, 
sagebrush-grasslands, and pine-juniper (Juniperus scopulorum) woodlands. Riparian areas are characterized by 
willow (Salix spp.) and plains cottonwood (Populus deltoides) communities, with bur oak (Quercus macrocarpa) 
and green ash (Fraxinus pennsylvania) commonly occurring in draws. Elevations in the study area range from 1219 
m along the Belle Fourche River to 1584 mat Missouri Buttes along the northern border of the study area. The 
average annual precipitation is 442 mm. Leafy spurge is very well established in most of the study area. 

2.2 ACQUISITION AND ATMOSPHERIC CORRECTION OF A VIRIS IMAGERY 

Airborne Visible I Infrared Imaging Spectrometer (A VIRIS) imagery was acquired over the study area in 
northeastern Wyoming on July 6, 1999. The imagery was from a NASA ER-2 aircraft flown at an altitude of 20 km 
with each pixel representing a ground area of approximately 20 x 20 m (Green et al. 1998). Each A VIRIS scene was 
first radiometrically corrected by the Jet Propulsion Laboratory. It was atmospherically corrected to apparent 
surface reflectance using Version 3.1 of the ATmosphere REMoval Program, or ATREM (Gao et al. 1993, Goetz et 
al. 1997). Due to the limited range of field spectroradiometer data (350- I 050 nm) and to absorption artifacts in the 
corrected A VIRIS data, a spectral subsample of the A VIRIS data was taken. A VIRIS bands 6 through 68 ( 418 -
I 000 nm) were used in the final analysis. A visual comparison of A VIRIS reflectance spectra with ground 
reflectance spectra (Fig. I) showed very good correspondence; therefore, we did not perform further image 
correction. 
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Figure 1. Correspondence of corrected Airborne Visible /Infrared Imaging Spectrometer (AVIRIS) data 
with averaged field spectroradiometer data. 

2.3 FIELD SPECTRORADIOMETRY 

Field spectroradiometer data were collected in late June 1999 about two weeks before the A VIRIS data 
acquisition between I 0:00 am and 2:00 pm on a clear, sunny day similar to the weather and sky conditions on the 
day of the A VIRIS overflight. Field reflectance spectra were acquired using an Analytical Spectral Devices, Inc. 
(ASD, Boulder, Colorado) FieldSpec UVIVNIR Spectroradiometer. It was not possible to collect field 
spectroradiometer data on the day of the AVIRIS overflight due to the unavailability of the ASD spectroradiometer. 

The ASD FieldSpec UVNNIR acquires continuous spectra from 350 nm to 1050 nm. Dark current (property of 
the detector) and white reference (Spectralon panel) corrections were made approximately every 2-3 minutes. Each 
spectrum acquired in the field consisted of25 individual measurements taken consecutively and averaged by the 

238 



FieldSpec. Measurements were acquired using the bare tip of the fiber optic cable, which had a 25 degree field of 
view (FOV). All measurements were made with the optic tip about 1.3 m above the target material resulting in a 
FOV diameter of about 0.50 m. 

The final spectrum for each material in the field was calculated through postprocessing, which consisted of 
examining sets of I 0 of the averaged field spectra, removing any extreme outliers, and averaging the remaining 
spectra. All field spectra were resampled to match the wavelengths and bandpass of the A VIRIS data, based on the 
1999 wavelength calibration file supplied by JPL. 

Two spatially and spectrally homogenous ground calibration sites were used in this study including a large 
gravel natural gas pumping station compound and the boulder field surrounding the base of Devils Tower. Each 
ground calibration site was characterized using the ASD FieldSpec Spectroradiometer along a series of transects 
with measurements being taken approximately every 5 meters using the same methods described previously. 

2.4 GROUND DATA COLLECTION OF LEAFY SPURGE COVER 

During 1999, the same year the A VlRIS data were acquired, extensive ground data collection was performed on 
field vegetation plots. Data were collected during the 2 weeks prior to and the 2 weeks following the A VlRIS flight. 
The ground plots were part of a concurrent study that documented leafy spurge percent cover in detail (Parker 
Williams 2001). The 67 circular vegetation plots had a radius of23 meters and were located within areas of leafy 
spurge infestation. Each plot's location was recorded using a selective availability encoded Rockwell Precision 
Federal Global Positioning System (GPS) unit (Rockwell International Corporation, Cedar Rapids, Iowa) and digital 
orthophotoquads. These locations were transferred onto the A VIRIS imagery from a digital orthophoto quad with 
an estimated positional error of I pixel. It has been shown that positional error results in conservative bias of image 
assessments (Verbyla and Hammond 1995); therefore, the unavoidable positional error introduced into this 
assessment would result in lower, or conservative, correspondence between A VIRIS and ground estimates of leafy 
spurge cover. 

Each plot was also classified on the ground into three different topographical position types, riparian, draw, or 
upland, and into two different vegetation types, woodland or prairie. Leafy spurge cover was estimated using broad 
cover classes (0-5%, 5-25%, 25-50%, 50-75%, 75-95%, and 95-100%) for five, randomly located 1-by-2-meter 
subplots. The mid-point value of the cover class was recorded as the leafy spurge cover for that sub-plot. Sub-plot 
values were then averaged to obtain an estimate of leafy spurge cover for the plot. 

2.5 IMAGE PROCESSING AND ANALYSIS 

The purpose of this research was to map and document leafy spurge using clear, repeatable methodology. With 
this goal in mind, it was unnecessary to spend time and resources trying to account for and classify all other 
materials and vegetation in the imagery. Therefore, Mixture Tuned Matched Filtering (MTMF) a specialized type of 
spectral mixture analysis was used. MTMF performs a "partial" unmixing by only finding the abundances of a few 
user-defined endmembers and not requiring that all image endmembers be identified (Harsanyi and Chang 1994). 

With the goal of isolating and identifying the leafy spurge endmember, the A VlRIS reflectance image was used 
as input into the minimum noise fraction (MNF) transformation (Green et al. 1988, Lee et al. 1990). The first twelve 
MNF transforms were carried forward in the analysis. Eigenvalues decreased and noise increased substantially after 
MNF transform twelve. To identify potential endmembers in the A VIRIS imagery, the 12 MNF transforms were 
used as input into a Pixel Purity Index (PPI) analysis (Boardman et al. 1995). A relatively high number of iterations 
(3,000) and a high PPI threshold value (5) were used to eliminate large numbers of pixels and to emphasize the 
unique pixels. The output of"pure" pixels from the PPI procedure was examined using multidimensional 
visualization software (RSI 1999). Pixels were interactively clustered and grouped based on their spatial 
relationship to each other and upon examination of their spectral signatures. An groups of pixels that did not 
contain a vegetation component as identified by their spectral signatures were removed from the multidimensional 
plot space, allowing finer discrimination of different vegetation pixels. The spectral signatures of each remaining 
pixel group were systematically compared to the resampled field spectra. The average spectral signature of a tightly 
clustered group of pixels matched the field spectra for leafy spurge. Leafy spurge's unique color in the visible 
(green to red wavelengths) and NIR wavelength regions was sufficient to differentiate it from other green 
vegetation. The leafy spurge endmember was used as the endmember of interest in a M ixture Tuned Matched 
Filtering (MTMF) analysis. This procedure was performed on two A VlRIS scenes (approximately I I km x 9 km) 
acquired over the study area. 

239 



In order to assess the variation between remotely-sensed and ground-measured cover of leafy spurge, data were 
stratified by both topographic position (riparian, draw, or upland) and vegetation type (woodland or prairie). The 
draw and riparian strata were combined due to a small sample size of riparian sites in the A VIRIS imagery. The 
relationships between MTMF estimates of sub-pixel leafy spurge abundance and ground estimates of leafy spurge 
cover were examined using simple linear regression analysis for all sites and for sites in each strata. 

3.0 RESULTS AND DISCUSSION 

3.1 FIELD SPECTRORADIOMETRY 

Field spectroradiometer data collected in the study area showed that the reflectance spectrum of leafy spurge 
differed from other types of common green vegetation (Fig. 2). It was easily differentiated based primarily on values 
in the 500-700 nm wavelength region. Leafy spurge was consistently brighter than other vegetation between 500 
and 650 run. It also differed from other vegetation in the shape and magnitude of the characteristic chlorophyll 
absorption features between 550-685 run. 
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Figure 2. Comparison of averaged field spectra for vegetation and soils. 

3.2 MIXTURE TUNED MATCHED FILTERING FRACTION IMAGES 

The output from the mixture tuned matched filtering (MTMF) analysis was a fraction image with values for 
each pixel representing the relative sub-pixel abundance ofleafy spurge, and an infeasibility image with values 
ranging from 1-12. Pixels with a high fraction value and a low infeasibility value(< 6) had a high percent cover of 
leafy spurge, while those with high infeasibility values were not classified as leafy spurge. All ground sites used for 
the MTMF comparison were located in leafy spurge infestations, and all of these sites were classified as leafy spurge 
in the analysis. 

Overall performance of the MTMF for estimating percent cover ofleafy spurge for all sites was good (Fig. 3, r 
= 0.69). A definite linear relationship exists between the MTMF fraction and the ground cover estimate. The ability 
to discriminate leafy spurge and achieve good estimates of canopy cover may be due to the unique growth habit and 
color of the bracts, which are closely packed and oriented upwards, forming a dense uniform canopy that reduces 
shadows and de-emphasizes the contribution of green leaves to the reflectance spectrum. 
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MTMF Fraction 
Figure 3. Regression of MTMF fraction values vs. percent canopy cover of leafy spurge from all ground 

data. 

3.3 EFFECT OF TOPOGRAPHIC POSITION AND VEGETATION TYPE 

Leafy spurge cover in sites located in draws and riparian areas(~= 0.72) was estimated slightly better than 
those located in upland areas (r2 = 0.68). Cover was also generally higher in draw and riparian sites than in upland 
sites. The better estimation of cover in draw and riparian sites may be due in part to variability in leafy spurge 
phenology in upland sites where moisture was less available in late June and July than in more mesic draw and 
riparian sites. As the summer progresses, leafy spurge bracts lose their distinctive yellow-green color and the plant 
is not as easily distinguished from other green vegetation. 

The MTMF analysis performed very well on sites located in areas of prairie, which included all sites not in the 
woodland type(~= 0.79). In contrast, the MTMF analysis performed poorly in estimating leafy spurge cover in 
woodland areas(~= 0.57). These sites also had the largest variance of any of the types. This may be explained in 
relation to tree canopy obscuring detection from an aerial perspective and variations in tree canopy cover and view 
angle between sites. Materials are often obscured by forest canopies, especially when viewed at off-nadir angles. 
Also, positional error in woodland areas may have a larger effect on image to ground correspondence than in non
wooded prairie. However, the fact that leafy spurge can be detected in woodland areas at all is an encouraging 
demonstration ofMTMF. 

4.0 CONCLUSIONS 

Mixture tuned matched filtering (MTMF) has been reported as a superior method for detection of materials in 
hyperspectral imagery. It can outperform spectral mixture modeling and matched filtering, especially in cases of 
subtle, sub-pixel occurrences (Boardman 1998). It also has the added advantage in cases of mapping individual 
materials of not requiring identification of all potential endmembers. MTMF performed very well for mapping leafy 
spurge and estimating leafy spurge canopy cover. Its sensitivity for detecting and estimating leafy spurge were 
surprising. Leafy spurge has several characteristics that make it an ideal species for detection from remotely sensed 
data, so caution must be fostered when considering mapping other invasive species using hyperspectral data. Leafy 
spurge grows in large dominant stands, is a robust plant with a dense canopy, and has a distinctive color for a several 
week period during the growing season. All of these factors make it easier to map than many other invasive species. 
Its habit of forming large uniform stands with a dense canopy also ameliorate problems of positional error and non
linear spectral mixing, allowing good prediction. There was also a certain amount of uncertainty in the ground data 
collection, because it involved estimates using broad cover classes. However, keeping these things in perspective, 
mapping leafy spurge using hyperspectral remote sensing data is feasible and reasonably accurate for estimating 
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percent cover in broad cover classes. Obviously, mapping leafy spurge under tree canopies is problematic. 
Although this is one limitation of the method, results demonstrated that in open canopies that have leafy spurge 
growing in the understory, it dominates the spectral signature sufficiently to be detectable. The techniques presented 
here could possibly be used for constructing leafy spurge distribution and abundance maps with satellite 
hyperspectral data for larger regional areas. 
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There are now established procedures for extracting information from hyperspectral 
imagery data. The Envirorunent for Visualizing Images (ENVI) from Research Systems, 
Inc. it the defacto hyperspectral image processing software package. The following are 
general steps for exploiting hyperspectral imagery (HSI) data when using ENVI: 

1. Compensate for atmospheric interference. The most commonly used program is 
the Atmospheric Removal (ATREM) program (Gao and Goetz, 1990; CSES, 
1999; Gao, Heidbrecht, and Goetz, 1999). 

2. Reduce the dimensionality of the data set using a Minimum Noise Transformation 
Boardman and Kruse (1994); 

3. Find the purest pixels (apices for a hypervolume enclosing theN-dimensional 
dataset) in the hypercube representing end-members in the data set and selecting 
the pixels with the highest probability of being end-members (Boardman, Kruse, 
and Green, 1995); 

4. Visualizing the highest probability end-member pixels by projecting them into 
two-dimensional space (Boardman, Kruse, and Green, 1995); 

5. Linearly urunix the remaining pixels based on the end-members. Map the results 
to show relative proportions using Matched Filters, Mixture Tuned Matched 
Filtering™, Spectral Angle Mapper™, or some other classification procedure. 

This is the most widely used approach for working with hyperspectral data by researchers 
external to the U.S.G.S. Spectroscopy Laboratory. The U.S.G.S. Spectroscopy 
Laboratory developed its own HSI image processing software. Their program, called 
Tetracorder, uses a significantly different paradigm to extract information from HSI data. 
Both ENVI and Tetracorder have much in common, but there are significant fundamental 
differences. Some of those differences are explored in Penn and Livo (2001). 

There are other ways to extract information from HSI data. One such method uses ratios 
of hyperspectral data. Band ratios have been used extensively for manipulating 
multispectral data, but have never been embraced by the HSI community. The purpose of 
this paper is to present a quantitative basis for using band ratios, focusing on the optimal 
conditions for using band ratios. 

Band ratios represent an opportunity to eliminate false-assumptions and over 
generalizations from the process of atmospheric removal and subsequent spectral 
processing. In fact, it is shown in this paper how the proper use of band ratios obviates 
the need for atmospheric correction for HSI data. 
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RADIOMETRIC CONCEPTS 

The total solar irradiance reaching the earth's surface is equal to: 

E~ = J~ (E0).T8 cosB0 + Ed;. )d). 
0 A, 0 

where Eg is the global irradiance on the surface, EO). is the spectral 
solar irradiance at the top of the atmosphere, TB0 is the atmospheric 

transmittance at angle B, Ed;. is the spectral diffuse sky irradiance 

(1) 

Radiance is defined as the sum of the energy measured at the sensor including 
contributions from all the areas within the instantaneous field of view (IFOV), i.e., the 
target, surrounding areas, and the various scattering components of the atmosphere. The 
total radiance reaching the sensor (Ls) is the sum of the light from the target (Lr) and the 
contribution from the path radiance (Lp). Therefore, 

and, 
Ls= Lp + Lr (W/m2/sr) 

Lr = L, +LA (W/m2/sr) 

(2) 

(3) 

where L1 is equal to the radiance directly reflected from the target and LA is the 
atmospheric contribution to the radiance coming from the target. Path radiance is the 
contribution to the total radiance at the sensor derived from scattering in the atmosphere 
and light from areas other than the target area. Also, the path radiance is not simply 
equal to the atmospheric contribution to the L1, LA f. Lp, passing through the atmosphere 
to the sensor. A summarization of methods for computing path radiance are found in 
Turner and Spencer (1972), Turner (1975, 1978), and Foster (1984). 

The actual amount of radiance reflected to the sensor from the target is very small and is 
equal to: 

(4) 

Vincent ( 1997) modifies equation ( 4) by adding a unitless multiplicative S factor called 
the "shadow/slope" factor. The S factor is closely related to the bi-directional reflectance 
function (BDRF), i.e., all surfaces are non-Lambertian reflectors. Most equations 
concerning atmospheric compensation ignore this aspect of radiance calculations. The S 
factor is unique for each part of the earth's surface and makes a significant contribution 
to Ls. Vincent ( 1997) also adds sensor specific contributions to the Ls, including 
electronic gain as a multiplicative factor and electronic offset as an additive factor. 

No known atmospheric models account for the contributions of these last three factors 
primarily because the first is completely unknown and the last two are sensor dependent. 
If the sensor is calibrated, then the gains and offsets for each channel are known and can 
be applied to the data. Vincent and Thomson ( 1972) helped pioneer the use of band 
ratios to deal with the S factor in HSI data. 
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DISCUSSION- CONVERTING RADIANCE TO REFLECTANCE 

The previous sections on atmospheric compensation are designed to outline common 
thinking for converting radiance values to reflectance values. Many members of the HSI 
community work exclusively in the reflectance domain to the exclusion of radiance. 
Significant misunderstandings have occurred over the veracity of using radiance versus 
reflectance data. The basis for the current bias toward reflectance data has its roots in the 
origins ofHSI. The "founders" ofhyperspectral imaging at JPL (Gregg Vane, Alexander 
Goetz, Larry Rowan, etc.) and Johns Hopkins (Grahain Hunt and John Salisbury) either 
were geologists by training, or had a strong geologic mindset. Consequently their 
interests in spectroscopy were directed to minerals. Using a Nicolet 5 DXB, Nicolet 
System 510 interferometer spectrometer or a Beckman 5270 Spectrometer (2 nm spectral 
sampling resolution) reflected light spectrum for specific minerals were measured under 
laboratory conditions. Once the airborne imaging spectrometers were built and flown, 
the desire was to relate the signals collected at altitude to the laboratory spectra for 
individual minerals. The logical approach was to model and remove the atmospheric 
contribution from the radiance data to make the signal look more like the spectra 
collected in the laboratory. Atmospheric models such as 6S, LOWTRAN, MODTRAN, 
etc. were developed to remove the atmospheric effects based on radiative transfer theory. 
Most atmospheric models such as LOWTRAN, MODTRAN, etc., generate a series of 
offsets and gains to be applied across an entire image to convert radiance data to 
reflectance data. 

The heterogenous nature of the Earth's atmosphere requires atmospheric corrections be 
done on a pixel-by-pixel basis (Gao and Goetz, 1990). The development of the 
Atmosphere Removal (A TREM) program resulted from this idea (Gao, Heidebrecht, and 
Goetz, 1999). A TREM is presented here as an example of one of the premier 
atmospheric compensation models. Other models are based on similar physical 
principles and/or have less fidelity than A TREM. 

ATREM has three specific assumptions (Gao, Heidebrecht, and Goetz, 1999): 1) the 
reflecting surface is horizontal; 2) the surface is a Lambertian reflector, i.e., light is 
reflected equally in all directions; and 3) C02, CO, CH4, 0 2, 0 3, and N20 are uniform 
across a hyperspectral scene (H20 varies both spatially, vertically, and temporally). 

A TREM has two shortcomings: 

1. A TREM overcorrects in the blue wavelengths. The over correction in the blue 
wavelengths must be manually fixed. 

2. To correctly generate reflectance data using ATREM, a user must go to the field 
and collect representative spectra using a handheld spectroradiometer either 
during the overflight or as soon as possible thereafter. Using the spectra 
gathered in the field, a series of gains and offsets are generated and applied to the 
output reflectance data from ATREM. 
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As stated in the ATREM User's Manual, A TREM uses an "approximate atmospheric 
radiative transfer model." Of the thirty or so atmospheric gases, only seven (H20, C02, 

CO, CH4, 0 2, 0 3, and N20) have significant features in the 0.4-2.5 urn region. A TREM 
focuses on removing the effects of H20 because, with few exceptions, water dominates 
atmospheric absorptions for wavelengths from 0.4-2.5 ~m. Also, the strength of the H20 
absorption features are such that they hide weaker absorption features from other gases 
(Clark, 1999). ATREM calculates the water content for each pixel by using a three
channel ratioing technique for water vapor features centered at 0. 94 J.Lm and 1.14 J.Lm. 
Scattering terms for surface reflectance are calculated using the 6S code of Vermote, et. 
al. ( 1996) and a user selected aerosol model. Atmospheric transmittance for each gas is 
calculated using the Malkmus (1967) narrow band model and a user-selected standard 
atmospheric model (temperature, pressure, and vertical water vapor distribution). 

A TREM relies on a number of assumptions that are only correct to a first approximation 
and, as hyperspectral instruments achieve greater spatial resolution, these assumptions 
will produce more pronounced output errors. Software programs like ENVI contain 
methods such as the Empirical Flat Field Optimal Reflectance Transformation (EFFORT) 
to remove cumulative corrections associated with calibration and atmospheric correction 
associated with A TREM (Boardman, 1998). Another source of error in A TREM is 
selection aerosol and standard atmosphere models to derive a reflectance spectrum by the 
user. lfthe user is not very adept with ATREM, then the resultant spectrum may not 
correlate with actual surface reflectance. In addition, small absorption features may be 
completely obliterated based on an incorrect assumption or poorly selected model. 
A TREM is still one of the best methods for compensating for atmospheric contributions 
to hyperspectral imagery, but it does have limitations, as do all radiative tranfer-based 
models. The solution to these shortcomings may be found in the empirically simple 
method of ratioing bands. 

BAND RATIOS 

Under certain conditions, ratioing two bands can eliminate the shortcomings of radiative 
transfer models and greatly expedite the processing and exploitation of hyperspectral 
data. Band ratios have been used extensively since the early 1970s (Vincent and 
Thomson, 1971; Vincent and Thomson, 1972; Vincent, 1973, Rowan et. al. , 1974; Goetz, 
1975; Ashley and Abrams, 1980; Rowan and Kahle, 1982; Podwysocki et. al., 1983; 
Fraser and Green, 1987; Crippen, 1988; Davis et. al., 1989; Rowan et. al., 1992; Crippen, 
2001) to extract information from satellite imagery and airborne spectral scanners. These 
applications have been mostly constrained to multispectral imagery data, although recent 
work (Vincent, 1997; Clark, 1999; Mustard and Sunshine, 1999; Jengo, 2001) suggests 
that band ratios are equally applicable to HSI data. 

Band ratios cannot be done haphazardly. Crippen ( 1988 and personal communication) 
detailed the problems that can occur with band ratioing and how to easily fix them. 
Vincent ( 1997, and personal communication) outlines a similar approach that essentially 
involves performing a dark subtraction on each band prior to ratioing the bands. 
Performing a dark subtraction removes additive radiance terms (electronic noise and 
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offset, and atmospheric path radiance) (Jengo, 2001). Using a dark subtraction assumes 
that the lowest Digital Number (DN) for each band should be equal to zero and the reason 
the first DN #- 0 is due to atmospheric contribution, i.e., scatter, local slope/shadow, S, 
factor, and electronic gains and offsets. This is especially true for the near infrared 
wavelengths. Clear water absorbs I 00% of the near infrared light, but often a 
spectrometer shows a DN value for water greater than zero. The atmospheric 
contribution for that particular channel, due to atmospheric scattering, is its DN, because 
there should be no reflectance value for that wavelength over water. 

Another important rule for band ratios is that the bands being ratioed must not differ in 
wavelength by more than a few tens of nanometers. If the bands being ratioed are 
significantly far apart, then the atmospheric contribution, and sensor gains and offsets 
could be very different, invalidating the results of the ratio. For this reason most band 
ratios applied to HSI data are located such that one band lies in the center of a known 
sharp absorption feature and the other band lies nearby on the shoulder of the feature. 

Stated another way, Ls values can be calculated in the following manner: 

Ls = f~(LpL,TBv )dA-
"' 

where L5, and L5, are sampled close together, LP, ::::: LP, and TBv, ::::: TBv,, reducing the 

L, 
ratioed values to - ' . From this reasoning, it is understandable why band ratios 

L, 
2 

(5) 

eliminate the need for atmospheric corrections as long as the user knows where specific 
and characteristic absorption features are found in a spectrum. 

Interestingly, there is no doubt as to the efficacy of using band ratios on multispectral 
data. There is no controversy despite the fact that the atmosphere responds to photons 
non-linearly over the 0. 7-1.0 ~-tm wide bands commonly ratioed in multispectral imagery 
data. When band ratios are utilized in HSI data, based on the rules given above, they are 
spectrally so close together that atmospheric effects should certainly be nearly equal for 
the two bands. Assumptions such as a horizontal surface and a Lambertian reflector are 
empirically addressed by band ratios because each is effectively the same for two closely
spaced bands (see equation 5). Band ratios are not limited to radiance data alone; they 
work equally well on reflectance data assuming that atmospheric compensation was done 
correctly. 

Band ratios are a coarse, quick-check tool for examining radiance data (figure 1). This 
technique enables analysts to verify the presence of known materials based on absorption 
features. However, band ratios are not the answer to questions such as which cation, 
Mg2

+ or Na +, is substituted into the lattice of montmorillonite. This type of detailed 
chemical analysis requires reflectance data. 
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1a 1b 
Figure 1 -Results of band ratios to find alunite in Cuprite 1995 A VIRIS scene. 

a) radiance data, b) U.S.G.S. radiative transfer ground calibrated reflectance data 

DERIVATIVE RATIO ALGORITHM 

Further supporting the validity ofband ratios is the work of Philpot's (1991) using 
derivative ratios. Derivatives have been used to analyze multispectral and hyperspectral 
data to extract information about minerals, plants, and soils (Foster, 1984; Bruce and Li, 
200 1 ). This more complex implementation of the band ratio concept is based on taking 
derivatives of the radiative transfer equation called the Derivative Ratio Algorithm 
(DRA) (Philpot, 1991). The goal ofthis approach is to determine the conditions for 
which the derivative algorithm is not subject to atmospheric interference. DRA uses the 
ratio of the nth derivative at A.1 over a second derivative at A.2• DAR demonstrated under 
certain conditions to obviate the need for atmospheric compensation. Equation (2) is 
modified by Philpot (1991) to the following: 

Where Tis atmospheric transmittance, Ed is the downwelling irradiance, R, is target 
reflectance, and L *is atmospheric path radiance. The first derivative of equation (6) is 
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dLs = TE R [ dRt + dEd + dT l + dL • . 
dA_ d ' R,dA EddA TdA dA 

When the slope of the curve is sufficiently steep, the reflectance term dominates the 
equation yielding 

(7) 

(8) 

Eliminating the effects of the atmospheric contribution in equation (8) occurs only under certain conditions 
and wavelengths such that 

T(A 1)EAA- 1)= 1 
r(;._ 

2
)EAA-

2
) • 

If equation (9) holds, then the ratio of the first derivatives is equal to the ratio of the 
reflectance values at wavelengths An, i.e., 

(dL) dA-)iA- I 

(dLS IdA )!A- 2 

Equation (8) can be generalized for all derivatives 

::::: 
(dRI IdA )iA- I 

(dRrfdA-)iA- 2 • 

dnLs :::::TE d: R1 

dAn d dAn 

Equation (11) is further generalized by Bruce and Li (2001) to: 

df = f(A- 2)- f(A- ,) = f(A- z)- f(A- ,) 

dA A 2-A I LU 

(9) 

(10) 

(11 ) 

(12) 

The tJ..A. is critical because of inherent atmospheric heterogeneities. The maximum 
acceptable value for!:!../...:::; 50 nm (Philpot, 1991 ). The other critical factor is that the curve 
must be sufficiently steep for this method to be valid. This is also true for band ratios in 
general; they function best for sharp absorption features. The ORA is more complex, yet 
consistent with simple band ratios. 

CONCLUSIONS 

Applying band ratios to radiance data has significant advantages over converting radiance 
data to reflectance but there remain some limitations: 

1) A dark subtract must be performed on the imagery data. The requisite for a dark 
subtract is a large dataset with at least some areas with low reflectance values; 
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2) The DRA suggests that bands used for ratioing must be :S 50 run apart to ensure 
that the numerator and denominator multiplicative factors are :::: 1; 

3) Requires sharp features associated with SWIR portion of the electromagnetic 
spectrum; 

4) Susceptible to calibration errors. 

Once these conditions are met, band ratioing provides a tool for quick assessment of 
materials present in hyperspectral data. 

Performing high-quality utilization of hyperspectral data requires considerable effort to 
remove atmospheric interference effects. This type of fidelity requires accessing the 
target area as near as possible to the time of the sensor overflight to collect spectra using 
a hand-held spectrometer. Most computer programs to compensate for atmospheric 
interference are based on radiative transfer models of the atmosphere containing 
assumptions and generalizations regarding the atmosphere. Limiting the applicability of 
such models are there inability to account for non-Lambertian surfaces and sensor gains 
and offsets. Simple band ratios, when done properly, can efficiently produce high 
quality results from hyperspectral data. 
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INTRODUCTION 

Effective tactical troop deployment can be negatively impacted by a lack of current and 
accurate lines of communication (LOC) information. For example, little, if any NIMA 
and ADRG data exist for locations such as East Timor, Bosnia, Somalia, or Afghanistan. 
Because of funding constraints and the sheer size of the problem, this situation is unlikely 
to change in the near term and will continue to unnecessarily complicate the already 
difficult task of troop deployment and logistical support for troop deployment. 
Additionally, while some engagements occur in rural areas, the trend is toward 
engagements in urban areas. 

Over the past several years, a variety of military, government, and civilian organizations 
have developed tools for automated feature extraction to significantly speed up the task 
of identifying and extracting LOC information from imagery for use in mapping 
applications (Maillard and Cavayas, 1989; Zlotnick and Carnine, 1993; Gee, 1994; 
Kahrig et. al., 1994; Lersch, Iverson, and West, 1994; Bullock et al., 1996; Couloigner 
and Ranchin, 2000). While some of these efforts have had limited success, constraints in 
computing power and the availability of data containing the requisite spatial as well as 
spectral characteristics have significantly hampered achievement of a complete solution. 

The primary goal of this system described here is to quickly extract LOC for use by 
military forces. They don't need the quintessential map, they need roads, and they need 
them fast. For this reason the threshold for success is based on the Pareto Principle or the 
80/20 rule. The Pareto Principle states that the first 80% of whatever is being done is 
achieved with the first 20% of the total effort. The converse is also true: 80% of the 
effort is expended completing the fmal 20% of a task. This is the metric used to 
determine the success for LOC extraction. 

Spatial resolutions of satellite imagery data have improved to the point that it is now 
possible to automatically map LOCs for most environments. These data are readily 
available in differing spatial and spectral resolutions and can be merged to provide the 
range of data products necessary to produce LOC maps. Moreover, computer speed 
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continues to increase dramatically, permitting even computationally intensive tasks like 
satellite image processing to be performed on a desktop computer. Consequently, the 
primary technological barriers to developing fast, efficient, and effective LOC 
recognition systems no longer exist. 

Hyperspectral imagery (HSI) offers significant advantages over panchromatic and 
multispectral imagery. Hyperspectral imagery is not a new type of imagery; it really is 
just more of the same data at finer spectral resolution. Previously interpreters were 
limited to broad bands ofthe electromagnetic spectrum (EMS). These bands "smeared" 
subtle features in the integrated signatures representing information about an imaged 
material. These details are only apparent when the wide bands of the EMS are split into 
1 00s and I OOOs of samples. This type of resolution requires a hyperspectral sensor. HSI 
data provides unprecedented capability for extracting previously hidden information ftom 
Imagery. 

Hyperspectral imagery complements high spatial resolution imagery by providing high 
spectral resolution data. Instead of having several very wide bands ranging in the tens of 
micrometers (f..lm), hyperspectral sensors have many bands with sampling measured in 
the tens of nanometers (nm). Sensors like the Jet Propulsion Laboratory's Airborne 
Visible & Infrared Imaging Spectrometer (A VIRIS) are regularly providing high-fidelity 
hyperspectral images composed of 224 samples at 10 nanometer (nm) intervals over the 
EMS from 400 to 2500 nm wavelengths. 

The Semi-automated Plug-In Tool for Feature Identification, Recognition, and Extraction 
(SPITFIRE) extracts lines of communication (LOC), i.e., roads and rivers, from digital 
imagery of urban environments and generates centerline vectors in ArcView shapefile 
format. SPITFIRE is capable of quickly extracting LOCs from digital imagery ranging 
from panchromatic to hyperspectral imagery (HSI). When HSI data is provided, 
SPITFIRE can also provide surface material types. This paper explores the techniques 
used to extract LOCs and determine material types using A VIRIS HSI data. 

BACKGROUND 

During fiscal year 1999, Army Space Command in Colorado Springs, Colorado drafted a 
proposal to the Military Exploitation of Reconnaissance and Intelligence Technology 
(MERIT) Board to develop a prototype tool for LOC extraction. The successful 
completion of the multispectral phase of SPITFIRE led to the development of a 
hyperspectral version implemented as a plug-in to Research System's Environment for 
Visualizing Images (ENVI) during fiscal year 2001. The basic ideas for extracting LOCs 
were carried over from Phase I. The significant difference in Phase II involved using HSI 
data to identify road surface material types. 

To take full advantage of the information in hyperspectral data, it was necessary to 
develop a hybrid knowledge-based system to identify surface material types. The 
tremendous range in urban surface material types led to the development of general 
categories of surface material types used for LOC extraction in urban environments, i.e., 
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concrete, asphalt, bare soil, and water. These general categories provided the basis for 
material identification using a combination of rules, neural networks, and fuzzy logic. 
The hyperspectral component of SPITFIRE was developed and tested using an A VIRlS 
scene acquired in July of 1997 west of Denver over the Front Range of Colorado. The 
AVIRIS scene was atmospherically corrected by the U.S.G.S. at the Spectroscopy 
Laboratory in Lakewood, Colorado. 

EXTRACTING LINES OF COMMUNICATION 

Lines of communication, i.e., roads, rivers, etc. have certain spatial and spectral 
characteristics. The chief requisite among these characteristics needed is spectral contrast 
between the road surface material and the off-road material. Finding the LOCs requires 
proper image preparation. Image preparation and extraction of the LOC is a three-step 
process: 

1) Finding the bands with the highest amount of contrast between the road surface 
and the non-road surface; 

2) Reduce the amount of information to only include the roads of interest; 
3) Connect adjoining pixels of interest along the LOC. 

Wavelengths with the maximal contrast can be found either empirically, using a 
statistical function like the Bhattacharyya distance (Chulhee and Landgrebe, 1993), or by 
performing a change of basis on the data set, i.e., a principle component transformation. 
Visual inspection of the average spectra of two areas of interest is a simple way to find 
those wavelengths providing the best contrast (Figure 1 ). Only the visual inspection 
technique and principle component transformations are covered here. 
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Figure 1 - Average spectra showing largest contrast between 
road surface and non-road surface 
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PRJNCIPLE COMPONENT TRANSFORMATION 

Finding a maximal contrast between road surface materials and non-road materials can be 
achieved by performing a principle component (PC) transformation. PC transformations 
are useful because of the high positive correlation normally found between bands in 
imagery data. The number of PC bands generated is equal to the total number of bands, 
n, in the image. A PC transformation rotates the coordinate axes around such that the first 
PC is parallel to the maximum amount of variance in the imagery data set. The second 
PC is orthogonal to the first PC and is parallel to that portion of the data containing the 
second largest amount of variance. The is process is continued until the nth axis is 
perpendicular to the (n-1)1

h and contains the next least amount of variance. The last 
couple of PCs generally contain mostly noise. 

It was empirically determined that subtracting the 41
h PC from 2"d PC generated a good 

contrast between the road surface and non-road surface materials. The complexity and 
time required to perform a PC transformation compared to simply using a visual test to 
find the bands with the highest contrast makes doing a PC transformation untenable. 

LOC EXTRACTION 

Once the bands with the highest contrast were found, it was obvious that even with the 
contrast there was too much high-frequency information in the imagery. This problem of 
high-frequency information was addressed by applying a low-pass filter to the image 
(Figure 2). 

a b 

Figure 2 - a) False-color image ofbands shown in Figure 1; 
b) Figure 2a smoothed with 3x3 low-pass filter. 

Once the image is prepared, the LOC extraction process is performed with a simple 
flood-fill. A flood-fill should be familiar to anyone using a computer paint program. A 
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flood-fill works by selecting the starting point of the feature to fill with the fill tool. 
Because the fill procedure is done using simple statistics it is quite rapid (Figure 3). The 
primary benefit of this approach is that it uses both the spectral and spatial nature of 
LOCs to constrain the bounds of the LOC. 

Figure 3- LOCs found using flood-fill method 

LIMITATIONS OF LOC EXTRACTION 

Spatial resolution restricts the size ofLOCs that can be effectively extracted. A single 
lane road is approximately 3-4m wide, a two-lane road is 6 - 8 m, and a four-lane road 
with a turning lane is approximately 25 m wide. While it is possible to extract subpixel 
features, this can lead to inaccuracies. The A VIRIS sensor when flown at 20 km has an 
instantaneous field of view (IFOV) of 1 milliradian yielding a nominal pixel size of:::::: 20 
m. At this pixel size four-lane roads are slightly larger than individual pixels making 
them easy to unambiguously identify and extract. Using the success metric of the Pareto 
Principle described above, most four-lane and some two-lanes can be extracted quickly. 
Extracting smaller LOCs can be easily achieved by flying the sensor lower with the same 
IFOV yielding pixels sufficiently small to extract one- and two-lane roads. 

Once the flood-fill finds the appropriate LOC, the next task is to generate centerline 
vectors. Using Able Software's R2V, commercial off-the-shelf raster to vector 
conversions tool, the LOCs are converted to vectors and exported as shapefiles for use in 
GIS systems. 

261 



MATERIAL IDENTIFICATION 

The primary reason for using hyperspectral data is to extract material types. Urban areas 
are spectrally complex (Gardner et al., 200 I; Small, 2001). For most researchers in HSI 
spectral complexity equates to collecting vast amounts of spectra for every possible 
substance that might be encountered and storing these spectra in a reference library. This 
is equivalent to carrying around an album containing a picture of every person you have 
ever met and comparing everyone you meet to this photo album! Humans don't do this; 
they have the capability of generalizing about faces. An example of our ability to 
generalize is demonstrated by the number ofpeople.who see a face on the surface of 
Mars. There are techniques pioneered in artificial intelligence that permit satisfactory 
generalization such as neural networks and fuzzy logic. 

REPRESENTATION 

In artificial intelligence (AI), it is generally understood that problem complexity is 
usually a function of representation. All intelligent human tasks involve some form of 
problem solving which is fundamentally a search problem. Recasting problems into 
different representations is just another way of constraining the search space. Seemingly 
intractable problems in one representation when recast into a different domain are easily 
solved (Raphael, 1976; Rich, 1983; Winston, 1984). In the current context, using a 
flood-fill to extract LOCs is an example of how recasting a problem into another domain 
makes it easily solvable. Another particularly powerful example is Fourier transforms. 
Fourier transforms convert signals from the time domain into the frequency domain. In 
the frequency domain all signals can be represented as a series of sine waves that are 
much easier to work with than other waveforms. 

It should be clear that how the problem is perceived or represented determines the ease 
by which it is solved. That is the controlling mechanism behind the solution presented 
below for road surface material identification. 

The alternative to collecting individual spectrum of all surfaces to identify materials is to 
do what comes naturally to humans, i.e., generalize. As was alluded to above regarding 
the recognition of faces, one of the skills our brains naturally possess is the ability to 
generalize. The first task in developing a system capable of generalizing about spectral 
properties of road surface material types is to collect representative spectra of the 
surficial material types of interest. Once the spectra were collected, a small library of 
average spectrum for each material type was developed (Figure 4). 

REFLECTANCE RULES FOR SURFACE MATERIAL TYPES 

Roadway surfaces are generally composed of aggregate (bare soil), asphalt, and/or 
concrete. Other material types include vegetation and water. Several heuristics (rules of 
thumb, i.e., generalizations) were developed. One rule was that bare soil and concrete 
have significantly higher albedos than water and asphalt. Using this rule, bright 
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reflectors are easily separated from dark reflectors. Average albedos were useful enough 
for this first pass. Any spectrum with an average albedo below 10% was considered 
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Figure 4 -Normalized averages for spectra collected using and ASD-FR hand held 
spectrometer of primary surface material types resample to ten wavelengths. 

either water or fresh asphalt. Water and fresh asphalt are distinguished by the fact that 
water may have a slight spike in the blue wavelengths and the overall spectrum has a 
negative slope. Fresh asphalt is practically flat over the range of wavelengths from 400-
2500 nanometers (nm). Spectra with reflectance values greater than 25% were 
considered either pure concrete or pure soil. Since concrete and bare soil don't have any 
unique absorption features it was necessary to use the overall spectral shape to 
distinguish between them. It was determined empirically that all 224 channels of 
A VIRIS data were more data than necessary to distinguish between these material types. 
The necessary spectral information was reduced to 1 0 bands. These 10 bands equally 
spaced over 400-2500 nm were enough to discriminate between bare soil and concrete. 
The problem then reduced to one of pattern matching. One of the best tools for pattern 
matching and recognition is a neural network (Lippman, 1987, 1989; Fukushima, 1988; 
King, 1989). 

NEURAL NETWORK 

A feed-forward neural network was designed with ten input nodes and two output nodes 
(Rurnmelhart, 1986). The network was trained using back propagation. Several hundred 
training sets of spectra of concrete and bare soil were presented to the neural network 
during the training process and convergence generally occurred within one thousand 
iterations. 
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FUZZY RULE 

Spectra of road surface material types with average reflectance values between 10% and 
25% were determined to be mixtures of either asphalt and concrete or asphalt and bare 
soil. It was possible to distinguish whether the mixture was either concrete or bare soil 
by the shape of the curve, but not how much was present. To address this question, a 
fuzzy rule was developed and applied to the spectrum. Fuzzy rules are based on fuzzy set 
theory (Zadeh, 1965). The fuzzy rule is show in Figure 5. 

1.0 

Proportion of 
concrete or bare 
soil 

0.0.____ ____ ..~....-____ ,__ ___ _ 

0 Asphalt 10 Mixture 25 Concrete or Bare Soil 

Reflectance (%) 

Figure 5 - Fuzzy rule for determining proportions 
of asphalt and bare soil or concrete 

The rule in Figure 5 is over-simplified. The diagonal lines representing relative 
proportions should really be exponential curves concave downward with steep slopes 
nearly parallel to the y-axis and rolling over near 0.85 and becoming asymptotic with the 
upper x-axis. This shape is more consistent with what is understood regarding non-linear 
mixtures between dark and light materials and the effect dark materials have on the 
reflectance values of lighter materials. The exact shape of these curves is the subject of 
current research. 

The general reflectance rules, neural network, and fuzzy rule were combined into a 
hybrid knowledge-based system and integrated into the SPITFIRE plug-in module to 
ENVI. 

CONCLUSIONS 

The Semi-automated Plug-In Tool for Feature Identification, Recognition, and Extraction 
(SPITFIRE) was designed and implemented to extract lines of communication from 
digital imagery. The initial version operated on multispectral imagery. SPITFIRE was 
later migrated to ENVI to operate on hyperspectral imagery. 

Extracting LOCs involves locating wavelengths with sufficient spectral contrast between 
the desired road surface and non-road surface (background). Once these wavelengths are 
found, then a simple flood-fill algorithm is used to follow the road. A raster to vector 
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tool is then used to find centerlines and generate vectors as shapefiles for ease of 
incorporation in to a Geographic Information Systems like Arc/Info or ArcNiew. 

The chief benefit ofusing hyperspectral imagery is the ability to discriminate and identify 
material types. SPITFIRE achieves road surface material identification using a hybrid 
knowledge-based system using a combination of rules, neural networks, and fuzzy logic. 

The basis for this approach of classifying road surface materials is generalization and 
pattern recognition. This approach obviates the need to develop large spectral libraries 
because it mimics what humans do in terms of pattern recognition. A smaller set of 
characteristic spectra are still needed to develop generalizations about the different 
surface material types. 
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1. Introduction 

A COMPARATIVE ANALYSIS OF ENDMEMBER EXTRACTION ALGORITHMS 
USING A VIRIS HYPERSPECTRAL IMAGERY 

Antonio Plaza, Pablo Martinez, Rosa M. Perez, Javier Plaza' 

Spectral unmixing techniques are widely used for hyperspectral data analysis and quantification. Many novel applications 
have been developed from the unmixing point of view, including surface constituent identification for land use mapping, 
disaster assessment, geology, biological process analysis and change detection (Keshava and Mustard, 2002). All existing 
unmixing approaches require a previous step where the spectral signatures of ground constituents (endmembers) are 
identified (Kruse, 1998; Boardman et al., 1995), and then a mixture model is used to estimate the abundance fractions of 
these signatures by expressing individual pixels as a linear or non-linear combination of endmembers (Bateson et a!., 2000). 
The accuracy of the quantification depends strongly on how accurate endmembers are identified in the first step. 

Several different strategies have been proposed to evaluate the quality of selected endmembers for spectral unmixing. The 
simplest approach has been direct comparison to reference signatures contained in a spectral library of ground 
measurements (Winter, 2000; Sweet et a!., 2000). Another alternative has been focused on analyzing the abundance of 
endmembers in the scene, which is usually expressed as a series of greyscale images where the grey level value at each pixel 
represents a combined amount of the abundance of endmembers contained in the pixel. Then, the quality of a set of 
endmembers may be evaluated by comparing their associated abundance fractions to reference abundance planes, either by 
visual comparison (Winter, 2000; Kneubuehler et al., 1998) or, more reliably, by statistical measures like the average root 
mean square error (RMSE) (Garcia and Ustin, 2001) or the Pearson correlation coefficient (Maselli, 1998). 

The previous approaches are possible when ground truth data is available and contains information about the abundance of 
materials in each pixel of the scene. Nevertheless, it should be noted that the obtention of reliable ground truth is difficult, 
expensive and very time-consuming, a fact that has traditionally prevented the existence of reliable ground measurements 
for a large number of datasets. 

Some approaches have been previously considered in order to assess endmember extraction accuracy when no ground truth 
information is available. Most of them are based on a reconstruction process of the original hyperspectral image, using the 
set of extracted endmembers and their estimated abundance maps, according to linear spectral mixture model definitions. 
The generated image may be compared to the original one by several statistical measures (Bowles et al., 2000). 

However, in many reconstruction-oriented approaches, an important question arises: the number of endmember vectors 
required to accurately approximate or regenerate the pixels of the original image. In order to answer this question, several 
authors have proposed to consider multiple sets of endmembers simultaneously for spectral unmixing (Roberts et al., 1998, 
Okin et a!., 1998, Bateson et al., 2000). Following this idea, some studies have demonstrated that models based on three 
endmembers generally provide satisfactory results although, in some applications, models based on four and more 
endmembers improve considerably the results found using only three endmembers (Segl et al., 2000; Garcia and Ustin, 
2001). In general terms, it is expected that the quality of the reconstruction process would improve as the number of 
reference signatures used increases, even though mixed pixels are used in the reconstruction process. Nevertheless, the goal 
should be the identification of a reduced subset of pure spectral signatures which are able to provide a reconstruction which 
is similar enough (i.e., under a certain error tolerance threshold) to the original image. 

Although several comparative efforts have been proposed in recent years, no unified criterion has been accepted for rigorous 
and impartial comparison of end member extraction algorithms. The importance of this issue cannot be understated since, 
without effective evaluation criteria, the performance of any new algorithm cannot be substantiated. In this paper, we take a 
first step by conducting a comparative study of performance analysis among several existing endmember extraction 
algorithms, including the Pixel Purity Index (Boardman et a!., 1995), the N-FINDR algorithm (Winter, 2000) and our 
custom-designed method Automated Morphological Endmember Extraction, AMEE (Plaza et al., 2002; Plaza eta!., 2001a; 
Plaza et a!., 200 I b). A novel comparative framework is introduced, allowing detailed quantitative assessment of end member 

1 Neural Networks and Signal Processing Group (GRNPS), Computer Science Department, University ofExtremadura. 
Avda. de Ia Universidad sin, I 0.071 Caceres, SPAIN. E-mail: aplaza@unex.es, pablomar@unex.es, rosapere@unex.es. 
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extraction accuracy. The significance of these experimental results is to offer a performance evaluation of endmember 
detection algorithms in a rigorous fashion so that each algorithm is fairly compared to others on the same common context. 
Several different situations are considered in the above framework, regarding the availability or not of ground truth data and 
the intrinsic characteristics of such information. 

The paper is organized as follows. Section 2 defines an objective framework for evaluation of endmember extraction and 
subsequent classification accuracy. Section 3 presents a comparative performance analysis for the above-mentioned 
algorithms, and section 4 concludes with some remarks. 

2. Comparative framework for evaluation of endmember extraction algorithms 

In this section, a schema to evaluate endmember extraction algorithms is proposed. The framework has into account the 
following situations: 

I) Ground truth (GT) is available in the form of a spectral library of constituent signatures. 
2) GT contains the abundance of endmember materials for each pixel of the scene. 
3) GT is not available. 

We proceed to describe the evaluation approach to validate extracted endmembers in each situation. 

2.1. Evaluation by Comparison to GT Spectral Signatures 

Before addressing the metrics used to evaluate endmember quality in this case, the following definitions are introduced: 

N Total number of pixels in the original hyperspectral image. 

rE = {Ei}~ 1 Set containing X endmembers extracted from the hyperspectral image. 

Ei =(Ei(A.,),Ei(A.z), ... ,Ei(l .. s))T A particular endmember of rE. 

rR = {RJ~1 Set containing Y GT signatures. 

Ri = (Ri (A. I), Ri (A.z ), ···• Ri (A.s) )T A particular GT signature of r R . 

A correlation matrix of spectral angle distances (SAM matrix) is used to perform the comparison in this situation. Figure 1 
shows an example of the construction of a SAM matrix between extracted endmembers and GT signatures. In this 
representation, we denote SAMnm = SAM(En , Rm), where SAM refers to the cosine of the spectral angle. 

Endmember signatures 

E, Ez Ex 
R, SAM II SAM21 . .. SAMx1 

GT Rz SAMI2 SAM22 . .. SAMxz 
signatures . 

Rv SAM 1v SAMzv ... SAMxv 
Figure 1. SAM matrix between extracted and reference signatures. 

2.2. Evaluation by Comparison to GT Abundance Planes 

This schema is based on the assumption that each evaluated endmember E; has an associated GT signature R;. Both E; and 
R; have associated abundance maps, G(E;) and G(R;); which respectively contain the fractional abundance of the spectral 
signature in the pixels of the original image. Before addressing the quality measures used in this situation, the following 
definitions are introduced: 
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I ={P t J j=l Original hyperspectral image expressed as a set ofN hyperspectral pixels. 

Pj = (Pj(A.I), Pj() .. 2 ), .. . , Pj(A.s))T A particular pixel of the image. 

<l>j(Ei) Fractional abundance of endmember material E; at pixel Pi of the original image. 

<l>j(Ri) Fractional abundance of reference material R; at pixel Pi of the original image. 

G{E·) ={<I> ·{E·) t 
I J I j=l 

Greyscale abundance map of endmember E;. 

G{Ri) = {<t>j(Ri)t1 
Greyscale abundance map of reference signature R;. 

Each E;, R; pair is compared at a pixel level by calculating the root mean square error between their associated abundance 
maps using the following expression. 

N 

RMSEJ{G{Ej),G{Rj)} = L(<l>j(Ej}-<l>j{Rj)f 
i=l 

2.3. Evaluation when ground truth is not available 

The approach that we present to compare endmembers when no ground truth information is available is only applicable 
when the linear mixture model is suitable to perform the analysis and classification of the scene. The hnear approach has 
been demonstrated in numerous applications to be a useful technique for interpreting the variability in remote sensing data. 
Nevertheless, it is only strictly valid for the situation where the endmembers are arranged in discrete, segregated patches on 
the surface {Keshava and Mustard, 2002). This condition is hardly met in nature, and many constituents of interest for earth 
science investigations exist in soils, or at smaller scales, in intimate association with one another. In this work, we rely on 
the linear model as an initial attempt to validate our framework, but we are aware that the use of this model may introduce 
errors in the comparison. 

Once this initial statement has been made, we proceed to describe our comparative framework in this situation. Using the 
previously defined notations, a particular pixel Pj in the original hyperspectral image can be approximated by the following 

expression: 

p 

P ""p: = "'<I> ·(E) · E J JLJI ~> 
i=l 

where <I> j (Ei) denotes the abundance fraction of endmember material E; at pixel Pi. The accuracy of the approximation in 

{ 12) for a single Pi using a set of end members r E can be quantified by the root mean square error: 

In order to study the capacity of extracted endmembers to provide an accurate reconstruction of the original image, we 
consider a variable number of endmembers to perform the reconstruction. Our goal is to analyze the optimum number of 
endmembers needed to reconstruct the original image, and also to evaluate the accuracy of such reconstruction. In order to 
achieve the previously addressed objectives, the following algorithm is used. 

Step I) Set a tolerance threshold T. 

Step 2) Calculate the abundance of each end member E; in image I: \iEi, G{Ej) = {<t> j{Ei) t, . 

269 



Step 3) Order the end members in set r E according to their total abundance in the original image. The total abundance of 

N 

endmember E; in image I is calculated as: L <l>j(Ei) . 
j=l 

Step 4) Construct a new set r N which contains the three most abundant endmembers of r E , and remove such 

endmembers from r E . 

Step 5) If RMSE 1 (r N) < T then stop (a satisfactory reconstruction is achieved). 

Step 6) Remove the most abundant endmember in r E and incorporate it to r N . 

Step 7) Repeat from step 5 until r E = 0 (in this case, no satisfactory reconstruction was possible). 

3. Results and discussion 

The following endmember extraction methods: PPI, N-FINDR and AMEE were applied to hyperspectral datasets obtained 
by the NASA/JPL-A VIRJS imaging spectrometer (Green et al., 1988). Also, a preliminary evaluation of the above methods 
was performed using data from the DAIS 7915 and ROSIS imaging spectrometers from DLR (Muller et al., 2001). 
• The A VIRJS hyperspectral dataset corresponds to the well-known mining region of Cuprite in Nevada. This area is 

well-understood mineralogically and has reliable ground truth in several forms (Clark et al., 1993; Swayze, 1997). This 
fact has made this region a standard test site for comparison of classification algorithms, since not many scenes with 
such quality ground truth measurements are available for public use. The Cuprite scene we have selected for this work 
was acquired in 1995, and has been reduced to 50 bands in the 2-2.5 nm region. 

• The DAIS""7915 and ROSIS hyperspectral datasets were acquired near the town of Caceres, Spain, in 2001. These data 
are a good example of Dehesa agroecosystems, typical of the south-western part of Spain and mainly formed by cork
oak trees, pasture and bare soils (semi-arid envirorunent). Our knowledge of the field, obtained after several ground 
campaigns, make these dataset suitable to test algorithm accuracy. Next, we proceed to describe the experiments 
performed over these datasets. 

3.1. Experiments with AVIRJS hyperspectral dataset 

a) First experiment: comparison of the spectral shape 

In order to perform this experiment we have selected a set of ground spectral signatures contained in the USGS Digital 
Spectral Library splib04 (available at http://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html) as ground truth 
references for the comparison. In particular, we have used the AVIRJS-convolved version of this library 
(http://speclab.cr.usgs.gov/spectral.lib04/lib04-A VIRJS.html). 

Figure 2 shows a plot of the GT signatures from the USGS spectral library and the endmembers extracted by PPI, N-FINDR 
and AMEE algorithms. PPI endmembers were obtained and made public by Research Systems. N-FINDR endmembers 
were obtained by Dr. Michael E. Winter, author of the algorithm. Finally, AMEE endmembers were extracted by our 
research group. The USGS spectra are labeled in the plot with their correspondent names in the library. PPI endmembers 
were labeled with the names that appear in the plot, while N-FINDR and AMEE spectra are not labeled. The colors used in 
figure 2 have been selected so that the similar spectral signatures can be visually matched. It is appreciated in figure 2 that 
there are some differences in the absolute value of the reflectances and spectral shape that are likely due to atmospheric 
transmission effects. In order to avoid these effects, we use the SAM distance measure, which is invariant to ilumination 
details. 

Tables I, II and III respectively show the confusion matrices of spectral angle distances between USGS GT signatures and 
the endmembers extracted by PPI, N-FINDR and AMEE. Table IV shows the number of correctly detected endmembers, 
redundant endmembers, missed GT signatures and mean error for the considered endmember extraction algorithms using 
three different similarity threshold values. In order to understand the results shown in this table it should be noted that 
perfect performance for a certain algorithm would be correct detection of all endmembers and no missed GT signatures or 
redundant endmembers, independently of the similarity threshold considered. The results shown in table IV reveal that, 
when a strong similarity threshold is imposed, the three tested algorithms perform similarly. When the similarity constraint 
is relaxed, AMEE performs better than the other approaches, detecting all endmember signatures and producing only 2 
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redundant endmembers, which correspond to the ones labeled as AMEE_ENDMEMBER_8 and AMEE_ENDMEMBER _9 
in figure 2. It should be noted that AMEE_ENDMEMBER_9 is a typical shade endmember, while 
AMEE_ENDMEMBER_8 is associated to the brightest parts of the Silica mineral (a similar endmember is also detected by 
the PPI algorithm). 
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Figure 2. Clockwise, reference GT signatures extracted from A VIRIS-convolved USGS Digital Spectral Library and 
endmembers extracted for the Cuprite dataset by PPI, N-FINDR and AMEE methodologies. 

Table I. Confusion matrix of spectral angle distances between end members extracted by PPI and USGS GT references. 

PPI: 
USGS: El E2 E3 E4 ES E6 E7 ES E9 ElO E ll 
Alunite 0. 11 9 0. 155 0.208 0.178 0.265 0 .207 0.238 0 .208 0 .216 0.230 0 .206 

Buddingtonite 0 .286 0 .269 0.228 0.1 88 0.319 0.208 0.343 0.359 0.23 1 0.302 0 .287 
Calcite 0.136 0.104 0 .085 0.093 0. 149 0.088 0.140 0. 157 0.084 0.124 0.132 

Muscovite 0 .256 0.229 0 .232 0.263 0.234 0.241 0.238 0 .268 0.247 0.223 0.167 
Kaolinite 0 .164 0 .178 0 .223 0.233 0.208 0 .236 0 . 139 0 .093 0 .218 0.189 0.226 

Sillimanite 0.151 0.149 0 .181 0 199 0.186 0 .197 0 .103 0.090 0.177 0.161 0.194 
Chabazite 0.194 0 .151 0.112 0.142 0.095 0.114 0.148 0 .183 0.103 0.11 7 0 .144 
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Table II. Confusion matrix of spectral angle distances between endmembers extracted by N-FINDR and USGS GT 
references. 

N-FINDR: 
USGS: El E2 E3 E4 ES E6 E7 E8 E9 EIO 

Alunite 0.211 0.233 0.119 0.241 0.182 0.208 0.180 0.225 0.205 0.282 
Buddingtonite 0.192 0338 0.283 0.283 0.1 78 0.300 0.167 0.279 0.320 0.247 

Calcite 0.085 0.137 0.132 0.121 0.113 0.143 0.092 0.105 0.121 0.175 
Muscovite 0.255 0.235 0.256 0.227 0.276 0.146 0.279 0.234 0.257 0319 
Kaolinite 0.243 0.141 0.164 0.210 0.249 0.226 0.240 0.195 0.127 0.284 

Sillimanite 0.201 0.102 0.149 0.181 0.219 0.196 0.205 0.159 0.098 0.251 
Chabazite 0.117 0.152 0.191 0.083 0.159 0.154 0.148 0.109 0.147 0.179 

Table III . Confusion matrix of spectral angle distances between endmembers extracted by AMEE and USGS GT references. 

AMEE: 
USGS: El E2 E3 E4 ES E6 E7 E8 E9 
Alunite 0.119 0.213 0.179 0.243 0.232 0.162 0.248 0.216 0.213 

BuddiJ!gtonite 0.286 0.227 0.1 25 0.289 0.297 0316 0.415 0311 0.226 
Calcite 0.194 0.109 0.153 0.087 0.173 0.158 0.230 0.136 0.084 

Muscovite 0.151 0.178 0.212 0.184 0.234 0.127 0.122 0.155 0.147 
Kaolinite 0.164 0.221 0.244 0.2 11 0.268 0.136 0.100 0.185 0.183 

Sillimanite 0.136 0.081 0.145 0.127 0.169 0.128 0.2 13 0.129 0.058 
Chabazite 0.256 0.237 0.270 0.225 0.143 0.221 0.298 0.194 0.284 

Table IV. Mean error, number of matched endmembers, redundant endmembers and missed GT signatures for each method 
using three different tolerance threshold errors. 

T = 0.10 T = 0.15 T = 0.20 
Method: NE MEr MEn MG RE MEr MEn MG RE MEr MEn MG RE 

PPI II 0.090 3 4 8 0.105 5 2 6 0.115 6 2 5 
N-FINDR 10 0.091 3 4 7 0.106 5 2 5 0.110 6 1 4 

AMEE 9 0.081 3 4 6 0.101 7 0 2 0.108 7 0 2 

MEr - Mean error NE - Number of extracted endmembers 
MG - Number of missed GT signatures T - Tolerance threshold 

MEn - Number of matched endmembers 
RE - Number of redundant endmembers 

b) Second experiment: comparison of fractional abundance maps 

In this experiment, we have focused on comparing the fractional abundance maps derived from the endmembers shown in 
figure 2. Abundance maps of GT USGS signatures, obtained using Fully Constrained Linear Spectral Unmixing (FCLSU) 
are used as ground truth information. The experiment presented in the previous subsection revealed that five USGS 
signatures are easily detected by all the studied endmember extraction algorithms: Alunite, Buddingtonite, Calcite, Kaolinite 
and Muscovite. Following this result, we have calculated the abundance planes of the endmembers obtained by PPI, N
FINDR and AMEE for the previously addressed minerals, using a FCLSU approach. 

Table V. Root Mean Square Error (RMSE) obtained by comparing FCLSU fractional abundances of selected USGS GT 
signatures to FCLSU abundance maps of correspondent extracted endrnembers. The average RMSE for the signatures 
considered is also addressed. 

USGS-derived Abundance Map PPI Map N-FINDR Map AMEEMai>_ 

Alunite 0.071 0.072 0.070 
Buddingtonite 0.170 0.150 0.157 

Calcite 0.011 0.023 0.020 
Kaolinite 0.048 0.089 0.009 
Muscovite 0.042 0.045 0.063 
Average 0.068 0,075 0.064 

272 



A detailed quantitative study of the quality of derived abundance planes has been carried out by calculating the RMSE 
between pairs of correspondent abundance maps. The results obtained are shown in Table V, which also addresses the mean 
error for each method. This table reveals that the similarity between the obtained abundance maps is very high in general, 
although the performance is slightly different depending on the mineral considered. AMEE algorithm obtains the best result 
for the Alunite and Kaolinite materials, while PPI is the most successful algorithm with the Calcite and Muscovite and N
FINDR is the best approach with Buddingtonite. 

c) Third experiment: reconstruction of the original image 

In this experiments we test the accuracy of the considered approaches to provide a reconstruction of the original image. 
Table VI shows a comparison of the RMSE errors obtained by the considered approaches, using the algorithm shown in 
section 2.3 . 

Table VI. RMSE errors obtained by the proposed endmember extraction algorithms in the reconstruction of A VIRIS Cuprite 
dataset. 

Number of endmembers used in the reconstruction (ordered by total abundance): 
3 4 5 6 7 8 9 10 11 

PPI 0.197 0.168 0.144 0.123 0.100 0.075 0.060 0.045 0.032 
N-FINDR 0.197 0.115 0.098 0.086 0.073 0.063 0.054 0.049 

AMEE 0.174 0 .128 0.102 0.074 0.055 0.046 0.042 

From this table, PPI is the most accurate method when all extracted endmembers are used in the reconstruction (3.2% error 
versus 4.9% ofN-FINDR and 4.2% of AMEE). Nevertheless, when the number of endmembers used in the reconstruction is 
reduced, both N-FINDR and AMEE outperform PPI. For instance, if 7 end members are used for the reconstruction, the use 
of PPI results in a I 0% error, while N-FINDR reduces the error to 7.3% and AMEE results in just a 5.5% error, which is a 
significant improvement over PPI. Further experiments are required to validate the previously addressed results using 
additional datasets and different conditions. 

3.2. Experiments with DAIS 7915 and ROSIS hyperspectral datasets 

In this section, we address some preliminary results obtained after applying our AMEE algorithm to DAIS 7915 and ROSIS 
hyperspectral data sets, obtained over the town of Caceres, Spain, in July 200 I. These results are showed just for illustrative 
(not comparative) purposes. In the future, the development of several ground campaigns will allow us to make these images, 
along with quality ground measurements, available to the scientific community dedicated to hyperspectral data analysis as 
test images to validate endmember extraction and classification algorithms. Figures 3 and 4 show extracted endmembers 
and corresponding abundance maps for DAIS 7915 and ROSIS imagery, respectively. 
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Figure 3. Preliminary end member extraction results of AMEE algorithm applied to DAIS 7915 hyperspectral data. Top: 
extracted endmembers. Bottom, left to right: original image; abundance map for Endmember_ l (soil-pasture); abundance 
map for Endmember_2 (cork-oak trees); abundance map for Endmember_3 (shadow). 

Figure 4. Preliminary endmember extraction results of AMEE algorithm applied to ROSIS hyperspectral data. Top: 
extracted endmembers. Bottom, left to right: original image; abundance map for Endmember_ l (cork-oak trees) ; abundance 
map for Endmember_2 (soil); abundance map for Endmember_3 (pasture). 

274 



4. Conclusions and future lines 

Many endmember extraction algorithms have been proposed in the literature over the last decade. Comparison of these 
approaches has been a challenging task due to a lack of rigorous criteria to substantiate any new algorithm. Another 
difficulty arises from the fact that there is no standardized data to perform the comparison. In this paper, we have conducted 
a first attempt to impartially evaluate the accuracy of several well-known endmember extraction algorithms. The study 
focuses on two hyperspectral datasets: the famous A VIRIS dataset of the Cuprite mining region in Nevada (a well
understood mineralogically region which has been extensively mapped and truthed) and a DAIS 7915 dataset containing a 
typical Spanish Dehesa environment (pasture and cork-oak trees). 

Comparison of endmembers has been carried out from several points of view. Firstly, the problem was tackled under the 
assumption that reliable ground truth information is available. In this sense, we performed a simple preliminary experiment 
based on comparing the spectral shape of extracted endmembers to available reference signatures. A further attempt from 
the perspective of a mixed pixel classification problem was also conducted by comparing abundance planes of endmember 
constituents to reference maps. Finally, a new schema to compare algorithms when no ground truth measurements are 
available was presented and discussed. Since reliable ground truth is generally expensive and difficult to obtain, we believe 
this approach may be of interest to the community. 

Despite our effort to conduct comprehensive, impartial and rigorous comparative analysis of various algorithms, completion 
is not claimed. In particular, the number of algorithms compared in this work is limited to three methods. Also, the number 
of comparative measures is reduced to linear distances. Plausible future research should include a comparative analysis of 
linear and non linear distances, as well as comparative measures that include second order statistics. 
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COMANCHE and COCHISE: two reciprocal atmospheric 
codes for hyperspectral remote sensing 

Laurent Poutier,* Christophe Miesch, Xavier Lenot, Veronique Achard, Yannick Boucher 
Office National d'Etudes et de Recherches Aerospatiales, Departement d'Optique Theorique et Appliquee 

1. INTRODUCTION 

This paper describes two reciprocal codes developed for hyperspectral imagery in remote sensing. The first 
one is called COMANCHE and computes the incoming spectral radiance at the sensor level, for an instrument 
operating in the VIS- LWIR spectral range and observing a target over a background. COMANCHE uses an 
analytical formulation of the upwelling radiance at the sensor level in which the atmospheric parameters are 
independent of the ground parameters. The formulation includes the environmental effects due to scattering 
(trapping effects and diffuse transmission). The atmospheric parameters are extracted from MODTRAN 4 
computations and the environment functions are obtained using two Monte-Carlo codes. The second code is called 
COCHISE and retrieves the 20 ground spectral reflectance from a calibrated hyperspectral image. The actual 
version of COCHISE is limited to the reflective domain. It performs the inversion of the COMANCHE analytical 
formulation and includes a 2D estimation of the columnar water vapor amount directly from the radiance hypercube. 
The COMANCHE and COCHISE algorithms are presented and preliminary validation results based on comparisons 
with reference radiative transfer codes and an AVIRIS data set are given. 

2. ANALYTICAL FORMULATION OF THE AT -SENSOR RADIANCE 

This section presents the formulation that is used in COMANCHE and that addresses the following 
scenario: the scene consists of a circular uniform lambertian target of radius R., albedo p, and temperature T, , laying 
on a uniform lambertian background, infinite in size, of albedo Pb and temperature T b· The spectral radiance is 
simulated for a target pixel (Fig. 1), centered on the target and a background pixel, located at such a distance from 
the target that adjacency effects involving the target material can be neglected. 

For the target pixel, the incoming radiance, L%, (A.), can be writt_en as the sum of three contributors: 

L%, (A.)= Latm (A.)+ tdir (A. )L~ (A.)+ tdif (A. )L"o"v (A.) (!) 

The first contributor, Latm (A.), represents the atmospheric radiance, without any interaction with the ground. 

The second one represents the upwelling radiance directly transmitted from the ground, which is the product of the 
direct transmission from the target to the sensor, tdir (A.), and the upwelling radiance at the ground level leaving the 

target pixel, denoted L~ (A.). The third contributor describes the photons that have reached the ground and then have 

been scattered towards the sensor. This contributor is the product of the diffuse upwelling transmittance tdif (A.) and 

the upwelling radiance of the target environment at the ground level, L~nv (A.) . 

The radiance leaving the target pixel is the sum of reflective and emissive terms, as written below: 

L~(A.)= p'P(A.) E~r{A.) + f:'P(A.)Lss(A.,T'P(A.)) 
1t (2) 

* 01\TERA Centre de Toulouse, 2 av. Edouard Belin, BP 4025, 31055 Toulouse Cedex 4, France 
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Figure 1. Dlustration of the three contributors in tbe target pixel upwelling radiance. 

In Eq. 2, E:~, (A.) represents the total irradiance incoming at the target pixel, L88 (A., T) is the black body 

spectral radiance at temperature T, given by the Planck's law: 

L (A. T)- A(A.) 
BB ' - exp(B(A.)/T)-1 (

3
) 

The terms pip (A.), tip (A.) and Trp (A.) are respectively the albedo, the emissivity and the temperature 

averaged on the target pixel. Let a be simply the fraction of the target pixel corresponding to the target material. The 
three average thermo-optical characteristics of the target pixel are obtained as follow: 

Pip (A.)= a.p, (A.)+ [1- alpb (A.) 

The total downward irradiance can be written as: 

E~, (A-)= [Eo(A.)+ 1tEd~ (A.)LBB (A.,Td~ (A.))s(A.)] _ 
1 

1- P! (A.}s(A.) 

(4) 

(5) 

(6) 

(7) 

The first factor corresponds to the ground downward irradiance without ground reflection phenomena. It is 

the sum of E0 {A.) which accounts for sun and atmospheric sources ofirradiance, and of the surface emission 

scattered back to the ground through the atmospheric spherical albedo S(A.) . The second factor describes the 

trapping effects between the ground and the atmosphere. 

The three quantities denoted as X:J;, (albedo, emissivity and temperature) correspond to an averaging over 

the area participating in the trapping effect. Let the environment function G._ (r) describe the probability that the last 

reflection involved in the trapping effects comes from a distance r from the target center (there is no azimuthal 
dependence in the density function G._). The environment function describing the ground-atmosphere coupling 

should take into account the spatial distribution of the multiple rebounds that finally reach the target pixel. 
Meanwhile, as this function acts as a second order on the global irradiance (the spherical albedo being typically 
around or less than 10·' in magnitude), it remains fully valid to describe it only by the last rebound, the multiple 
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trapping effects acting as a second order on the environment function, compared to the single rebounds. The average 
quantities can be obtained by the following formulas: · 

P! (A-)= adn (A-}Pr (A-)+ [I- adn (A-)Jpb (A-) 

f:C:::(A-)= adn (A-}E1 (A-)+ [1-adn(A)Jeb(A.) 

Trp(A-)= B(A.) 

dn I ( A(A-}£d~ (A.) l 
n adn (A-}e1 (A.)L 88 (A., T1 )+ [1- adn (A-)}eb (A.)L88 (A., Tb) +I 

where adn (A) expresses the weight of the target material participating to the coupling effect: 

adn (A-)= 27t.r· G._ (r }r.dr 

(8) 

(9) 

( 10) 

(II) 

The environment upwelling radiance L~nv (A-) is almost similar to the target pixel upwelling radiance. The 

main difference is that the averaging of the thermo-optical properties of the ground are governed by an environment 
function describing the spread out of the upwelling diffused radiance that reaches the sensor target pixel. In the same 
manner as in the trapping effect processes, let F._ (r, 8) denote the 2D density function giving the probability that the 

upwelling diffuse paths come from the position (r, 8) expressed in polar coordinates relatively to the center of the 

target. The azimuthal dependence is observed for off-nadir viewing angles. In a similar way to Eq. 11, the weight of 
the target material involved in the diffuse radiance, aup(A-), is derived by the following integration: 

aup(A-)= fo2
n: r· F~..(r,8).r.dr.d8 

The average thermo-optical properties implied in the environment upwelling radiance are given by: 

P':X, (A-)= aup (A-}pt (A-)+ [1- a up (A-)}pb (A-) 

~~(A-)= aup(A-}e1 (A-)+ (1- aup(A-)}eb(A) 

Trp(A-)- B(A-) 

up - ( A(A.}~~(A.) l 
In aup (A-}el (A-)LBB(A., Tl )+ b- aup (A-)}eb (A-)LBB (A., Tb) + l 

Finally, the environment upwelling radiance can be written as: 

L~v (A.)= p:X,(A-) E~~~v (A-)+ Eu~(A.)Lss (A-, T~ (A-)) 
1t 

(12) 

(13) 

( 14) 

(15) 

(16) 

In the latter equation, the downward irradiance is denoted E~~~v {A-). In a strict formulation, the downwelling 

irradiance should include a position dependence, due to the coupling effects that, as mentioned before, involve an 
environment function related to the environment of the surface element where the irradiance is calculated. 
Considering that the joint effect of the ground-atmosphere coupling and the upwelling scattering are negligible, the 

downward irradiance is supposed to be uniform and equal to E~1 (A-) given by Eq.7. 

Concerning the background pixel, the target interaction is neglected and the radiance is simply given by the 

precedent formulas where the coefficients a, aup (A-) and adn (A-) are equal to zero. 
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3. DIRECT MODEL: COMANCHE IMPLEMENTATION 

COMANCHE uses the precedent equations to simulate target/background at-sensor spectral radiances. 
These equations separate atmospheric radiative properties and ground characteristics. The atmospheric parameters 

are the upwelling atmospheric radiance without any interaction with the ground Lann (A.), the downwelling 

irradiance at ground level E0 (A.), also with no interaction with the ground, the atmospheric spherical albedo S(A.), 

the diffuse and direct upward transmittances, respectively tdif (A.) and tdir (A.), and the two environment functions 

F'-(r,e) and G'-(r) . 

The first five parameters are computed using the radiative transfer code MODTRAN 4.1 (Anderson et al. , 
2000) in radiance mode, considering a uniform ground with four different boundary conditions: { p = 0, T = OK}; 

{p = 0.5, T =OK}; {p = 1, T =OK}; {p = 0, T = 300K}. Let ~~; (A.) and l?~~(A.)be respectively the total and 

reflected radiances associated to each simulation run. The direct transmittance is directly obtained as an output of 
the MODTRAN simulations. The atmospheric radiance is straightforward: 

Lann (A.)= L~~~ (A.) 

The spherical albedo is given by the relation: 

S(A.) = LI;~ (A.)+ L~~~ (A.)- 2 . L~~~~,o (A.) 
Ll,O (A.)- Ll /2,0(1..) 

tot tot 

The downward irradiance is given by: 

( ) _ 1 - s(A.) 1,o ( ) 
Eo A - 1t ( ) .Lref A 

tdir A 

The diffuse transmission is given by the following relation: 

1 

t . (A.)=L~~oo(A.)-L~~~(A.)_t. (A.) 
M L (A. 300) d1r BB • 

_ 1.o o,o 1-S(A.) 
tdif(A.)- [LtoJA.)- Ltot(A.)] Eo(A.) tdir(A.) if A.< 3J.UTI 

(17) 

(18) 

( 19) 

(20) 

The environment functions F~..(r,9) and G1..(r) result from very complex and chaotic physical processes. Thus 
they are difficult to obtain directly from analytical expressions. Monte Carlo methods are well adapted to compute 
them in a robust way. Indeed, the Monte Carlo principle consists in modeling statistically the elementary phenomena 
to reproduce the global physical ones. In order to compute both environment functions, the method consists in 
simulating the paths of photons inside the atmosphere, considering a flat ground. Actually, the two algorithms 
developed here (one for each function) are derived from an existing radiative transfer code (Miesch et al., 1999). 
This radiative transfer code is able to simulate paths of photons inside the earth-atmosphere system and reproduce 
absorption, scattering and reflection phenomena. It considers a plane-parallel and horizontally invariant atmosphere 
divided into elementary homogeneous layers, and the extinction and scattering coefficients for both molecules and 
aerosols are computed at a specific monochromatic wavelength. The scene is represented by a digital elevation 
model associated to a bidirectional reflectance map. Each pixel of the ground model is assumed to be homogeneous. 

To compute the environment function F~..(r,9), the existing algorithm is adapted so that the photons are 
launched from the sensor, in the viewing solid angle. The ground surface is digitized along the (r,9) coordinates, in 
relation to the center of the observed ground pixel. Then, the photons that have been scattered by atmosphere and 
that have reached the ground surface are collected in each surface element. After having simulated enough paths to 
reach an acceptable convergence in the statistical process, the number of photons associated to a surface element 
divided by the total number of photons that have reached the ground is directly related to the values of the function 
F~..(r,9) over this surface element. 
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Concerning the environment function G:>..(r), the photons have to be launched from a fixed point of the 
ground surface. As the ground is here supposed lambertian, the distribution of the emission direction is isotropic. 
Similarly to the previous computation, the ground surface is again digitized along the coordinate r, in relation to the 
initial emission point (there is here no dependence on the 9 coordinate). The photons that are scattered back to the 
ground are collected in each annulus element. With an acceptable convergence, the values of the function G'-(r) are 
derived from the ratio of the photons collected in a given annulus and the photons received on the whole surface. 

4. INVERSE MODEL: COCIDSE IMPLEMENTATION 

The global equation giving a pixel radiance in the reflective part of the spectrum can be rewritten as: 

( ) 
[ 

E0 .p(x,y) J [ Eo·PF(x,y) ] 
Ltotx, y=Latm+tdir· [ ( \]+tdif· [ ( \] 1tl-pG x,yj-S 1tl-pG X,yj-S 

(21) 

This expression, limited to the VIS-NIR-SWIR, is reduced to the well-known 6S formulation (Vennote et 
a!., 1997). The seven atmospheric parameters are obtained as in COMANCHE code except that the L0

•
300 

computation is no longer useful. 

In Eq. 21, we have voluntarily omitted the wavelength dependence for clarity. Moreover, as this equation is 
to be inverted, the spatial dependence has been added through the (x,y) position of the pixel. The albedo p(x, y) 

represents the averaged pixel albedo and the albedos PF(x,y) and PG (x,y) are the averaged values given by the 

convolutions with the environment functions introduced in the first section: 
PF(x, y) = p(x, y )® F(x, y) 

PG (x,y) = p(x,y )®G(x,y) 
(22) 

(23) 

The inversion technique is iterative. In a first step, the adjacency effects are neglected and a first estimate 
of p(x., y) is obtained by the following equation: 

'( ) L10Jx,y)-Latm 
p x,y = Eo 

- .(trur + trur )+S{L,0 ,(x,y)- Latm) 
1t 

(24) 

Using Eq. 22 and Eq. 23 a first estimate of environment albedos p F (x, y) and PG (x, y) is calculated and 

reinjected in Eq. 21. A second estimate of p(x, y) is then obtained by the straightforward inversion of Eq .21: 

' •( )= 1t[l-pG(x, y}S] (L ( )- L _ .. [ Eo ·PF(x,y) ]] 
P x,y E . · tot x,y atm td,f · [1- • ( \s] 

o·td~r 1t PG x, Y,. 
(25) 

This last expression usually gives a satisfactory result. Meanwhile other iterations consisting in convoluting 
p '(x, y) with F and G and then reprocessing Eq. 25 could be performed to get a more accurate convergence. 

As in COMANCHE, the seven atmospheric parameters, tct;,(A.), trut(A.), E0(A.), Latm(A.), S(A.), F:>..(x,y) and 
GJ.(x,y) are first computed. The code also includes the inversion of the columnar water vapor amount on a pixel 
basis using spectral channels in an absorption band. As in FLAASH code (Adler-Golden et a!. , 1998), the retrieval 
uses a 2D Look-Up-Table depending on both reflectance and water vapor. The LUT is obtained in a preliminary 
training step: the at-sensor radiance in the appropriate channels is computed for a set of water vapor amounts and for 
different values of spectrally flat reflectances. A linear regression ratio (LIRR) and the mean radiance in the out
band channels (LREF) are then computed and finally the LUT expresses the water vapor amount as a function of a 
regularly resampled grid { LIRR;LREF}. ' 
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5. PRELIMINARY VALIDATION RESULTS 

COMANCHE and COCHISE implement an analytical formulation relating ground properties and at-sensor 
radiances, where the atmospheric parameters are extracted from computations with a radiative transfer code 
(currently MODTRAN 4.1) in four specific configurations (three for COCHISE). The first step of the validation 
consisted in verifying that the at-sensor radiance computed with COMANCHE was in good agreement with the one 
delivered by the radiative transfer code itself. Figure 2 gives the obtained differences between COMANCHE and 
MODTRAN 4 for five different values of spectrally flat reflectance (0.0, 0.25, 0.5, 0. 75 and 1.0), over the 0.4-l3jlm 
region. The comparison was performed for a homogeneous ground, a sensor located at 1.5 km above the ground and 
viewing at the nadir direction, a 30° sun zenithal angle, and a midlatitude summer model with 23 km visibility rural 
aerosols. The differences remain less than 0.4% and validate the at-sensor formulation for a homogeneous scene. 
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Figure 2. Comparisons between MODTRAN and COMANCHE at-sensor radiances for 5 reflectance values. 

The second step consisted in verifying the reciprocity between COCHISE and COMANCHE in the 
COCHISE spectral domain (up to 2.5 J.Lm). A uniform scene was simulated by duplicating COMANCHE outputs 
computed for the 224 A VIRIS channels in the environmental and geometric conditions of the previous validation 
step, for five reflectance values (0.1 , 0.3, 0.5, 0. 7, 0.9) and for four columnar water vapor amounts ( 1, 2, 3 and 
4 g/cm2

). Figure 3 shows the water vapor then the reflectance sequentially retrieved by COCHISE. Residual errors 
for reflectance estimation in absorption bands are attributed to the spectral integration over the A VIRIS channels. 
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Figure 3. Evaluation of COCHISE on images simulated with COMANCHE for different water vapor and 
reflectance values. Retrieved water vapor (left), error on retrieved reflectance (right). 
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Further validations against a reference code have been carried out for heterogeneous scenes. They were 
based on AMARTIS that simulates at-sensor images in the VIS-NIR for heterogeneous 30 scenes including BRDF 
effects (Miesch eta!., 2000). Figure 4 gives the comparison between AMARTIS and COMANCHE for a concrete 
target that fits exactly the target pixel, then occupies 1/9 of the same target pixel, the background being a standard 
vegetation. The simulation was done with the same conditions as the previous ones except the sensor altitude which 
was set to 3km. As AMARTIS is not dedicated to hyperspectral imagery, it was run for eight single wavelengths. 
The differences for the at-sensor radiance remain less than 5%. This amplitude is attributed to a difference in the 
spectral resolution of the two codes and a difference between the two top of atmosphere sun irradiance databases. 
Meanwhile, the observed differences keep the same amplitudes for the target and the background pixels. This 
validates the heterogeneous formulation applied to the target pixel which does not degrade the results compared to 
the standard homogeneous formulation for the background. 
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Figure 4. COMANCHE-AMARTIS comparisons for a heterogeneous scene. Target material coincident 
with target pixel (left) ; target material = 1/9 of target pixel pixel (right). 

Concerning COCIDSE, an image was simulated in the same conditions as before with AMARTIS, except 
that the geometry of the scene was an edge. Figure 5 shows the retrieved reflectance profile, normal to the edge. The 
adjacency effects are clearly apparent in the raw retrieval (after Eq. 23) and the convolution by the two environment 
kernels computed by the Monte-Carlo modules lead (after Eq. 25) to very satisfactory results, after only one 
iteration. 
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Figure 5. Retrieved reflectance with COCHISE, applied to an edge simulated by AMARTIS. Grey squares show 
the intermediate results without environment averaging. 
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Finally, COMANCHE and COCHISE have been applied to an A VIRIS data set composed of an A VIRIS 
radiance hypercube acquired over the Railroad Valley Playa on the I 7 June 1998, a reflectance spectrum of the 
ground measured in laboratory and atmospheric characteristics including a radiosounding and optical depths 
measured at different wavelengths for constraining the aerosol behavior. The at-sensor radiance estimated by 
COMANCHE is shown on Figure 6, along with the radiance extracted from the pixel # (88, 463). The agreement is 
very good except for the first three channels and the difference is typically less than a few percents. 
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Figure 6. A VIRIS radiance and simulated radiance with COMANCHE. 

The same data set is used for COCHISE. A first reflectance retrieval was computed using the water vapor 
included in the data set. Artifacts are observed in the H20 absorption regions at 0.94 and l.l3~m. COCHISE was 
then rerun with a preliminary estimation of the water vapor content based on the 0.94~m absorption band. The 
restituted amount was 0.99g/cm2 in the area of interest, with spatial variability ofless than 5% within an extension 
of approx. 2x2 km. This value underestimates the original value ( 1.3 g/cm2

) by nearly 25%. Meanwhile, the 
retrieved reflectance leads to a better fit in these two absorption bands. Figure 7 illustrates both reflectance spectra 
along with the ground truth. Correlatively to the radiance results (Figure 6) the retrieved reflectance is very close to 
the ground truth. The difference between the measured and estimated water vapor is currently under investigation. 
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Figure 7. Renectance retrieval with COCHISE, with and without water vapor correction, 
and A VIRlS ground truth. 
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6. CONCLUSION 

A simple analytical formulation of the at-sensor radiance including reflective and emissive contributors is 
proposed for a target over a background. This formulation separates the atmospheric terms from the ground thermo
optical properties. This formulation has been implemented in a direct code, called COMANCHE, that is dedicated to 
hyperspectral contrasts evaluation in the VIS-L W1R domain. The atmospheric parameters are computed using the 
MODTRAN4.1 radiative transfer code and two Monte-Carlo modules estimate the spectral environment functions. 
The inversion of this formulation is straightforward in the reflective region and is implemented in COCHISE that 
also includes a water vapor retrieval module based on a 2D LUT. This code is devoted to large scale optical ground 
properties collection from hyperspectral remote sensing acquisitions. 

Preliminary evaluations of these two reciprocal codes have been carried out: i) by confrontation with 
reference codes such as MODTRAN4 for homogeneous scenes and AMARTIS for heterogeneous scenes, ii) by 
comparison with an A VIRIS data set. The evaluation gave very satisfactory results in all of the studied cases. We 
then conclude that COMANCHE and COCHISE are validated in the VIS-NIR-SWIR region. Further comparisons 
will be completed on other experimental data sets including A VIRIS and HYMAP measurements. Moreover water 
vapor retrieval with COCHISE is still under investigation in order to compare results between the 0.94 and 1.13 1-1m. 

Finally, the validation is still limited to homogeneous scenes in the infrared spectrum. An opportunity to 
overcome this limitation is to carry out comparisons with the MATISSE code developed at ONERA and that will be 
soon available (Simoneau et al., 200 I). 
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LEAF AREA INDEX MAPPING USING RETRIEVED REFLECTANCE FROM AVIRIS DATA 

Ruiliang Pu, Peng Gong and Greg S. Biging 

1. INTRODUCTION 

Leaf area index (LAI) has been an important driver to some ecosystem models applied at landscape to global 
scales. Study on the spatial distribution ofLAI on the Earth 's surface is helpful to understanding various biological 
and physical processes within a terrestrial ecosystem, such as photosynthesis, respiration, transpiration, carbon and 
nutrient cycle, and rainfall interception (Chen and Cihfar, 1996; Fassnacht et al., 1997; Gong et al., 1995; White et 
al., 1997; Hu et al. , 2000). Direct measure of canopy LAI is labor-intensive and, thus, is only practicable on 
experimental plots oflimited size. Consequently, estimating LAI over large areas is problematic (Gobron et al., 
1997). Remote sensing techniques, particularly the use of satellite imagery, may offer a practical means to measure 
LAJ at the landscape scale or even global scale (Running et al., 1989). With remote sensing techniques, scientists 
have made progress in developing methods that correlate remotely sensed data with regional estimates of a number 
of forest ecosystem variables, including LAI, absorbed fraction of photosynthetically active radiation (APAR), 
canopy temperature, and community type. 

Si!lce the advent of imaging spectrometers, various approaches have been developed for estimation of forest 
biophysical (e.g., LAI) and biochemical (e.g., chlorophyll content) parameters using hyperspectral data. They can be 
divided into three categories: statistical regression, physical modeling and bio-parameters mapping. So far, most 
attempts to estimate the LAJ on the basis of airborne hyperspectral remote sensing data have relied on empirical 
relationships (i.e., statistical correlations) between values ofLAJ measured in situ and the values of a particular 
vegetation index computed from remote sensing data (e.g., Spanner et al., 1994), derivative spectra (e.g., Gong et al., 
1992) or some spectral position parameters (e.g., "red edge" optical parameters, extracted from an inverse Gaussian 
model by Miller et al. ( 1990)). The physically based models rest on a theoretical basis consisting of developing a 
leaf scattering and absorption model that involve canopy characteristics, such as LAJ (e.g., Jacquemoud et al., 1996). 
Imaging spectroscopy has made it possible to study the spatial distribution of biophysical and biochemical 
parameters because the pixel-based parametric value can be easily calculated in terms of the relationships between 
spectra from hyperspectral remote sensing images and biophysical and biochemical parameters measured and/or 
inverted from physical models (e.g., Curran et al., 1997; Hu eta!., 2000). ·Ofthese three categories, empirical 
relationships between ground-based LAJ values and various forms of multispectral and hyperspectral data are the 
most successful and popular. In this study, we stili use the empirical regression model to predict pixel-based LAJ 
value for LAI mapping. 

The atmosphere can modify the information of the Earth's surface in several ways (Richter, 1992; Gao et al. , 
1993; Sturm, 1992). It contributes a signal independent of the ground (path radiance); it absorbs some fractions of 
the ground reflected radiance; and the atmospheric scattering (Rayleigh & aerosol) modifies the radiances of 
adjacent fields of different reflectance (adjacency effect). Therefore, dark areas surrounded by bright areas appear to 
have a higher reflectance than the intrinsic reflectance. Since the effects of atmospheric scattering and absorption on 
high spectral resolution remote sensing data are critical, the atmospheric correction is particularly important to 
imaging spectrometer data (Vane and Goetz, 1993; Green eta!., 1998) for retrieval of surface reflectance and 
atmospheric constituents. For this reason, we will use retrieved surface reflectance to study the spatial distribution of 
LAI. During the 2001 EO- I campaign in Argentina, two high spectral resolution image scenes of AVIRJS were 
acquired at two study sites in southern Argentina, and relevant ground truth data were collected for estimating and 
mapping LAI. In this study, we retrieved surface reflectance spectra from AVIRJS hyperspectral data with the 
atmospheric transfer code - MODTRAN4 (Berk et al., 2000). We used the retrieved pixel-based reflectance spectra 
to estimate and map LAI. The objectives of this study were to ( 1) develop an LAI mapping approach with the 
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AVIRJS hyperspectral data; and (2) compare the effectiveness of AVIRJS data at different processing stages of 
atmospheric correction used for estimating and mapping LAI. 

2. STUDY SITES AND DATA COLLECTION 

2.1 Study Sites 

During the 200 l EO-I campaign in Argentina, we set up two study sites, the south site ( 41 o 51 • 23" S /71 o 24' 
44" W) and the north site ( 41 o l 0' 59" S I 71 o 20' 27" W), in Rio Negro province of southern Argentina. The study 
areas are located on a relatively flat area, semiarid region with many patches of conifer forest plantations. The 
species are young- to mid-aged ponderosa pine, lodgepole pine, and Oregon pine. Besides these forest plantations, 
the study sites are covered by some broad-leaf species and shrub and grasses (mainly consisting of nire brush acaena, 
coiron, barberis, laura, rosa mosquede). The relative elevational difference within the study areas is less than 100m 
and the average elevation is approximately 850 m. 

2.2 Data Acquisition and Measurement 

(1). AVJRJS data 
At the both the north and south study sites, AYIRlS data were acquired on February 15,2001, around 14:50 p.m. 

local time. The AVIRIS were acquired at an altitude of 5029 m and this led a spatial resolution of 3.6 m. A standard 
scene of AVIRJS image consists of 614 pixels X 512 lines X 224 bands. 

(2). Spectroradiometric measurements 
From March 27-29,2001, we took reflectance measurements in the field from road surface (gravel material), 

bare soil, young tree canopy (ponderosa pine and lodgepole pine), grasses and shrubs using a FieldSpec®Pro FR 
(Analytical Spectral Devices, Inc., USA). The spectral range covered by the instrument is 350- 2500 nn1 with three 
separate spectrometers. The first spectrometer has a spectral resolution of 3 nm while the second and the third have 
the same spectral resolution of approximately I 0 nm. All spectra were measured at the nadir direction of the radiom
eter with a 25° FOV. The distance between the spectroradiometer and targets was 20 to 100 em to allow within
target-area radiance measurement. White reference radiance was measured every 5-l 0 minutes. Each sample was 
repeatedly scanned I 0 times. These spectral reflectance measurements were used for atmospheric correction for the 
retrieval ofsurface reflectance from AVIRJS data. 

(3). LA/ collection 
An LAI-2000 Plant Canopy Analyzer (PCA) was used in the field to measure forest LAI. The PCA is based on 

the amount of canopy light transmittance measured across a hemispherical field by five concentrically nested sensors 
(Welles and Norman, 1991). The LAI measurement taken by the PCA has been termed 'effective' LAI because of 
the contamination of this measure by self-shading at the needle-to-shoot level, branch and canopy levels, and stand 
level (White et al., 1997; Chen and Cihlar, 1996). The operation instructions for the LAI instrument were followed 
carefully to ensure each LAI point measured correctly. From March 27 to 29, 2001, a total of70 LAI measurements 
were taken at both sites. Each LAI measurement represents an average often PCA readings which were taken in an 
area between 100 to 1000 m2

• The locations ofPCA readings in each plot were selected based on the canopy 
closure, age of stands and nutrient level so as to make them representative of the variability in the plot. After taking 
one LAI measurement, its exact location (i.e., a plot) was marked on the color composite image of AVIRIS data or on 
forest inventory polygon map. This has been used as references for subsequent spectral data extraction from the 
AYIRIS images. Since the effective LAI is Jess variable and easier to measure than LAI, and is also an intrinsic 
attribute of plant canopies (Chen and Cihlar, 1996), we directly used the effective LAI in our analysis. 

3.METHODS 

Figure 1 illustrates a flowchart of our analytical procedure, which consists of two parts, retrieval of surface 
reflectance from AVIRIS data and LAI mapping with the AVIRIS data at three different processing stages. The 
detailed description to the flowchart is given below. 
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Figure I. A flowchart of retrieval of surface reflectance and LAI mapping 

3.1 Retrieval of Surface Reflectance 

According to Gao et al. ( 1993), Sturm ( 1992), Green ( 1992) and Qu eta!. (200 I), a simplified radiative transfer 
(RT) model based on the same principles (see Tanre et al., 1986) is applied here. In a simplified form, the at-sensor 
radianceL can be a combination of the radiance reflected from Lambertian surface and scattered from atmosphere by 

L=L + T2p . E, ·Cos(B, ), 
a l-pS 1r 

(I) 

where, T is the Sun-surface-sensor two-way transmittance in consideration of the total gaseous transmittance effect, 
La is thi path radiance caused by atmospheric scattering, Sis the spherical albedo of the atmosphere, P is the 
earth's surface reflectance, E is the exoatmospheric solar irradiance, and 8 is the solar zenith angle. Eq. (I) can 
be rewritten for retrieval of surlace reflectance, P , as s 

L-L 
p= Q m 

(L- La)S + T2. E,. Cos(B, ) 
7r 

Once solving Eq. ( l) for parameters, T
2 

, S, and La through simulation with an atmospherically radiative transfer 
code such as MODTRAN4 and giving a satellite measured radiance, L, a surface reflectance spectrum can be 
retrieved with Eq. (2). In this study, a procedure, as shown in Figure 1, for retrieving surface reflectance from 
AVIRIS data can be described as following. 

Through MODTRAN4, three at-sensor total radiances were first simulated with inputs of3 surface reflectance 
values (e.g., 0.0, 0.3, 0.5) and other parameter values necessary for calculating the total radiance, such as water vapor 
(0. 7 in this experiment), aerosols, and atmospherically geographical-seasonal model. Since the water vapor is of a 
parameter very critical to radiance output, a principle of the "smoothness test" (Qu et al., 2001) was adopted to 
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determine water vapor value. The simulated output radiance was used as L in Eq. ( 1 ). With the three simulated at
sensor total radiances, we can solve the RT model (Eq. (I)) for parameters T2 , S, and La. Using AVIRlS image 
pixel value (radiance) as at-sensor radiance and the solved T

2
, S, and La, we can easily calculate pixel-based 

surface reflectance from AVIRIS image radiances through Eq. (2). In this paper we refer to the original pixel-based 
radiance simply subtracted by the La as the corrected radiance. Since the input parameter values for MODTRAN4 
cannot completely satisfy atmospheric conditions over the study sites during flight overpasses, the retrieved surface 
reflectance is not prefect at this stage. With a set of ratio coefficients across all spectral bands calculated by dividing 
the ground reflectance by the corresponding retrieved reflectance, pixel-based surface reflectance can be scaled to 
ground measured reflectance and improved in accuracy. 

3.2 LAI Estimation and Mapping 

With the AVIRIS data of three different processing stages: the original radiance (OR), corrected radiance (CR) 
and retrieved surface reflectance (SR), the following procedure was used in this study for LAI estimation and 
mappmg. 

Step 1. Pxel-based field spectra from 15 to 225 homogenous pixels were extracted for each of the 70 LAI 
measurement plots from the OR, CR and SR images. An average was taken from all pixel spectra extracted for each 
individual plot. 

Step 2. A linear correlation coefficient is calculated between each band and the LAI measurements. The 
purpose of this step was to select those bands with high correlations to construct LAI prediction models. 

Step 3. We selected 20 bands from the AVIRJS data of OR, CR and SR. The following band combinations were 
considered: (a) selecting 2-3 bands from each band group in terms ofthe correlogram (Jia and Richards, 1999); (b) 
selecting those bands corresponding to peak values of the correlation curve; and (c) selecting those bands with 
known absorption features. 

Step 4. Using the piecewise regression procedure of SAS we further selected an optimal set ( 10 bands) of bands 
from the 20 bands determined at Step 3 to construct LAI prediction model. In order to evaluate the capabilities of 
the AVIRIS data at the three processing stages for LAI estimations, we tested the power of a regression model 
constructed using only 46 or 47 samples in estimating LAI values of the remaining 24 or 23 test samples. We 
repeated LAI model construction and estimation three times by splitting the total 70 samples into three non
overlapping test sample sets (24, 23, 23). We used all 70 samples to finally construct a 10-term prediction model for 
each type of the AVIRlS data to predict pixel-based LAI values for LAI mapping. 

Step 5. LAI estimated from the AVIRIS data were sliced into classes and colored with a legend referencing the 
value ranges for each class. 

3.3 Effectiveness Assessment Criteria 

The capabilities of the three types of AVIRlS data for estimating LAI can be evaluated using the following three 
criteria: 

• Multi-correlation coefficient (determination coefficient), R\ of an LAI prediction model; 
• LAI prediction accuracy evaluated based on the overall average accuracy ( OAA) from validation samples 

(three sets of non-overlapping test samples), from corresponding training samples or from all70 training 
samples,OAA is defined as 

OAA =(1- ~:~ }100.00% (3) 

n 

i<Y; -Y; f LY; 
...ioo~.---- ; y _ ...E.L.._ ; y;(i = 1,2, .. . ,n) are actual LAI measurements; 

n - m -I mean - n 
where, SDR = 

290 



Y;(i = 1,2, .. . ,n) are LAI values estimated from the validation samples or training samples 

by the constructed regression models; n is the number of samples; and m is the number of 
predictors in a regression model. The greater OAA is, the better is the regression 
result. 

• Visual examination ofLAI maps by comparing with a pseudo-color composite image of AVIRIS to assess 
the reasonability ofLAI spatial distribution. 

4. RESULTS AND ANALYSIS 

4.1 Retrieval of Surface Reflectance 

With MODTRAN4 (Berk et ai.; 2000), when we chose three surface reflectance values: 0.0, 0.3, and 0.5, a water 
vapor value of 0. 7, a mid-latitude summer atmospheric geographical-seasonal model, and other necessary parameters 
as inputs for the code, three at-sensor total radiances were simulated for solving the simplified RT model (Eq. (I)). 
Figure 2 presents three total radiance curves corresponding to surface reflectance, 0.0, 0.3 and 0.5, respectively. 
Some absorption features along the curves of0.3 and 0.5 reflectance, especially for those caused by water vapor, 
appear clearly in Figure 2. With the three simulated at-sensor total radiances and three surface reflectance values, the 
path radiance (La), the Sun-surface-sensor two transmittance ( T

2 
), and the spherical albedo of atmosphere (S) 

could be obtained by solving the 3-equation group of Eq. (I). When replacing the simulated at-sensor radiance by the 
sensor image pixel value, a corrected radiance image could be produced (suppose Lim :::::: L ) by deducting the La 
(i.e., Lim -La ). Further, with the two other parameters ( T and S), a retrieved surfac~ reflectance image could be 
produc2 in terms of Eq. ( l ). The retrieved surface reflectan~e image was called as primary retrieved surface 
reflectance image at this stage. 

Figure 3 (a-c) present atmospheric correction results at different processing stages. Figure 3 (a) is the original 
radiance (OR) and (b) the corrected radiance (CR) of (a). Comparing (a) with (b), we can see clearly that the 
atmospheric effect (scattering) influences more on the visible and near infrared region than on the longer wavelength 
regions. Since the surface reflectance curve is retrieved only with solved La , T2 and S, there are a lot of 'spikes' 
along the reflectance curves, especially near 0. 76 J..Ull (02), 0.94 J..Ull and 1.14 J..Ull (H20), and the 2.0 f..Ull (C02) 

absorption bands in addition to the 1.4 and 1.9 J..Ull where water vapor absorption is strong. These might be caused 
by MODTRAN4 input parameters whose values are not totally adequate, especially for those sensitive gases such as 
water vapor. It is therefore necessary to further modify the primary retrieved reflectance with ground 
spectroradiometeric measurements. We used ground spectrometer data measured from road surface (high way) and 
plant canopy (lodgepole pine) and the primary surface reflectances retrieved from the corresponding locations on the 
images to calculate a set of ratio coefficients, then applied the ratio coefficients to the primary retrieved surface 
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Figure 2. Total at-sensor radiance simulated using 
MODTRAN4 with inputs of three surface reflectances 
(0.0, 0.3 and 0.5) and a water vapor value of0.7. 

291 

reflectance to obtain the fmal version of retrieved surface 
reflectance (SR) images (see Figure 3 (c)). From Figure 3 
(c), it is evident that most portions of the reflectance curve 
are close to their ground-measured version although a few 
'spikes' still remain. The 'spikes' near 0 .94 and l.J4 f..Ull 
indicate the water vapor effect was not completely 
removed. To efficiently remove the water vapor effect, a 
three-charmel ratioing technique (Gao et al. , 1993) may be 
tested as an alternative. 

4.2 LAI Estimation 

(1). Correlation between AVIRIS data and LAI 
Linear correlations between the three types of AVIRIS 

data and field LAI measurements were calculated. The 
three correlation curves of OR, CR and SR along the 
wavelengths are presented in Figure 4. For AVIRIS SR 
data, some bands in the visible and short wave infrared 
(SWIR) regions have higher correlation compared to other 
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Figure 3. Spectral curves of two typical targets 
(forest and shrub) from AVIRIS images acquired on 
02115/2001, the north study site, at different 
processing stages: (a) original radiance; (b) 
corrected radiance with deduction of path radiance 
simulated using MODTRAN4 from (a); and (c) 
retrieved surface reflectance improved with a set of 
ratio coefficients. 

2400 

AVIRIS data, especially in the visible region. This indicates that the atmospheric correction has effectively reduced 
the scattering effect of the atmosphere on the sensor data in the visible region. In the region ofSWIR 2.05 - 2.4 pro, 
there is also a certain degree of effectiveness. However, since we have not considered a gain factor that consolidates 
all the multiplicative influences such as atmospheric transmission, solar irradiance and instrument response (Goetz et 
al., 1997), a simple deduction of the effect of atmospheric path radiance from the OR data has not improved the 
correlation. For all the three types of data, the SWIR bands can be used as a potential range for LAI estimation 
because the effect of atmosphere is relatively weak in this region except two strong water absorption bands centered 
near 1.4 and 1.9 p.m. 

(2) LA/ prediction models 
In order to construct LAI prediction models, we first selected 20 relatively important bands from all AVlRIS 

bands according to the three criteria mentioned earlier. Using the piecewise regression procedure from SAS, an 
optimal set (10 bands) ofbands from the 20 bands was selected to construct LAI prediction models for the three 
types of AVIRIS data. The optimal number of bands selected was determined based on Figure 5. When all three 
types of data were considered, I 0 bands were sufficient because the R 2 almost no longer increases if more bands 
were used. Therefore, we used all 70 samples to finally construct one 1 0-term prediction model for each type of the 
data. Table I lists some indices for model evaluation and band wavelengths selected for each type of data. Note that 
all spectral data selected were transformed into logarithmic values. All model indices including R2, overall accuracy 
(OAA) and standard deviation (SD) show that the AVlRIS SR data are the best among the three. This indicates that 
the atmospheric correction executed to OR data and the procedure of retrieving surface reflectance are helpful in 
estimating forest LAI. According to Curran ( 1989), most of the bands used relate to biochemical absorption features 
and account for biological significance because canopy LAI is considered to have a direct or indirect relation with 
most of the biochemical absorption features. For example, 2 - 3 bands selected for each type of the data (539 and 
626 nm for OR; 539, 558 and 626 nm for both CR and SR) locate in the visible region and, therefore, can relate to 
the chlorophyll absorption features; most of the other bands in the SWIR region are affected by water, protein, 
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nitrogen, starch, oil, lignin, and cellulose absorption features (I 080, 1174, 1274, 1653, 1763, 1792 and 2221 nm); 
and only 780 nm for all three types of the data and 2420 nm for SR seem to have no causal association with those 
known absorption features (>50 nm away). Among the three types of data, there are 6 common bands (539, 626, 
780, 1763, 1792, and 2221 nm). We regard these 6 common bands more important than the others in the selected 
20-band group. 
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Figure 4. Comparison of correlation coefficients among 
the AVIRJS data at the three different processing stages: 
original radiance, corrected radiance and retrieved 
surface reflectance. 
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Table 2 lists evaluation indices of training (from 46 or 47 samples) and test sets (remaining 23 or 24 samples) 
for the three types of data. All results listed were obtained through averaging the results from training or testing. All 
indices for AVIRJS SR are better than those of the other two (OR and CR) with training samples. For the results 
obtained from the test sets, it seems that atmospheric correction did not improve the accuracy ofLAJ estimation. In 
fact, the accuracies for CR and SR data are lower by a little bit than those of OR data. This may have two 
explanations: the atmospheric correction is insignificant; or the results are inconclusive because the training and test 

Table 1. LAI prediction models (10-term) of the three types of AVIRIS data, original radiance (OR), corrected 
radiance (CR), and retrieved surface reflectance (SR). N = 70 samples 

Logarithm of OR 

R
2 0.7854 

Wavelengths (nm) 539 626 780 1080 117 4 
127 4 1653 1763 1792 2221 

OAA(%) 
so 

76.63 
0.5677 

Logarithm of CR 

0.7904 
539 558 626 780 1080 1212 

1274 1763 1792 2221 

76.91 
0.5609 

Logarithm of SR 

0.8130 
539 558 626 780 1174 1653 

1763 1792 2221 2420 

78.19 
0.5297 

Note: All of R2 are significant at 0.99 confident level; OAA-overall average accuracy; SD-standard deviation 

Table 2. Comparison of the effectiveness of LAI estimation with 1 0-term regression models from the three 
types of AVIRIS data. 46 or 47 training samples and 24 or 23 test samples were used. All test results were 

obtained through averaging the three non-overlapping test sets. 

Effectiveness indiex Logarithm of OR Logarithm of CR Logarithm of SR 
Training set R 0.8119 0.8225 0.8306 

OAA(%) 78 .24 78 .88 79 .34 
so 0.5283 0.51 25 0.5020 

Test set OAA(%) 67.19 62 .33 66.71 
so 0.7931 0.9232 0 .8126 

Note: All of R2 are significant at 0.99 confident level; OAA-overall average accuracy; SO-standard deviation 
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sample sizes are not big enough. Nevertheless, based on the results shown in Table 1, the retrieved sutface 
reflectance data should be expected to have the potential to improve the accuracy of LAI estimation compared to the 
use of OR or CR data. The expectation can also be supported by LAI mapping result analyzed below. 

4.3 LAI Mapping 

A unique color or a gray level was assigned to a class of pixel-based LAI value, and corresponding legend was 
also added onto the pixel-based LAI maps. These LAI maps reflect spatial distribution of different LAI classes (see 
Figure 6). Figure 6 consists of 8 parts of the two study sites (N - north site and S- south site): (a-N, -S) are false
color composite images with AVIRIS bands 45 (NIR), 24 (Red), and 12 (Green); (b-d, -Nand -S) are LAI maps 
mapped using AVIRIS OR, CR and SR, respectively. For the false color composite images the areas with the highest 
LAI are in red color while the lowest LAI in blue-green-white color and the medium LAI in reddish and dark-red 
colors. Compared to the false color composite images, the LAI maps produced by SR are the most reasonable 
because the spatial distribution of LAI patches on the maps matches the false color image very well, and the maps 
reflect detailed LAI variation, especially for patches at the low and high ends ofLAI when compared with those from 
the CR and OR. From Figure 6 (a-N, -S), it is evident that the range ofLAI mapped from the OR is narrow. For LAI 
maps produced from CR, they are better than those from the OR, but, obviously, worse than those with the SR. This 
could be due to the results of atmospheric correction and use of the retrieved sutface reflectance. 

S. SUMMARY AND CONCLUSIONS 

In this study, we compared the effectiveness of AVIRIS data processed at three levels for LAI estimation. The 
three data levels are original radiance (OR), corrected radiance (CR) and retrieved sutface reflectance (SR) images. 
AVIRIS images were acquired on February 15, 200 I at the north and south study sites during an E0-1 campaign in 
Argentina. Spectraoradiometric measurements were taken from road surface, vegetation and bare soil with a 
FieldSpec®Pro FR spectrometer. A total of70 LAI measurements with an LAI-2000 Plant Canopy Analyzer were 
also taken in the field. We first simulated the total at-sensor radiances using MODTRAN4. Then, we solved a 

LAI 

Figure 6. LAI mapping using three types of AVIRIS images. The upper four subimages are from the north site and 
the lower four subimages from the south site. (a-N, a-S) False color composite (AVIRIS bands 45, 24, 12); (b-N, b
S) LAI mapping with original radiance; (e-N, c-S) with corrected radiance; and (d-N, d-S) with retrieved surface 
reflectance data. 
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simplified radiative transfer model for three parameters of the path radiance, the Sun-surface-sensor two 
transmittance, and the spherical albedo of atmosphere, followed by using the ground spectroradiometric 
measurements to improve the retrieved surface reflectance from the A VIRIS images. The CR images were obtained 
by simply deducting path radiance from the OR images. A 10-term LA! prediction model for each type of the data 
was constructed to predict pixel-based LA! value. Finally, the pixel-based LA! values were used to make LA! maps 
for all the three types of images. 

The results indicate that the LA! mapped with SR is the most reasonable among those derived from the three 
types of data. The worst LAI map is from OR. According to the results of correlation analysis, the SR data type 
generated the greatest correlation coefficients with measured LA!. In general, we conclude that the retrieved surface 
reflectance data is more effective for forest LAI estimation compared to the other two types of data. Additional field 
LA! measurements may be needed to test the 1 0-term prediction models for LA! estimation. 
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COMPARISON OF AVIRIS AND E0-1 HYPERION FOR CLASSIFICATION AND 
MAPPING OF INVASIVE LEAFY SPURGE IN THEODORE ROOSEVELT 

NATIONAL PARK 

Ralph Root, 1 Susan Ustin,2 Pablo Zarco-Tejada,2 Carlos Pinilla,2 Raymond Kokaly,3 Gerry Anderson,4 Karl Brown,5 

Kay Dudek,6 Steve Hager/ and Edmond HolroydH 

1. Introduction 

Invasive species are rapidly becoming a threat to the world's biodiversity. In the United States alone, non
native species are causing envirorunental damage and economic losses estimated to exceed $100 billion per year 
(Pimentel eta/., 2000). Morse eta/. (1995) estimate that approximately 5,000 plant species that have escaped from 
cultivation have subsequently invaded natural ecosystems in the United States. One of these species, leafy spurge 
(Euphorbia esula L.), entered North America from Eurasia in 1829 (Council for Agricultural Science and 
Technology (CAST), 2000). Some years later, during the Homestead Period, it found its way into North Dakota and 
subsequently has spread throughout the upper Midwest and northern Rocky Mountain States, causing estimated 
annual losses of revenue in excess of$200 million. Leafy spurge causes severe ecosystem alteration due to its 
aggressive growth relative to that of native flora, its ability to invade unaltered habitats, and its persistence once 
established. It forms nearly monotypic stands and has the capacity to alter ecological processes and visitor 
perceptions ofTheodore Roosevelt National Park and the surrounding region (Trammell, 1994). 

Control of leafy spurge infestations has become a primary resources management issue at Theodore Roosevelt 
National Park, resulting in years of research to develop efficient and cost effective methods for detection, mapping, 
and monitoring of this plant {Anderson, eta/., 1997; O'Neill eta!., 2000; Root and Wickland, 2001). 

2. Study area description 

Theodore Roosevelt National Park (Fig. I) was established April25, 1947. The park consists of three separate 
units totaling 70,416.39 acres of which 245 acres are directly linked in historical significance to the life ofTheodore 
Roosevelt. Management is directed toward protection and interpretation of the badlands ecosystems surrounding the 
Little Missouri River and the cultural resources resulting from human habitation of the area. Approximately 42 
percent of the park has been designated as a wilderness. Local variations in geology, soil, and topography along the 
Little Missouri River have created an abrupt scenic contrast to the gently rolling panorama of the northern Great 
Plains. Sandstones, siltstones, and clays interspersed with beds of coal -- some of which have burned, baking the 
overlaying clays into bright pink to deep purple "scoria" -- have been sculptured into a landscape of seemingly 
infinite variety. The badlands formations are rich in fossils of Paleocene forests and swamp life including petrified 
trunks of giant Metasequoia and remains of ancient alligators. Under the influence of today' s climate, the park is 
mantled by a rich and diverse mosaic of plant communities that provide habitats for an equally diverse variety of 
animal life. 

Approximately 500 species of vascular plants are found in the park. While the majority of plants are typical of 
those found in the rolling plains of the Missouri Plateau, species of the southwestern desert and Great Basin regions, 
as well as from the boreal forests are represented here. Of these, 59 species are not native to the park's total flora. 
The most invasive exotic with the greatest potential for damage to native plant communities is leafy spurge. 

Leafy spurge is found throughout the park in all habitat types, although it prefers streambeds, drainages, and 
wooded draws. The plant was first discovered a the western boundary of the park on Knutson Creek, and spread 
east along the drainage from an established National Grasslands infestation. From just a few plants in the late-
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1960s, the infestation grew to an estimated 10 ha by 1970. During the next twenty years, sporadic attempts at 
containment and eradication with herbicides were limited to manual ground spraying in rugged terrain while the 
infestation increased dramatically. In the late 1980s, the park embarked on an aggressive eradication campaign in 
cooperation with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), 
Animal and Plant Health Inspection Service (APHIS), and North Dakota State University. An integrated approach 
utilizing helicopter-based herbicide application, ground spraying, and release of host-specific insect species 
(biological control) was adopted and remains in use to date. 
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Figure 1. Location of study area. The South Unit of Theodore Roosevelt National Park is situated 
immediately north of Medora, ND, bordering Interstate Highway 94. 

Biological control insectories located in North Dakota and Montana provided increasing numbers of insects for 
release in the park beginning in 1994. By the late 1990s, more than 2000 insect release sites had been established, 
forming a dense network of insectories throughout the infestation. Recently, the park has seen landscape-scale 
reduction in leafy spurge infestation as the insect network coalesces; however, leafy spurge still infests an estimated 
10 percent of the land base. To effectively monitor the infestation and improve the application of controls, state-of
the-art remotely sensed data are being used at frequent intervals to quantify areas of reduction/eradication and 
identify remaining infestations. 

3. Previous leafy spurge mapping efforts 

In 1993, the USDA ARS flew low-altitude aerial photography at a scale of 1:10,000 over the South Unit of 
Theodore Roosevelt National Park, and mapped the leafy spurge infestation with visual photointerpretation 
(Anderson eta/., 1997). Maps depicting 750 ha ofleafy spurge were digitized, georeferenced, and imported into a 
geographic information system (GIS). Using this base of spatial information, map products were generated that 
allowed park managers to more efficiently gather and direct resources toward infestation control (National Park 
Service, 1992; Redente, 1993). In 1998 the South Unit ofthe park was reflown, and an updated leafy spurge map 
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was created, again by manual photointerpretation. In Figure 2 the level of infestation by 1993 is illustrated in 
yellow, with additional infestations from 1993 to 1998 mapped in red. Because different photointerpreters were 
used in 1998, the areas of infestation are more generalized, giving the impression of greater spread than may have 
actually occurred. 

.. 
..... 

,_.:::-,__ 

r 
T . R oosevelt National Park 
Euphorbia esula Infestation 

Legend 
Hydrography 

/',:./National Park Boundary 
SpUJ"3c_ars_93 

- 5p"'l!<_nps_98 

Scale 1 :50,000 

Prepared by THRO GIS LAB 
011.2611999 

' I 

', 

_- . " ""( 

Figure 2. Manually interpreted aerial photo maps of leafy spurge illustrating infestation levels in 1993 
(yellow), and 1998 (red). 

For this reason, a variety of digital remote sensing techniques have been examined since 1998 with the aim of 
achieving more quantitative and consistent analysis of leafy spurge spread over time. 

4. Data acquisition 

Testing of state-of-the art remote sensing technology for detection and mapping of leafy spurge at Theodore 
Roosevelt National Park began in 1998 as part of a cooperative demonstration project between the National 
Aeronautics and Space Administration (NASA) and the United States Department oflnterior. (DOl). Within the 
NASA/DOl Hyperspectral Technical Transfer Project (Root and Wickland, 2001), high altitude Airborne Visible 
and Infrared Imaging Spectrometer (A VIRIS) data were collected over the South Unit of the park in July, 1999. 
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Preliminary analysis of these data demonstrated that leafy spurge could be identified and mapped (O'Neill et a!. , 
2000). 

Examination of the potential for mapping leafy spurge from a space-based platform was supported by NASA in 
1999 with the incorporation of leafy spurge mapping research into the Earth Observing-! (EO- I) science validation 
program. EO-I Hyperion data were obtained over the extreme western part of the South Unit of Theodore 
Roosevelt National Park on May 21, July 6, and September 24 of 200 I, along with a second high altitude A VIRIS 
mission on 21 June 200 I for comparison purposes. Because leafy spurge was close to full bract development in 
early July, the 6 July 200 I Hyperion data set was selected for in-depth analysis. Fully developed bracts produce a 
uniform greenish-yellow canopy, making infestations visibly stand out from surrounding native vegetation. 

5. Data pre-processing and calibration to surface reflectance 

The E0-1 Hyperion data, collected on 6 July 2001, were corrected to radiance (Level I) at NASA Goddard 
Space Flight Center. The radiance corrected data, initially in hierarchical data format (HDF), were then sent to the 
USGS Rocky Mountain Mapping Center and previewed for spatial and spectral data integrity. 

At the time of E0-1 data collection on 6 July 2001, field crews used two ASD-FR spectrometers to gather 
several hundred ground spectra over a pre-selected calibration site at the estimated time of satellite overpass. The 
site was a I ha. level asphalt parking surface with uniform medium reflectance. Consistency of spectral responses 
between the two spectrometers was verified by single path measurements through a calibrated mylar sheet. Close 
agreement of sharp absorption feature responses from both instruments justified merging the spectra. 

The mean calibration reflectance spectrum collected from the ground was then corrected for Spectralon panel 
absorption features, to achieve the best possible approximation of true reflectance. Noise associated with the I ,370 
and 1,870 nm water vapor regions was eliminated using lab-measured spectra from asphalt samples obtained from 
the parking area. Minor smoothing was also done in the 2,200 to 2,500 nm region where field instrument signal-to
noise was at a minimum. The spectrum was then convolved to Hyperion and A VIRIS wavelength and bandpass, 
and processed in ACORN (Atmospheric CORrrection Now) (Analytical Imaging and Geophysics, 200 1), to ratio 
the data to surface reflectance. The final edited and smoothed ground spectrum was input into ACORN for Single 
Spectrum Enhancement (SSE) along with the arithmetic mean of corresponding A VIRIS and Hyperion pixels. These 
were selected after examination of their spectra to assure that they were consistent and positioned fully within the 
boundaries of the asphalt calibration surface. Because calibration site ground spectra collected at the time of the 
A VIRIS overflight on 21 June 2001 were virtually the same as those collected on 6 July 2001, only the 6 July 2001 
ground spectra were used for calibration of both sensors. Close agreement ( +/- I percent) between the EO-I and 
A VIRIS calibration spectra indicated consistent calibration to surface reflectance enabling direct comparisons 
between the two sensors. 

6. Comparison of AVIRIS and EO-I spectra 

Figure 3 shows comparisons of 21 June 2001 and 6 July 1999 A VIRIS and 6 July 200 1 EO-I Hyperion spectra 
over identical ground locations at: the calibration site, the Medora sewage lagoon (low reflectance water), Little 
Missouri River (turbid water), non-vegetated road fill, a 0.5 ha patch of leafy spurge, and a 4 ha grassland area. All 
areas clearly show the difference in noise levels of the two instruments, but they also show the consistency of 
Hyperion in approximating the spectra obtained by A VIRIS. Over highly reflective surfaces there are consistently 
lower reflectance levels in the 950-1,900 nm range for Hyperion. Although the reasons for this difference are 
unclear, it may be a result of a small scaling error in the Hyperion calibration or it might indicate variations in 
Hyperion detector response in this portion of the spectrum. 

7. Collection of vegetation spectra and verification data from the ground 

Throughout the course of this study ground spectra were collected at multiple sites representing varying 
densities of leafy spurge ranging from 25 to 100 percent canopy cover, and at other locations representing native 
grasses and shrubs. Each measured site was delineated by global positioning system (GPS) measurements and 
entered into the park's GIS database. Spectrometer measurements were collected by walking over the entire site 
with the collection probe to obtain a mean spectrum with both a strong signal and good spatial variation within the 
site. Numbers of individual spectra collected at each site were usually in excess of 200, with a minimum of 50. 
Mylar panels were used to document the spectral calibration of each spectrometer used in the study to assure 
uniformity of spectra. 
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During the summer of 200 I, field crews at Theodore Roosevelt National Park trained in vegetation 
identification and GPS field procedures conducted detailed ground surveys of major leafy spurge infestation areas. 
Using a sampling scheme of32 by 32m grid cells, percent cover of leafy spurge and up to 28 other vegetation types 
was recorded in several areas containing extensive leafy spurge infestations (National Park Service, 200 I). These 
data were gathered to characterize both presence and density of leafy spurge in spatial context with associated native 
vegetation. A second field survey was conducted for three consecutive growing seasons from 1999 through 200 l to 
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monitor responses of leafy spurge to chemical and biological control measures. This project entailed collection of 
data from a total of 550 3 by 5 m plots to geographically document presence/absence of leafy spurge, and to produce 
detailed estimates of canopy cover (via stem counts) and biomass for leafy spurge and associated native vegetation 
types. Plots containing leafy spurge were a combination of known bio-control measure locations and stratified 
random samples from areas previously mapped as leafy spurge (Anderson, eta\., 1997). Plots not containing leafy 
spurge were randomly selected from a buffer zone extending 250 meters in all directions from previously mapped 
leafy spurge infestations (Anderson, et a!., 1997). Ground data obtained from the first of these surveys were used 
for determining classification training inputs and setting of thresholds. Data from the second survey will be used to 
perform accuracy assessments on the classifications developed from both the Hyperion and AVIRIS imagery. 

Leaf-level spectral measurements were also carried out for biochemical analysis of leaf chlorophyll 
concentrations through SPAD-502 chlorophyll meter readings (Minolta Camera Co., Ltd., Japan) and leaf 
reflectance and transmittance. Leaf and bract optical measurements were acquired from leafy spurge samples 
collected at different locations in order to use reflectance and transmittance for red edge characterization and 
modeling leafy spurge canopy reflectance as a function of different densities. 

Single leaf reflectance and transmittance measurements were acquired on all leaves and bracts using a Li-Cor 
1800-12 Integrating Sphere apparatus coupled by a GER-2600 spectrometer yielding a 0.5 nm sampling interval and 
2.5 nm spectral resolution in the 340-2500 nm range. Measurements were collected with the integrated sphere 
following the methodology described in the manual of the Li-Cor 1800-12 system in which five signal 
measurements are required: transmittance signal, reflectance signal, reflectance internal standard, reflectance 
external reference, and dark measurements. 

8. Preliminary classification analyses 

Minimum noise fraction (MNF) principal components analyses were performed on the 1999 and 200 I A VIRJS 
and 200 I Hyperion surface reflectance data to reduce overall data dimensionality. Both years of A VIRJS data 
yielded approximately 30 useable components compared to I 0 from Hyperion. The Spectral Angle Mapper (SAM) 
algorithm in the Environment for Visualizing Images (ENVI) was applied to selected components of each set of 
imagery that gave clear visual indications of known leafy spurge infestations. Two leafy spurge infestations that had 
been observed on the ground were selected for training areas. Both were approximately I 00 m square, and 
represented dense-(50%) and moderate-(35%) canopy cover. Pixels representing these areas were located in the 
Hyperion imagery by visual interpretation and comparison of image spectra with mean ground spectra obtained from 
these sites. The SAM classification algorithm was then used to generate a rule image for the high- and moderate
density training areas. Gray-scale density values on the rule image represent spectral angle values, with smaller 
angles (i.e., darker areas) indicating closer matches to the reference spectrum. The two rule images were then added 
to each other, producing an integrated rule image (Figure 4). This image was then georeferenced and visually 
compared with the GPS field survey data and polygons from photointerpreted leafy spurge maps created with 1993 
aerial photographs. Using these visual comparisons, digital values on the summed rule image were thresholded to 
produce a leafy spurge occurrence map (Figure 5). Determination of the threshold value was based on interactive 
contrast stretching of the rule image to match small spectral angle values with GPS ground surveyed areas (National 
Park Service, 2001) and previous photo interpreted mapping boundaries of leafy spurge (Anderson et a!., 1997). 
From a statistical point of view, an optimal threshold value would result in a classification where there is a balance 
between errors of commission and errors of omission. However, a classification with a looser threshold that 
minimizes or eliminates errors of omission would be more useful from a land management and monitoring 
perspective, because of the importance of not overlooking locations of existing and newly developing infestations. 
Further analysis with accuracy assessments using ground verification data is expected to assist in making a final and 
best determination of the threshold. 

Spectral feature fitting, applied to a continuum-removed version of the chlorophyll absorption zone, has been 
successfully demonstrated for mapping leafy spurge using Compact Airborne Spectrographic Imager (CASI) data 
calibrated to surface reflectance (Kokaly et a!., 2001 a, 200 I b, 2001 c). A library of ground spectra, collected from 
several1eafy spurge infestations, was used for reference spectra. Similar analyses of the 1999 and 2001 A VIRJS 
surface reflectance data using these same library spectra are also expected to produce viable classifications of leafy 
spurge infestations. 
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Figure 4. Summed spectral angle mapper rule images from 1999 A VIRIS (left), 2001 AVIRIS (middle), and 
2001 Hyperion (right). Note the absence of leafy spurge in the lower Knutsen Creek drainage (center of 
image) in the 2001 images, resulting from chemical control measures taken in late 1999. 

Figure 5. Example of a tightly thresholded spectral angle mapper 
classification of the 2001 Hyperion data, showing only the closest 
matches to the reference spectrum (i.e. very small spectral angles). 
Although other vegetation that might be mis-classified as leafy 
spurge is virtually eliminated, many less dense infestations and 
those mixed with other types of vegetation are more likely to be 
omitted from the classification. 

A third approach being investigated is based on the calculation of red edge spectral parameters from 
hyperspectral data, which are related to biophysical and biochemical constituents of the vegetation canopy. A 
method for the classification of land cover has recently been reported that exploits systematic differences in species 
within the shorter wavelength infrared spectral regions sensitive to foliar chemistry (Martin et a/., 1998). Zarco
Tejada and Miller ( 1999) described classification of vegetated land cover based on spectral parameters that 
characterize the red edge reflectance region, which are responsive to foliar chlorophyll pigment levels. 
Classification with three red edge spectral parameters, red edge inflection point (Ap), the wavelength at the 
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reflectance minimum (A0 ), and a shape parameter ( cr) as defined by the inverted-gaussian red-edge curve-fit model 
(Hare eta/., 1984; Miller eta/., 1990, 1991 ), was carried out with the surface reflectance calibrated Hyperion data. 
The separation of land cover types and location of leafy spurge patches using this classification method is based on 
cover-type systematic differences in the variables known to affect red edge spectral parameters: vegetation 
chlorophyll content, canopy structure, canopy cover, and illumination. Preliminary classifications from the inverted
gaussian red-edge curve-fit model for red-edge spectral parameter calculation, adapted for Hyperion reflectance 
data, also compare favorably with the preliminary results from the first two methods described above. 

9. Further research tasks ahead 

During the next year finalized classifications developed by the methods described above will be completed and 
compared by applying accuracy assessments to each technique. In combination with precise georeferencing 
procedures, classifications for all four AVIRIS flight lines will be merged, producing leafy spurge maps for the 
entire South Unit of the park. These maps will then be used to quantify the effects of integrated pest control efforts 
undertaken by the park from 1999 through 200 I. 

10. Conclusions 

A VIRIS has been a central element of four years of imaging spectroscopy research in detection and mapping of 
invasive leafy spurge at Theodore Roosevelt National Park in southwestern North Dakota. The exceptionally high 
signal-to-noise ratios, well-defined system calibrations, and recently improved geospatial positioning capabilities of 
A VJRIS have provided an excellent reference point for comparison with the Hyperion imager on the orbital side, 
and CASI on the low altitude aircraft side, for effectiveness of mapping leafy spurge with imaging spectrometers 
spanning a wide range of spatial resolution. Preliminary results of three different classification techniques indicate 
that leafy spurge is generally separable from its associated vegetation types. Further research is expected to quantify 
classification results and explore the potential for generating more regional, multi-flightline maps ofleafy spurge 
infestations that will provide valuable contributions to monitoring and controlling efforts. 
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AVIRJS observations of the Monterey Bay National Marine Sanctuary are presented in light of oceanic 
processes studied in multidisciplinary field efforts. Field studies in the Monterey Bay region occurred during the 
second half of August and on October I 0-11 , 2000. A VIRJS acquisition of the Monterey Bay region was planned to 
coincide with the field studies. High-altitude A VIRJS overflight on October 13, 2000 spanned near coastal to deep 
oceanic waters. During the overflight, hyperspectral measurements of downwelling irradiance and upwelling 
radiance were made at the ocean surface over a large region of the bay. High-resolution in situ measurements from 
an autonomous underwater vehicle during the August field studies revealed complex small-scale processes of 
significance to coastal ocean ecology. These processes related to upwelling of iron-bearing (fertilizing) sediments, 
vertical fluxes of carbon at convergent fronts, topographic influences on coastal circulation, and small-scale frontal 
dynamics. AVIRJS observations captured near-surface structure related to complex small and mesoscale processes, 
including eddies, filaments, plumes and frontal dynamics, and they defined environmental structure consistent with 
the in situ observations. Application of these advanced sensing methods emphasize the necessity of high spatial and 
spectral resolution sensing in the dynamic coastal ocean environment and the value of combining remote and in situ 
sensing in studying coastal ocean complexity. 

Introduction 

The coastal ocean off western North America has received considerable oceanographic study because of its 
fisheries and proximity to large human populations. The region is strongly influenced by the process of coastal 
upwelling through which deep waters are drawn to the surface in response to wind-driven transport of surface waters 
away from the coast. Upwelled waters are nutrient-rich and support high levels of phytoplankton (Figure I) and 
higher trophic level production (Ryther, 1969; Barber and Smith, 1981 ). Dynamic currents of the upwelling system 
transport upwelled waters and their associated productivity horizontally and vertically by diverse circulation 
phenomena ranging from the scale of an eastern boundary current to mesoscale eddies and filaments and small-scale 
frontal dynamics. Off the western United States and Baja California, coastal upwelling occurs seasonally (Bakun et 
a!., 1974; Bakun, 1990). In spring, the Aleutian low pressure system moves northwest and the North Pacific high 
moves north, resulting in upwelling favorable winds. Equatorward winds continue to force persistent upwelling 
through spring and early summer; they weaken in late summer and fall and are eventually interrupted by northward 
winter storm winds, resulting in the cessation of upwelling (Strub et al., l987a, b). 

The Monterey Bay National Marine Sanctuary (MBNMS) lies in the heart of the productive upwelling system 
off central California (Figure l). Within this dynamic coastal ocean setting, the Monterey Bay Aquarium Research 
Institute (MBARI) is developing an Ocean Observing System (MOOS) to advance observational methods and 
capabilities across the disciplines of geological, chemical, physical and biological oceanography, and spanning 
research from the ocean surface to the sea floor. MOOS upper-ocean research is founded in sustained observations 
from moorings and ships that have extended for over a decade (Pennington and Chavez, 2000). These long-term 
observations provide a framework for understanding local ecosystem function, perturbation by remote forcing such 
as El Nino (Chavez eta!., 2002), and the important ecological questions that may be addressed by advances in 
methods of remote and in situ observation. 
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Figure 1. Environmental and experimental context. Main image shows space-based estimates of surface ocean 
chlorophyll concentrations from SeaWiFS, illustrating the highly productive coastal upwelling system. The white 
contour overlay defines the boundaries of the MBNMS. Inset image represents activities of the MUSE studies in the 
Monterey Bay region during August 2000 (see text). 

An important approach of MOOS development is to integrate and apply emergent technologies in major field 
efforts that enable unprecedented ocean sensing while testing the new technologies. During the most recent of these 
observatory experiments in August 2000, the MOOS Upper-water-column Science Experiment (MUSE; 
http://www.mbari.org/MUSE), oceanic process studies were focused on the nature and consequences of natural iron 
fertilization of the coastal food web that occurs through transport of iron-bearing sediments from deep shelf waters 
into the shallow, sunlit euphotic zone. Iron is a limiting nutrient for phytoplankton, and its importance to oceanic 
productivity and ecosystem structure in open ocean (Coale eta!., 1996; Kudela and Chavez, 1996) and coastal 
systems (Johnson eta!., 1999) is clear. During MUSE participants from 12 research institutions employed a wide 
array of advanced observing technologies (Figure I, inset) to pursue diverse science. One ofthe key technologies 
was the autonomous underwater vehicle (AUV), an unmanned, untethered robotic submarine programmed to 
autonomously survey the marine environment (2 yellow submarines at the lower right of Figure l inset). Because of 
their high degree of maneuverability, wide range of flight behaviors, capacity for carrying a multidisciplinary suite 
of sensors, and relatively rapid propulsion, AUVs are capable of capturing synoptic measurements of the ocean 
interior that permit greater understanding of complex processes. Most of the in situ observations presented here 
were made using an AUV. 

During MUSE there were two primary goals for overflight by the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRJS; Green eta!. , 1998). The first was to resolve variability at spatial scales between the high
resolution observations of various moored and mobile in situ platforms that cover small regions, and periodic images 
of satellite ocean color and temperature that cover larger regions at relatively coarse resolution ( - 1 km). A VIRJS 
acquisition was intended to fill a scale of observation unachievable by any other means. The second goal was to 
explore spectral structure of the coastal waters and the science enabled by a highly resolved reflectance spectrum. 
Having -2500 times the spatial resolution of a satellite ocean color or infrared image, far greater spectral coverage 
and resolution than multispectral satellite ocean color sensors, and greatly enhanced signal to noise ratio (Asner and 
Green, 200 I), A VIRJS offers a tremendous opportunity to study near-coastal optical properties, oceanic structure, 
and processes. Concurrence of A VIRJS and multi-platform in situ observation is synergistic. 
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Methods 

The ocean observatory experiment called MUSE occurred as scheduled during the second half of August 2000. 
A VIRlS acquisition in the Monterey Bay region was planned to coincide with MUSE, however atmospheric 
conditions precluded high altitude remote sensing of the surface ocean during the experiment (Figure I shows 
conditions immediately before the experiment). Thus a second, shorter research cruise was planned for October lO
ll , also intended to coincide with an A VIRlS overflight. The cruise occurred as scheduled on the RIV Pt. Sur and 
included hydro-optical station profiles and continuous underway measurements of temperature, salinity, 
fluorescence, and spectral absorption and attenuation. The cruise track is shown over regional bathymetry in 
Figure 2. Conditions during this 2-day cruise were again unsuitable for A VIRlS acquisition. However, on October 
13 conditions were favorable, and the overflight occurred. The A VIRIS data spanned near coastal to deep oceanic 
waters (flight line centers in Figure 2). Coincident with the overflight on October 13, in situ hyperspectral 
measurements of downwelling irradiance and upwelling radiance were made at 18 stations (Figure 2) in a rapid 
small-boat survey extending into all but the most seaward A VIRlS swath. Additionally, moored hyperspectral and 
hydrographic measurements were taken within the center flight swath (mooring location in Figure 2). All in situ 
hyperspectral measurements were made with HOBI Labs Hydrorad-4 hyperspectral radiometers. 

36.goN 

36.7'N 

+ Mobh HydroRad 

-CndMTrack 

121.goW 121.7"W 

Figure 2. AVIRIS flight lines and ship-based sampling locations shown over bathymetry of the Monterey Bay region 
(depth contours are 200, 1000, and 2000 m). AVIRIS flight lines and mobile hydrorad stations are from October 13, 
2000; cruise track is for the October 10-11 cruise; mooring-based measurements were continuous. 

Processing of AUV and ship observations are detailed elsewhere (Ryan et al., in prep). Here we focus on 
processing of the A VIRlS data. A VIRlS flight line data were obtained from JPL as 51 2-scanline scenes (Green et 
al, 1998). The data set consisted of 33 scenes in the five north-south flight lines having - I km overlap along their 
east-west boundaries (Figure 2). 

Cross-Track Illumination Correction 

Irregularities in cross-track illumination may be due to vignetting effects, instrument scanning, off-nadir view 
angle and solar reflection, or other non-uniform illumination effects (RSI, 200lb). To avoid sun glint, flight lines 
for this Monterey Bay region overflight were oriented north-south and intended for acquisition near local noon, 
which occurred at 12:55 pm on October 13, 2000. A VIRlS acquisition occurred after local noon, between 
approximately I :27 and 2: I 0 pm local time, and some cross-track illumination irregularities were evident in all but 
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the eastern-most flight line. To reduce cross-track illumination effects in the other four flight lines, we applied a 
polynomial fit correction method (RSI 200 I b). 

Atmospheric Correction 

Atmospheric correction was accomplished using the Fast Line-of-Sight Atmospheric Analysis ofHyperspectral 
cubes (FLAASH) atmospheric correction program on each of the flight lines individually. FLAASH is based on the 
atmospheric physics and spectroscopy of the MODTRAN4 radiative transfer code (Andersen et al. , 2000) and 
models the scattering and absorption processes in the atmosphere with user-supplied parameters. Visibility can be 
retrieved from the aerosol calculations. However, the assumptions of the aerosol retrieval method (RSI, 200lb), 
while appropriate for land applications, do not work well over water. We found that this method over-corrected for 
aerosols and resulted in negative reflectance retrievals. We therefore disabled the aerosol retrieval calculation and 
specified visibility values using an iterative empirical approach comparing retrieved reflectances with in situ surface 
reflectance measurements made at 18 locations during the A VIRIS overflight. While the scene average visibility 
calculated by FLAASH was approximately 30 km for all flight lines, the visibility value yielding the closest 
comparison with in situ spectra was 60 km. FLAASH was run in the ISAACS MODTRAN multiple-scattering 
mode using the atmospheric model of mid-latitude summer and a maritime aerosol profile. In addition to 60 km 
visibility, we specified a C02 mixing ratio of390 ppm, and an aerosol scale height of2 km. Corrected flight lines 
were then joined using pixel-based, overlap-feathering to produce a mosaic image of 3070 x 3914 pixels. 

Geometric Correction 

An irregular grid of ground control points (GCPs) was constructed from geographic positions provided in the 
A VIRIS navigation files and supplemented with data from National Ocean Service shoreline data set. GCPs were 
determined for the center line and edges of each flight line. The flight lines were then transformed into geographic 
space (latitude and longitude) using the WGS-84 datum and a polynomial warping function in ENVI (RSI 200la). 
Nearest-neighbor sampling (Richards and Jia, 1999) was used to assign pixel brightness values. 

Other Corrections 

The composite image was normalized to account for remaining glint and sea foam effects. For this correction, 
the reflectance value at 810 nm, a rather flat, low reflectance region of the spectrum, was subtracted from all 
wavelengths (S. Adler-Golden, communication). 

Derived Characteristics of the Marine Environment 

Considering the focus of the ocean process studies on phytoplankton ecology, we applied the radiometrically 
and geometrically corrected A VIRIS oceanic reflectances to derive ocean surface chlorophyll estimates based on 
algorithms developed for the SeaWiFS satellite sensor (Figure 1). The SeaWiFS OC2 version 4 (OC2V4) modified 
cubic polynomial and the OC4 version 4 maximum band ratio, 4th order polynomial algoritluns were applied 
(Appendix 1). We present chlorophyll maps from the OC2V4 algorithm. Further algorithm development is 
underway for suspended sediments, colored dissolved organic matter (CDOM), and characterization of 
phytoplankton functional groups. 

Results 

Oceanic Process Studies 

In situ observations from the AUV extended over 8 days and provided valuable observations related to 
upwelling of iron-bearing (fertilizing) sediments, vertical fluxes of carbon at convergent fronts, topographic 
influences on coastal circulation, and small-scale frontal dynamics resolved in 3-D. Here we present only two 
examples of AUV observations that illustrate the importance of high-resolution observations. 

Physical-Biological Coupling in 3-D 

On August 31 2000, an oceanic front was located via underway surface mapping by ship in northern Monterey 
Bay, and an AUV was deployed to survey a volume around and through the front. Taking nearly 60,000 
measurements from each of 6 instruments, the AUV surveyed a volume 7 km x 3 km x 70 meters (Figure 3a). The 
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gray surface in Figure 3b is a constant density surface (isopycnal) within the volume surveyed, showing a ridge
trough structure in the density field that was aligned with and inshore of the Monterey Canyon shelfbreak. The 
density ridge coincided with a surface slick that extended as far as the eye could see. The colored contours show 
mean temperature in the layer I 0 to 20m ( 11 o to 12°C; 0.2° interval). The coldest waters (dark blue contours) were 
above the isopycnal ridge. There was a temperature front south of the ridge and small-scale cool/warm eddy-like 
features south of the front (labeled C and W). 

The outer boundary of a concentrated phytoplankton layer is shown as a green isosurface in Figure 3b. Inside 
this surface, chlorophyll fluorescence was equal to or greater than that along its outer boundary, and fluorescence 
was much lower everywhere outside this boundary. The highest chlorophyll fluorescence was observed along the 
southern end of the survey (Chlmax), over the trough in the density field. Property distributions are consistent with 
the concentration of phytoplankton in the trough of an internal wave (Lennert-Cody and Franks, 1999; Pineda, 1999; 
Franks, 2001 ). Phytoplankton samples in this region showed high abundance of harmful algal species, thus 
phytoplankton concentration and patchiness indicated by these observations have implications for transfer of 
biologically produced toxins through the coastal ocean food web. This complex environmental structure and 
physical-biological coupling became evident only with a 3-dimensional snapshot of a volume captured from 
synoptic AlN survey. 

b) 

0 

km South 
0 7 

Figure 3. Volume view around a front I density field perturbation on the northern Monterey Bay shelf, 31 August 
2000. a) ocean volume (blue) relative to bathymetry (gray); the survey region was near the shelfbreak of Monterey 
Submarine Canyon. b) observations within volume: the gray isosurface is an isopycnal; the green isosurface is a 
phytoplankton-rich layer; maximum chlorophyll concentrations are shown in red . The contours are mean temperature 
between 10 and 20 m (see text). 
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Exchange between Submarine Canyon and Continental Shelf 

Even on scales of a few kilometers, bottom topography can strongly influence ocean circulation on continental 
shelves; this is an important research area in coastal ocean science (NSF Ocean Sciences Decadal Committee, 2001). 
Submarine canyons carved into the continental shelf and slope are a ubiquitous feature along the US West Coast 
(Figure 2). Observational and model studies indicate that cross-shelf exchange and upwelling patterns are 
profoundly influenced by canyons (Shea and Broenkow, 1982; Freeland and Denman, 1982; Allen 1996; Klinck, 
1996; She and Klinck, 2000). AUV -based observations near Monterey Canyon illustrate strong influence of the 
canyon on regional ecology of benthic and pelagic habitat. During MUSE we mapped physical and bio-optical 
distributions where a phytoplankton bloom dominated by the diatom Pseudo-nitzschia australis was developing. 
This species produces domoic acid, a neurotoxin harmful to marine life and humans. In 1998, a bloom of P. 
australis resulted in widespread mortality of marine mammals and seabirds (Scholin et al., 2000). On August 30, 
2000, in only two hours, we surveyed at high resolution the upper 60-m along an 8-km transect south of Monterey 
Canyon (Figure 4 ). This survey allowed examination of the environment and processes surrounding the bloom. 

The bloom was concentrated in a subsurface layer approximately 10m thick. Its vertical distribution closely 
followed a constant density surface throughout the domain surveyed (Figure 4a,b ), indicating close association 
between the physical environment and the distribution of the phytoplankton. Beneath the bloom was a plume of 
suspended particulate material emanating from Monterey Canyon (Figure 4c). Particulate material from the bottom 
can contain iron-bearing sediments that fertilize productivity of the pelagic ecosystem and may contain resting 
stages of phytoplankton that can initiate blooms when they are transported to shallow, sunlit waters. Iron is thought 
to be a key regulator of toxin production in Pseudo-nitzschia (Maldonado et al., 2002). The lack of toxici ty of this 
bloom may relate to iron supply from canyon upwelling. The patterns observed within the water column, and at the 
surface (aircraft-mapped SST, not shown) are remarkably consistent with circulation patterns forced by the 
interaction of flow with the topography of the canyon (Klinck, 1996). 

In these case studies, high-resolution, synoptic sensing of the ocean interior with a diverse suite of sensors was 
essential to understanding processes. We now turn from high-resolution in situ sensing to the high spatial and 
spectral resolution remote sensing from AYIRJS. 
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Figure 4. High-resolution vertical sections of 3 of the 6 properties measured using an AUV adjacent to Monterey 
Canyon on August 30, 2000. The same density level (black contour) is repeated in all panels for reference. 

Atmospheric Correction Results 

At nearly all in situ measurement locations the comparison of ground-truth and image spectra showed good 
correspondence of spectral shape except in the blue ( 400-440 nm) region of the spectrum where A VIRJS is less well 
calibrated (Gao et al., 2000). An example comparison is shown in Figure 5a. At 15 of the 18 stations, comparison 
of image and in situ spectra showed similar characteristics. These are summarized in Figure 5b. The error is 
characterized as the percent difference between the in situ spectra and the spatially-coincident atmospherically 
corrected image spectrum ([image-in situ]/in situ). The temporal offset of remote and in situ measurements varied 
between the stations, and this complicates the comparison somewhat; temporal offsets ranged from less than 10 
minutes to -90 minutes. The thick black line in Figure 5b is the median error for the 15 stations. The median error 
increased from a minimum of- 5% at 450 nm to a maximum of - 80% toward the IR. We are further examining 
how atmospheric correction issues (cross-track illumination and glint) affect these comparisons. 
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Figure 5. Characterization of error in atmospherically corrected spectra based on ocean surface measurements at 
15 locations on the day of AVIRIS overflight. a) example comparison of an in situ and AVIRIS corrected spectum, and 
b) summary for 15 stations; triangles mark wavelengths used for initial chlorophyll estimates (Figure 6). 

Surface Chlorophyll Calculated from A VIRJS Data 

The surface chlorophyll map derived from the atmospherically corrected reflectance data revealed phenomenal 
small and mesoscale structure in the Monterey Bay region. A mesoscale hammer-head shaped region of low 
chlorophyll concentrations extended into the northern and southern shelf waters (Figure 6a). These low chlorophyll 
plumes were flanked on their seaward sides by relatively high chlorophyll filaments extending from the northern and 
southern shores toward the bay interior. A high chlorophyll filament extended out of the southern bay into an 
anticyclonic (clockwise spinning) eddy immediately outside the bay. The highest chlorophyll estimates were in near 
coastal waters of the northern bay, extending in a plume from the mouth of the Pajaro River. Of course, chlorophyll 
estimates in this region must be treated carefully as river-borne matter can strongly influence the color of coastal 
waters. 

At the very center of the Monterey Bay crescent is the mouth of Elkhorn Slough (Figure 6b). At this location, 
the AVIRlS-derived chlorophyll estimates showed a small-scale plume extending from the mouth of the estuary (P 
label at western boundary of plume). At the core of this plume was a narrow band of high chlorophyll estimates, 
perhaps indicative of sediments influencing the reflectance and hence calculated chlorophyll. We are currently 
examining sediment algorithms to study this signature more closely. The highest chlorophyll estimates in this plume 
region were along the western (seaward) boundary of the plume, consistent with concentration of phytoplankton or 
other colored organic matter at the outer plume boundary. 

Seaward of the Monterey Peninsula (Figure 6c) the map shows a ring of kelp canopy following the topography 
(labeled k) and fine-scale filaments (labeled F) indicating complex circulation features within the high-chlorophyll 
filament east of the peninsula. Like the in situ observations from the AUV these remotely sensed signatures 
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emphasize the importance of high spatial resolution in understanding the complex processes of the dynamic coastal 
ocean. 

Spatial Structure from Ship-Based Measurements 

Underway surface mapping from the RIV Pt. Sur on October 10 and 11 (ending less than 2 days before the 
A VIRJS acquisition) revealed surface structure consistent with the A VIRJS chlorophyll map (Figure 7). High 
chlorophyll fluorescence levels were observed in the region of the northern bay nearshore plume, while low 
fluorescence and relatively high salinity (relative to the rest of the bay interior) prevailed over the region of the 
southern bay low-chlorophyll plume evident in the A VIRJS chlorophyll map (Figures 6a,7). The eddy evident in the 
A VIRJS chlorophyll map (Figure 6a) coincided with warm SST (Figure 7). The warmest, freshest waters surveyed 
were immediately outside the mouth of Elkhorn Slough (Figure 7), the same plume that showed very complex 
optical structure (Figure 6b). There are also compelling differences in the region of this plume. While the AVIRJS 
chlorophyll map suggests relatively low chlorophyll concentrations within the plume (Figure 6b; yeliow plume 
region lower in chlorophyll estimates than the adjacent near-coastal waters), some of the highest chlorophyll 
fluorescence mapped by the ship were within this plume (Figure 7c). This suggests that either conditions changed 
between the underway mapping of that region on October 11 and the A VIRJS observations of October 13, or 
perhaps that absorption in the blue by dissolved substances of estuarine or terrestrial origin affected the chlorophyll 
estimate based on A VIRJS spectral reflectance. 

Figure 6. Surface chlorophyll calculated from AVIRIS atmospherically corrected reflectance spectra; ranges differ 
between the large-area view in a), and the enhanced zoom images around Elkhorn Slough outflow in b) and the 
Monterey peninsula in c) . The range calculated over the entire region was -0.2 to 8 mg m·3 
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Figure 7. Maps of ocean surface properties measured via the continuous flow system of the RN Point Sur on 
October 1 0-11 . 

Exploring Spectral Resolution 

When and where the color of ocean waters in the upper optical depth is dominated by specific functional groups 
of phytoplankton, distinct spectral signatures resulting from their unique pigment assemblages may permit mapping 
of their spatial distributions, as has been shown for Florida Bay (Richardson and Kruse, 1999). We are using a 
unique time series including moored surface ocean hyperspectral reflectance measurements, moored hydrographic 
measurements, and regular 3-weekly samples characterizing the pigment and species composition of surface waters 
at the MBARJ M I mooring in outer Monterey Bay (location shown in Figure 2). Figure 8a shows variability in the 
shape ofthe reflectance spectrum over nearly one year at Ml and suggests five periods when the spectrum was 
markedly different. Changes in the spectrum were clearly related to changes in the underlying ocean structure. For 
example a sudden change occurred in the spectrum (Figure 8a) as the ocean temperature and salinity fields shoaled 
in the second period (Figure 8b,c), indicative of the presence of upwelled waters. The third period defined by 
spectral distinction coincided with hydrographically distinct conditions when surface waters were most persistently 
cold and saline. There are also indications of relationships between the reflectance spectra and both pigment 
concentrations and abundance of important phytoplankton groups. For example, chlorophyll was highest during the 
3'd and 51

h periods of the time series, and the spectral shape during these periods were similar to each other and 
unique from the other periods. Synechococcus also showed their highest abundance during these periods. Similarly, 
the 2"d and 41

h periods showed similar spectral shapes and were unique compared with the other periods, and they 
coincided with high abundance of autotrophic flagellates. These patterns are being further examined with a focus on 
species and functional groups that can dominate the phytoplankton assemblage. Robust relationships from single
location time series will be extended to explore spatial patterns in the spectral gradients of the A VIRlS data relative 
to the distributions and ecology of important microalgae of this dynamic coastal upwelling environment. 

Ongoing and Future Work 

Further examination of the A VIRlS atmospheric correction is planned, as described in the results. It is 
anticipated that improvements to FLAASH specifically for ocean applications (S. Adler-Golden, communication) 
may improve the atmospheric correction of these data. We are also evaluating the Tafkaa model (Gao eta!., 2000) 
developed by the Naval Research Lab for ocean applications. Motivated by the structure around river and estuarine 
plumes evident in the A VIRJS-derived chlorophyll maps, we are testing algorithms for sediments and CDOM. 

Conclusion 

Application of imaging spectroscopy to the coastal ocean is a young science with tremendous promise for 
delving into the complexity inherent in ocean margin environments so crucial to societal well being. The Monterey 
Bay region of this dynamic coastal upwelling system, with its history and ongoing development in ocean observing 
systems, provides a solid basis on which to explore the potential of imaging spectroscopy and its integration with 
other sensing methods. 
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Figure 8. A time series of hyperspectral in situ measurements (a) at the mooring location shown in Figure 2 relative 
to hydrography of the water column (b,c), surface pigments (d) and important local phytoplankton groups (e). The 
anomaly in the spectral gradient of reflectance (s(1 nm·1 x 5) in a) was calculated as follows: A daily reflectance 
spectrum (calculated from upwelling radiance just below the surface and downwelling irradiance just above the 
surface) was calculated for the two hour period of each day having the highest downwelling irradiance. To take 
advantage of the spectral resolution and emphasize variability in spectral shape, the spectral gradient (difference in 
reflectance I difference in wavelength) was computed. Finally, the anomaly in the spectral gradient was calculated by 
removing the spectrally resolved temporal mean of the spectral gradient. 
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Appendix I. 

Chlorophyll algorithms used for corrected A VIRJS reflectances. 

Table 1: Version 4 of SeaWiFS chlorophyll algorithms OC4 and OC2 used for initial 
chlorophyll estimates from corrected A VIRIS data. 

Coefficients for OC4 version 4 (Maximum Band Ratio, 4th Order Polynomial) 
a = [0.366,-3.067, 1.930,0.649,-1.532] 
R = ALOGIO((Rrs443>Rrs490>Rrs510)1Rrs555) 
Chi a (ug/1) = lO.O"(a(O) + a(l)*R + a(2)*R"2 + a(3)*R"3 + a(4)*R"4) 

Coefficients for OC2 version 4 (Modified Cubic Polynomial) 
a= [0.319, -2.336, 0.879, -0.135, -0.071] 
R = ALOG I O(Rrs490/Rrs555) 
Chi a (ug/1) = lO.O"(a(O) + a(1)*R + a(2)*R"2 + a(4) 

http://seawifs.gsfc.nasa.gov/SEA WlFS/RECAL/Repro3/0C4 reprocess.html 
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During the last several decades, the Chesapeake Bay has suffered from several large oil spill events have 
threatened coastal habitats and species. Chesapeake Bay's marine resources remain vulnerable as they share the 
coastal areas with major interstate commerce routes, underground pipelines, extensive development, large industrial 
facilities, and heavy shipping traffic to the ports of Norfolk and Baltimore. In order to effectively protect 
communities and species in jeopardy, fast and accurate determination of oil spill hazard areas is needed, particularly 
if monitoring large quantities of oil spilled. Where oil-handling infrastructure is aging, this need is amplified. This 
research addresses remote sensing, especially hyperspectral image analysis applicable to the Chesapeake Bay. 

This case study is a prototype of oil spill leaks in Patuxent River in Maryland (Darrell and Brebbia, 1996) and 
the associated image analysis for detecting oil spills using hyperspectral imagery and the effect of oil contaminants 
on soil, water quality, wetland, and vegetation. Hyperspectral airborne images, as an effective survey tool, are a 
main source for getting real-time data. In the event of an oil spill, this information can be retrieved in a short time to 
help authorities pian the quickest route to the spill and formulate an effective environmental protection plan that 
could be a way to reduce damages. Hyperspectral sensor affords the potential for detailed identification of materials 
and better estimates of their abundance. This can eliminate the false alarms of features that have the same color and 
appearance of oil, such as large algae blooms or jellyfish. These phenomena may be identified by visual 
interpretation as a suspected oil spill using some conventional sensors. Some other types of light fuel, such as 
gasoline and diesel, cannot be identified visually because of their changing appearance with time. 

Hyperspectral sensing can record over 200 selected wavelengths of reflected and emitted energy. With this 
spectral information one can exploit the spectral signature of oil and also distinguish between different 
concentrations of crude oil dispersant. HSI observations with high spectral and spatial resolution can be used to 
detect oil using the spectral signature matching to identify oil spectra based on chemical composition. Oil signatures 
can be extracted for deferent oil concentration to identify the level of oil contamination of polluted areas, which is 
necessary for determining proper cleaning processes. 

In this research, some of the problems of the conventional techniques can be minimized, when using more 
advanced methodology to identify oil spill based on the spectral signature matching not by visual interpretation of 
the image. New techniques such as HSI should be used in order to make the proper distinctions between oil spills 
and to properly identify natural phenomena. Preliminary results of this research show that with HSI spectral 
information, the signature of oil can be used to detect minute concentrations of hydrocarbon (crude oil) on the sea 
and it can distinguish between different levels of oil dispersant on water. The first part of this study also includes the 
monitoring of oil slicks movements, dispersion in water, and identifying spills on the shoreline. The second part 
will emphasize the oil contaminates in wetland, soil, vegetation, and grass in the Patuxent River basin in Chesapeake 
Bay due to oil pollution. 

A number of remote sensing systems are available (e.g., side-looking airborne radar, laser fluorescence, 
microwave radiometer, infrared-ultraviolet line scanner, SAR, ERS I, 2 and LANDSAT satellite systems). 
However, problems associated with each of these systems preclude their exclusive use during oil spills. Although 
remote sensing data can be a valuable tool in the response effort, results from different sensors can vary widely 
(Fingas, 1991 ). This problem is particularly apparent during major spills, when many interpretative analyses for 
satellite images are based on oil color or oil film appearance on water. Many of these analysis techniques have many 
problems identifying and quantifying oil floating on the sea. As the spill progressing, a surprising number of false 
positive sightings may be seen. Ice, internal waves, kelp beds, natural organics, pollen, plankton blooms, cloud 
shadows, jellyfish, algae, and guano washing off rocks all appear as oil (Pavia and Payton, 1983) (McFarland eta!., 
1993). Weather conditions are one of the limitations when using some sensors such as radar imagery, wind speed 
and high waves usually cause difficulties inherent in estimating area of coverage (Payne et. al., 1984). Waves will 
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increase natural dispersion during the early parts of the spill, break the surface tension that causes the oil to look 
"slick," and mix some of the oil into the surface layer temporarily. Observers should note that as the wind speed 
increases, the ability to detect the oil decreases (Ministry of Transport 1992). Visual observation of submerged oil is 
extremely difficult unless the water is very clear and shallow. Spill characteristics appear differently under low light 
conditions and under strong winds conditions (Fingas, 1991 ). Observations in an up-sun direction are typically 
difficult to interpret. Glare due to very low sun angles and sunlight directly overhead can make observations 
particularly difficult due to poor contrast between the oil sheen and water. After oil spends even a short time 
floating on the ocean surface, it starts to change its physical characteristics due to various physical, biological, and 
chemical processes (Schriel, 1987). The false reports obscure knowledge of the actual location and description of 
the spill. In additional to other factors that make some conventional remote sensing techniques unreliable. 

One of these conventional methods was used for tracking oil spill movements by using space shuttle 
photography, the images was taken in sequentional order in the same time of the oil spill even, The visual 
interpretation of the four images was based on the shape and the size of the oil spill, and the oil color. The 
enlargement of the spill with the time indicated the oil dispersant rate and the spill movement direction towards the 
shoreline. Also the oil type can be identified as a crude oil based on the slick color and shape. 

1.1 Space Shuttle Photography 

The four Space Shuttle images (from mission STS- 41 C) were selected for the Saudi Arabia shoreline. The 
images were taken consecutively in a short period oftime for the different stages of an oil slick. The oil spill appears 
black in the images; any slick in the image is significantly darker (> 2d.B difference) than the surrounding sea 
surface water. The Space Shuttle photography has the advantage of taking images, with direct human visualization, 
which is not possible with other satellite techniques (Figure ( 1) a,b ). 

Figure (I) a, b 

Figure (2) a, b 
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The four Space Shuttle images (numbers 2340, 2341, 2342, 2343) were taken consecutively of the same oil spill 
from different angles and locations, show extensive oil slick, in the shallow water surface, close to the shore. The 
first image shows the initial stage of the spill. The oil slick appeared larger in each image as it is spreading with 
respect to time. The dark heavy oil spill seems to be sufficiently thick, which can be identified as crude oil, as there 
was no significant gapes exist in the main slick (Figure (2) a,b). 

Winds and current forces pushed three small oil slicks to the shore. The sea wave patterns show that the wave's 
direction in curved lines paralleled to the shore boundaries and two long oil streaks appear related to wave direction. 
The upper right line, appears perpendicular on the waves direction, which seams to be traces of a ship track moving 
away from the spill, the line seems sharper toward the slick direction and thinner as it go further away from the spill 
location. The wave patterns grow and persist for a long time after a ship passes (Figures I ,2). 

1.2 AISA Hyperspectral Sensor 

The AlSA Airborne Imaging Spectrometer is a push-broom style, hyperspectral system measuring up to 288 
bands of continues visible to IR wavelengths. 25 bands were selected for our image processing. The data was 
derived from the Pipco oil company project for pollution protection for Patuxent River in Maryland (Figure 3). For 
high spatial and spectral resolution requirements, the Airborne Imaging Spectra-radiometer for Applications (AlSA) 
sensor system gets more information out of each pixel of data -more detail, finer imagery and faster turnaround than 
from other multi-spectral systems or traditional methods of monitoring. The use of AlSA data for identifying 
spectral signatures for oil spill and oil contaminated areas, can be more successful than traditional methods. Time 
sequence images of the oil can guide efforts in real-time by providing relative concentrations and accurate locations 
(Galt, 1994). Environmentally sensitive sites such as wetland can be quickly and accurately mapped, measured, and 
characterized. AlSA can be used to build a spectral library for oil spill on water and land for areas, which 
contaminated by oil. The Spectral signature can be used for identifying shoreline features specially areas which are 
environmentally sensitive, and determine the level of oil contamination (heavy or moderate) areas onshore. This can 
be useful for focusing cleanup processes. 

Figure (3) shows an AlSA hyperspectral image in Patuxent River for an oil spill due to a petroleum pipeline break, 
and also the contaminated offshore areas (Maryland April 2000) 

1.3 Hyperspectral Data 

Hyperspectral sensors such as the Airborne Imaging Spectroradiometer for Applications (AlSA) enabled the 
construction of an effective, continuous reflectance spectrum for every pixel in the scene. These systems can be used 
to discriminate among earth surface features. Hyperspectral sensors afford the potential for detailed identification of 
materials and better estimates of their abundance. This can eliminate the false alarms of features, which may be 
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identified by mistake as a suspected oil spill with other conventional sensors (McFarland et. a!., 1993). 
Hyperspectral sensing can record over 200 selected wavelengths of reflected and emitted energy. With this spectral 
information one can exploit the spectral signature of oil to detect minute concentrations of hydrocarbon on the sea 
surface, and also to distinguish between different crude oil concentrations. Applications of the hyperspectral sensing 
include determination of contaminated soil wetlands, shallow water, sand beaches, and shoreline that enables the 
identification of features with high spatial and spectral resolution. HSl can provide high quality data for analyzing 
the complex variability of landscape surface cover in different global environments. However, The application of 
traditional multispectral data analysis tools to hyperspectral data has not yielded satisfactory results because of 
mathematical and practical limitations. 

2. Methodology 

The Hyperspectral images are used to detect oil spill and determine characteristics of the substance spilled, and 
to make predictions of the spread or mitigation success. The tasks involved are: 

1. Predict oil spill spread direction and flow rate characteristics: Hyperspectral image analysis for oil 
spills must be fast and timely for operational environmental monitoring. The airborne HSI temporal image 
process predicts how oil spills disseminate within a particular body of water, under current environmental 
conditions, and where it might affect sensitive sites, such as coastal wetlands. 

2. Identify shoreline features and the severity of oil spills: With its high spectral and spatial resolution, 
HSl can be used to identify shoreline features, and areas damaged due to spilled oil. Areas impacted are 
environmentally sensitive, e.g., wetlands with shallow water, sea-grass, salt marshes, tidal-flats, waterways, 
or sandy beaches with significant biodiversity therein. 

3. Determine the pollutant type: The oil characteristics (e.g., oil types and concentration) are important to 
help the cleanup crews identify the best cleanup method, the environmental impacts of burning oil, and the 
modeling techniques (to predict the flow path, dispersion rates, and time before the slick hits the shoreline) 
(Jordan and Payne, 1980). For example, an oil type can be crude or light oil and the evaporation rate of the 
light fuel is faster than crude oil, but it could be more toxic for the marine species (Massin, 1998). 

2.1 Spectral Angle Mapper (SAM) Method 

The Spectral Angle Mapper (SAM) is a signature matching method is used for identifying oil spills and oil 
dispersant in water and shoreline. Real time analysis of the images allows field checks in the rapidly changing water 
conditions due to wind, current and tides. HSI is used to extract specific spectral signatures in order to build a 
spectral library for different oil types on water, wetland, and vegetation contaminated by oil spills. It can also be 
used to determine the level of oil contamination onshore (Figure 4). Spectral Angle Mapper (SAM) classification is 
a physically based spectral classification that uses theN-dimensional angle to match pixels to reference spectra. The 
algorithm determines the spectral similarity of two spectra by calculating the angle between them. The advanced 
image processing software, ENVI, is used for image analysis. 

2.2 Information Extraction of Hyperspectral Data 

The basic approach has been to seek a more fundamental understanding of high dimensional signal spaces in the 
context of multispectral remote sensing, and then to use this knowledge to extend the methods of conventional 
multispectral analysis to the hyperspectral domain in an optimal or near optimal fashion. The introduction of 
hyperspectral sensors that produce much more detailed spectral data than those previously provide much enhanced 
abilities to extract useful information from the data stream that they produce. In theory, it is possible to discriminate 
successfully between any specified set of classes of data by increasing the dimensionality of the data far enough. In 
fact, current hyperspectral data, which may have from a few IO's to several hundreds of bands, essentially make this 
possible (Landgrebe, 1998). However, it is also the case that this more detailed data requires more sophisticated 
data analysis procedures if their full potential is to be achieved. Much of what has been learned about the necessary 
procedures is not particularly intuitive, and indeed, in many cases is counter-intuitive. In this paper, we shall attempt 
not only to illuminate some of these counter-intuitive aspects, but also to point the direction for practical methods to 
make optimal analysis procedures possible. 
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Extracting Oil Spectrum 

Figure (4) shows the oil on water spectra in red, oil on land spectra in green, polluted water spectra in gray and clear 
water spectra in cyan. The oil and water spectra extracted from the image create the spectral library; the spectra are 
used as an endmember collection to train the Spectral Angle Mapper classifier. 
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Figure (5) Oil dispersant spectra appeared in red, cyan and green shows that high absorption at 670 nm indicated 
high oil concentrations compared with the turbid water spectra (appeared in brown, light green, and blue) which 
shows high reflectance at 580 run. 
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As shown in Figure (5) that high oil concentration increases the absorption of light and decrease the reflectance 
in the visible bands. In the opposite of turbid water have higher reflectance in the visible bands and less absorption 
in the near IR bands. The water reflectance range is between the two other types. 

2.3 Ground Truth 

Photography of locations of all zones of sampling and measurement from the air, were used to familiarize the 
analyst with the materials that exist within the imaged boundaries. In order to successfully identify classes from 
unsupervised classification results or to create appropriate representative classes (or training sites). Such efforts also 
allow us to narrow the processing, and analysis focus to a smaller region of the imagery. For extracting the 
endmembers signatures, the identification and distribution of materials in the field is suggested. In addition, ground 
truth information that corresponds with the day of data acquisition allows the developing of quantitative 
relationships between materials on the ground and that which is measured by the remote sensing instrument. These 
relationships may allow for actual estimates of material densities and amounts. 

2.4 Oil Spectra Features Analysis 

There are a number of interesting features in the oil spectral which will enable algorithms to be formed for this 
oil type (Salisbury, 1993). There is a specific peak at 580 - 600 ITljl represent the absorption of the dispersant oil, 
increasing concentration of oil causes a linear dip in the peak at 675-685 ~ (Figure 5). At increasing the 
concentration of oil on water the dip levels out so that it will be used a good marker for high and low concentration 
of oil. The dispersant oil give very strong reflectance at 580 m~-t and 700 fill in the visible and near IR . In the blue 
band there is a reflectance for water at 800 mJl and there is the water absorption at 670 mJl which provides 
information about the total concentration of oil and water turbidity near shore line. 

3. Results 

It was demonstrated from our results that by using Spectral Angle Mapper classification technique, the 
signatures for different concentrations of crude oil and oil dispersant can be matched as long as the sample has high 
concentration of hydrocarbons as shown in Figure (6) and may not match for light oils such as diesel or gasoline. 
The model is reliable for distinguishing between different concentrations of crude oil based on the oil spectra for 
each type of oil spills as shown in Figure (7). Using oil spectra on land allows us to identify the contaminated areas 
with oil spill on the shoreline (Figure 8). The classified image also indicated that features similar to oil was 
appeared in areas used for storing coal inside the Maryland Power station, the results confirmed that materials which 
have the same chemical composition such as coal (carbon), have the same signature as oil (hydrocarbons). Finally, 
ground truth information (Figure 9) provides the basis for post-processing accuracy assessments. 

Figure (6) The class image shows heavy oil slicks 
appeared in red color on the river and the small streams 
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Figure (7) One of the rule images shows dispersed oil 
and polluted water appeared in black 



Class Image Figure (8) Figure (9) 

Figure (8) shows two classes, white indicted heavy oil slicks on water, it appear close to the shore outline, and 
red color represents oil spills on land and on the river edges due to the pipeline break. 

Figure (9) shows picture was taken on the same time of oil spilt event is used as ground truth for comparing 
results. 

4. Summary and Conclusions 

I. Using hyperspectral imagery as an advanced remote sensing technology is more reliable to minimize the 
limitations of conventional remote sensing techniques for detecting oil spill. 

2. The visual interpretation of the space shuttle images shows many limitations such as changing in oil 
appearance with time, image glare due to sun angle, and other natural phenomena would result in the same 
appearance as oil spill due to weather difficulties. 

3. The results of this research show that the signature matching method is more accurate than the conventional 
techniques, which base on the visual interpretation of oil color and the appearance in the space shuttle 
images. 

4. HSI spectral information is used to distinguish between different concentrations of oil dispersant for 
different levels of oil pollution. The signature of oil is used to detect minute concentrations of hydrocarbon 
(crude oil). 

5. For oil spill image analysis, Spectral Angle Mapper classification is more accurate than other supervised 
classification techniques. When the training samples are selected from the image based on the pixels color, 
the classification may be misled. Signatures matching technique can distinguish between materials based 
on its chemical composition not by visual appearance. This allows more confidence in the classification 
results. 

6. Hyperspectral imagery is fast and timely for operational environmental monitoring for oil compared with 
space-borne systems. The airborne HSI temporal image processes predicts how oil spills disseminate within 
a particular body of water, under current environmental conditions, and where it might affect sensitive 
sites, such as coastal wetlands. 

5. Future work 

1- Accuracy assessment will be applied on the classification results for several techniques, and evaluation for each 
classification performance will show the accuracy level for each method. 

2- The linear un-mixing signature method wilt be used to identify contaminated coastal features, to distinguish 
between mixed signatures for different materials such as grass, water, and soil contaminated with oil. 
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1. INTRODUCTION 

Advanced methods of geo-atrnospheric preprocessing have become available in the past years and increasingly are 
applied to AVIRIS airborne imagery. Both, the geometric as well as the atmospheric part of the preprocessing have 
their specific impact on data quality which should be aware to scientists using such corrected data. An integral geo
atrnospheric correction has been developed in a joint effort by the Remote Sensing Laboratories of the University of 
Zurich and the German Aerospace Agency of Wessling, Germany. It combines the parametric orthorectification pro
gram PARGE (Schlapfer et aL, 1998) with the atmospheric and topographic correction program ATCOR4 (Richter et 
aL 2000). The method has been successfully tested on AVIRIS and other airborne imaging spectrometry data such as 
DAIS, HyMap, and CASL The method has been described in the abovementioned papers and thus is not further 
explained herein. In the following, two specific radiometric problems inhere to geometric as well as to atmospheric 
and topographic correction are explained and potential solutions are depicted. 

In the first experiment, the impact of spatial resampling on the spectral accuracy is determined by comparing resam
pled AVIRIS imagery to its original counterparts. The spectral artefacts appearing while applying resampling technol
ogies during the geometric processing lead to conclusions on how to perform geometric resampling in hyperspectral 
imagery. The comparison of nearest neighbor resampling to interpolation procedures shows how the spectral and spa
tial accuracy is affected after applying any of these methods in the parametric geometric correction process. 

Second, the impact of radiometric processing on the performance of hyperspectral methods such as spectral angle 
mapping and spectral unmixing is analysed. The tests are performed on AVIRIS low altitude and high altitude over 
the Ray Mine area in Arizona, using the geo-atmospheric correction chain PARGEIATCOR4 (ReSe, 2002). The 
impact of various processing stages on the recognition of jarosite as well as differences between low and high altitude 
imagery is investigated. 

2. IMPACT OF SPATIAL INTERPOLATION ON SPECTRAL ACCURACY 

Whenever geometric corrections are performed, image data are to be resampled to a regular grid before the data are 
stored in a final geometry. This best kind of resampling has already lead to extensive discussions for the geocoding of 
multispectral satellite imagery. Cubic resampling has been found to lead to the spatially most accurate results for such 
data, while having a negative impact on the radiometric integrity (Schowengerdt, 1997). For airborne imaging spec
trometry, the paradigm so far was to leave the spectra 'as is' in order to avoid interpolated (artificial) spectra in final 
data products. The arguments for such nearest-neighbor based interpolation are twofold. First, the spectrometric accu
racy and spectral uniformity is higher weighted than the spatial accuracy. Second, the interpolation processing of full 
image data cubes may be very time consuming if, e.g., cubic convolution would be applied to such data. Using an 
exemplary set of AVIRIS data it has now been tested how various interpolation methods affect the spatial as well as 
the spectral accuracy of the data. 
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2.1 Methods 

The tests performed within this analyses are based on real data sets which have been chosen for proper representation 
of the errors involved with spatial resampling. The spatial analysis is done in a non-quantitative way by visual com
parison of results from resampling options within the geocoding process (see below). The radiometric analysis is 
done by a method as also described in Schlapfer et al. 200 I. 

Six types of resampling are compared: 
nearest neighbor (direct neighbors of the original pixels in a 'first come first serve' procedure), 

• triangulated nearest neighbor (nearest neighbor with respect to a triangulation of the original pixels), 
• across track linear interpolation, 
• along track linear interpolation, 
• bilinear interpolation (strictly bilinear in two explicit directions), and 

triangulation (equals a multilinear interpolation). 
Any higher order interpolations such as 'cubic convolution' or 'quintic interpolation' (IDL, RSI Inc.) are not further 
analysed due to their tremendeous requirements in processing ressources and their high impact on radiometric accu
racy. The interpolation methods have been implemented in the parametric geocoding application PARGE. 

For the radiometric analysis, four types of masks are used for partial mapping of the data which represent missing 
individual pixels, missing lines, or groups of missing lines respectively (cf Figure 3). All masked pixels are then 
replaced by interpolated spectra from the neighboring pixels. Radiometrically equivalent resampling procedures are 
treated as one (i.e. the two nearest neighbor or the two linear interpolation options). The systematically resampled 
spectra are then compared to the real spectra at the very same spatial position over masked image areas. The mean rel
ative deviation between the original pixel and the interpolated value is then taken as measure for the error which is 
related to the interpolation method. For comparison, the maximum relative error is defined as mean deviation of the 
original spectra under the mask to the average image spectrum. If interpolation results are achieved close to this 
generic error, the interpolation obviously has failed to create an improved replacement of mis-registered image pixels. 
The obtained deviations may be interpreted with regard to the resampling of apparent gaps after the geocoding pro
cess. 

2.2 Tests on A VIRIS data 

Effects on Spatial Pattern 
The spatial effects are investigated on an exemplary low altitude AVIRlS data set from the Navarro River Watershed, 
Mendocino County, California collected in July 2000 (provided by UC Davis). The results of various interpolation 
methods are depicted in Figure I and Figure 2. Artefacts are evident if the initial geocoding procedure leads to an 
undersampled image as given in Figure I. The gaps between the 'original' pixels need to be interpolated by the best 
suited resampling procedure. However, in order to take respect to the argument not to change radiometric measure
ments, the initial spectra at the center pixel positions are forced to remain unchanged. This oversampled situation is 
often preferred since it keeps the amount of data losses minimal and usually leads to higher spatial accuracy. If the 
data amount must be kept minimal while preserving most of the original data, the output grid resolution is taken 
according to the original image resolution (see Figure 2). Hence, only few pixels are missing after geocoding and 
need to be replaced. 

For the undersampled output grid, it is obvious from Figure I that all linear interpolation methods fail to properly 
reconstruct a realistic spatial pattern in the image. Only a triangulated interpolation can solve the issue satisfyingly. 
The spatial pattern is also kept if nearest neighbour resampling is applied, but the texture suffers from this kind of 
resampling by introducing non-realistic 'crispy ' artefacts. The triangulated nearest neighbor still shows such artefacts 
although being more accurate by considering triangulated distances between the original pixels. If only few pixels 
have to be replaced as given in Figure 2, the triangulated interpolation looses its advantage over linear interpolations. 
A simple and fast linear interpolation can lead to good results, as long as it's done in across-track direction (for this 
AVIRlS case example). 
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Spatial effects of interpolation methods in an equally sampled grid (on A VIRIS data). 

Radiometric Effects 
The radiometric effects have been investigated with the method as described above. Investigation have been done on a 
combined AVIRIS low altitude and high altitude data set over the Ray Mine, Arizona, The low altimde data is dating 
from 10/3/1998 (low altimde) at a nominal ground sampling distance of 3.6 m, while the high altitude dates from 6151 
1998, at a ground sampling distance of 20.2 m. 

The radiometric errors due to the applied interpolation are between 5 and 20% for the replacement of single pixels 
and lines, dependent on the wavelength and the interpolation method (see Figure 3). The peak at lowest wavelengths 
is directly related to the high noise observed in these bands while the second peak at 680 nm is rather related to the 
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maximal absorption of vegetation at this wavelength. Bilinear and triangulated interpolation both proved to be supe
rior to nearest neighbor replacement techniques by a factor of 2 in average. The triangulation yields best results if 
only individual pixels have to be replaced while there is no significant improvement in comparison to linear interpola
tion for the replacement of whole lines as for masks 2 to 4. 

If pixels of a distance higher than the pixel size have to be replaced (i.e. for the black pixels of mask4), the interpola
tion becomes very inaccurate. The errors are almost on the same level as if the average spectrum would have been 
taken as interpolated value. For all cases, the nearest neighbor replacement is significantly worse than any other inter
polation method. Figure 4 shows that the error in nearest neighbor resampling is almost independent on the mask pat
tern. The triangulation error on the other hand is only significantly lower than the nearest neighbor-error for the 

40 

30 

~ 
0 
0 20 

~ 

10 ,, / 

•oo 500 

40 

30 

~ 
.~ 20 
0 
- ~ 
0 

10 

400 500 

maximum 

~===========::=! 2" mask4 
-- - --- -- ---- :=::::>mask3 

&00 700 
Wo,e-lengtn f nm J 

600 700 
Wovcleng t l"' ( nmJ 

800 900 

lriot>qukllC'd t., terpolat~ 

l •,..eor lnterpolotion 

800 900 

maximum 

• 

• 
• 

Figure 3: Resampling errors for A VIRIS low altitude data in comparison to the maximum error (most upper curve). 
The upper graphic refers to masks 3 and 4 while the lower graphic refers to masks 1 and 2. The lower lines per 
interpolation kind correspond to masks 1 and 3, respectively. 

-c 
.Q 

~ 
> 
Q) 

0 
Q) 
> ... 
"' a; 
a: 

•0' ~-.....-,----------,....-

~). 
> 

'· · r \ 
I r L ,, ,. i- \ 

mask4, grey, triang. 

' 
·-~ 

-
'· -

mask1 , triang 

' ~:::.:.,___ 

Wavelength [nm] 

330 

Figure 4: Comparison of triangulation (dashed) and 
nearest neighbor (solid) resampling for mask1 and 
mask4. The uppermost dashed line corresponds to the 
black pixels only of mask 4 while the middle dashed line 
represents the greyed pixels (masks see Figure 3). 



replacement of pixels directly adjacent to the original values. However, the relative advantage of triangulation 
decreases drastically for pixels 'in the second line' (black pixels of mask4 as of Figure 3). 

The analysis is extended to AVIRIS high altitude data where the validation is restricted to a reduced number of masks 
and methods for the intercomparison to AVIRlS low altitude data. Bilinear interpolation can be skipped due to the 
mask patterns which only allow for interpolations in y-direction. Only 'mask!' has been used for cross comparison of 
the results between low and high altitude imagery. Figure 5 shows that the absolute deviations are reduced by about 
one third in comparison to the low altitude data. Nearest neighbor resampling is still viable although the linear inter
polation yields better results for the whole wavelength range. The general lower level of errors while interpolating the 
high altitude data can be explained by the more homogeneous patterns in the imagery at 20 meters resolution in com
parison to 4 meters. The scattered vegetation observed in low altitude data is smoothed out and does no longer lead to 
discontinuities in the imagery. 

In general, the best interpolation method leads to an error level of 3-5% for high altitude data, while for low altitude 
data the error is in a range of 5-10%. This error levels may be attributed to the expected errors for the replacement of 
individual AVIRIS pixels at an interpolation ofl pixel distance. 
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3. IMPACT OF PREPROCESSING ON SPECTRAL ANALYSIS RESULTS 

The second part of this paper summarizes effects of the atmospheric/topographic correction on spectral data analysis 
methods. Standard methods for data processing include the spectral angle mapper (SAM) or spectral unmixing 
(SUM). All these methods rely on radiometric comparison of reference spectra from any sources (such as standard 
reflectance libraries) to the images. Theoretically, such comparison can only be done on a physical basis, if the image 
data itself has been converted to surface reflectance by atmospheric and topographic correction. The ATCOR4 pro
gram has been used to perform the correction of the above-mentioned test data set at Ray Mine, Arizona. The effect of 
the atmopheric correction on the mean spectrum is given in Figure 6. The engaged atmospheric correction program 
does not apply any 'spectral polishing'leaving the physically derived reflectance data untouched while terrain effects 
are reduced. Spectra~ bands with low atmospheric transmittance (i.e. 't < 0.3 ) have been eliminated from the data set, 
since atmospheric correction can not fully compensate such strong distortions. A short analysis showed a high distort
ing impact if such bands are included in spectral processing methods. 

The atmospheric correction of the two datasets over tbe same spatial extent leads to a minimal relative difference of 
the retrieved spectra. This fact is illustrated by the example scatterplots in Figure 7. The high altitude and the low alti
tude image are on a disjunctive data space before applying an atmospheric correction. After the atmospheric correc
tion, both images share the same space. The figure also clearly depicts, that the spectral variation in the high altitude 
is lower than in the low altitude image of the same area. The data range for the low altitude spectra is significantly 
larger due to the integrating effect of tile larger FOV in the high altitude image. 

331 



5000 

4000 500 
0 -

3000 
~ 

Q> 

V'r\ 
::> (I; 

u 
0 c 
> 

2000 
0 

u 
.'!' 
Q) 

1000 

f\ \ 

!~ 
0 

600 

400 

200/~ 
0~'~------~------~-------L------~ 

0.5 1.0 1.5 2.0 2 .5 0.5 1.0 1.5 2 .0 2.5 
wovelength [lim ) woveleng lh [lim] 

Figure 6: Spectral influence or the atmospheric correction on the mean image spectrum. Lert: Calibrated and scaled 
raw A VIRIS imagery, Right: atmospherically corrected. Strong absorbing bands have been mapped out ror spectral 
analysis. 

: 

-· 

Figure 7: Scatterplot or two exemplary spectral bands or the low altitude imagery (black) and the high altitude 
imagery (red) bef'ore and after atmospheric correction. 

3.1 Spectral Angle Mapper 

Spectral angle mapping has been performed for the detection of jarosite using three kind of processing status. The 
number of detected pixels and the mean spectral angles for these situations are given in Table 1. The high sensitivity 
of the spectral angle mapping procedure can be illustrated by various facts: 

smallest spectral angles are achieved if the library reflectance spectra are compared to the geo-atmospherically 
corrected reflectance image, 

• the uncertainty in radiative modelling leads to slightly larger spectral angles, if the method is done on at-sensor 
radiance level instead of reflectance, and 
applying reflectance endmembers directly to the calibrated radiance cube leads to useless results showing SAM 
angles beyond the necessary accuracy. 

The comparison of the low altitude image to the high altitude images (see Figure 8) lead to the following results: in 
the high altitude image, a far larger number of pixels is classified as jarosite pixels than for the low altitude image at a 
the same constant threshold angle. This is due to the fact that the low altitude image shows larger spectral variations 
and thus its average spectral angle towards a quite uniform spectrum (as jarosite is) in average are larger. This fact is 
also underlined by Figure 7, which shows the higher spectral variability in the low altitude image. The case is inverse 
for SAM on radiance images. The less accurate (or even wrong) radiometry for those cases leads to a higher number 
of pixels detected in the low alittude image due to its higher variation. The spatial analyses of these results shows that 
the detected pixels rather depict arbitrary jarosite signals than a consistent mineralogical product. 
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Table 1: Differences in number of classified pixels and Spectral Angle between various processing stages and between low 
altitude and high altitude AVIRJS imagery over the same area. The 'mean' angle is calculated within the detected area in 
relation to the atmospherically corrected low or high altitude image. 

low altitude image high altitude image 
jarosite spectrum match to jarosite [SAM angle, rad] match to jarosite [SAM angle, rad] 

within threshold area within threshold area 

reflectance endmember threshold=O. 09: threshold=O. 09: 
on atmospheric corrected mean= 0.089; #pixels: 37 mean = 0.082. #pixels: 25 959 
reflectance image thresho/d=O. 10: threshold=O. 10: 

mean = 0.096; #pixels : 4 649 mean = 0.087; #pixels: 88 228 

reflectance endmember threshold=O. 7 4: threshold=O. 7 4: 
on geometric correcte calibrated mean = 0.222; #pixels: 2 955 no values detected 
radiance image threshold=O. 80: threshold=O. 80: 

mean = 0.190; #pixels: 14 229 mean = 0.176; #pixels: 3 296 

simulated radiance endmember threshold=O. 10: threshold=O. 10: 
on geometric correcte calibrated mean = 0.138; #pixels: 643 no values detected 
radiance image (indirect) threshold=O. 13: threshold=O. 13: 

mean= 0.122; #pixels : 36 677 mean = 0.089; #pixels: 495 

3.2 Spectral Unmixing 

The robustness of the linear spectral unmixing approach has been tested on the atmospherically corrected image. The 
selected concurrent endmember minerals to jarosite are kaolinite, hematite, and goethite. The latter represents a dark 
mineral with flat spectral characteristics (a suited spectrum instead of a 'shadow' endmember). Figure 8 shows a 
larger area detected in the high altitude images than in the low altitude image under the same prerequisites for both 
SAM and SUM classification. While for the SAM classification the detected area grows vastly, the detected are in the 
SUM are growin moderately but are almost disjunctive between the low altitude and the high altitude image. The 
effect of spatial resolution is stronger in the spectral angle mapper than in spectral unmixing. The concurrent end
members in the SUM limit the difference due to resolution changes whereas the SAM only displays relative differ
ences between one endmember and the real spectrum. 

Discrepancies between low and high altitude images are also found to origin in the time delay between the two 
images, being about 4 months. During this time period, the surface has changed significantly in this active mining dis
trict. The dust roads (e.g.) are almost completely differently mapped by the two methods. This is assumed to be a tem
poral change detected in that area which is obvious in the true color images of the critical area. Anyhow, the 
differences between SUM and SAM unmixing are significant and still are not completely understood. 

Figure 8: Differences in detected jarosite pixels using the spectral angle mapper (left) and the linear spectral 
unmixing (right) on low altitude imagery (yellow) and high altitude imagery (red). 
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4. CONCLUSIONS 

The described experiments give an order of magnitude for the expected errors if interpolations need to be done in 
spectral processing and if the 'same' spectral analysis is done on various kind and processing status of spectral data. 
The results point towards important issues to be considered in data preprocessing. The radiometric analysis of spatial 
interpolation processes questions an often-heard paradigma in imaging spectroscopy that no 'artificial' spectra shall 
be produced by using interpolations. A significant higher error in the spectra derived by nearest neighbour resampling 
is observable in comparison to other interpolation methods. Thus, linear interpolations can be recommended for the 
replacement of individual pixels or missing lines. Furthermore, it has been shown that the replacement of pixels out
side the reach of the pixel PSF is very questionable and should be avoided wherever possible. The choice of interpo
lation method depends on the target grid resolution. For undersampled grids, triangulated interpolation leads to 
superior results, while for regularly sampled grids the more efficient linear interpolations are sufficient. 

The short analysis of spectral unmixing and spectral angle mapper methods for the detection of jarosite in an open pit 
mine showed, how heavily radiometric effects can influence the results of spectroscopic analysis. It is indicated that 
the preprocessing status as well as the spatial resolution of the image have a significant impact on the discemability of 
abundant minerals in geological imaging spectroscopy. The mineral detection can completely be distorted, if no atten
tion is paid towards processing status and quality of the input data. Stability of both, spectral unmixing and spectral 
angle mapping proved to be critical towards atmospheric preprocessing, number of spectral bands, as well as spatial 
resolution. These issues may be solved by careful tuning of the spectral analysis methods using absolute reflectance 
data corrected to hemispherical reflectance units (including approximate corrections for BRDF effects). 

The values have been derived from exemplary real imaging spectrometer data and thus are only of limited generic 
validity. Anyhow, the results of this analysis will be used to improve the capabilities of current geo-atmospheric pro
cessing systems such as PARGE and ATCOR4. On the geometric side, flexible options for interpolation of imaging 
spectrometry data in the processing chain need to be provided to the data users. On the radiometric side, the impor
tance of highest accuracy atmospheric and topographic corrections for consistent results in imaging spectroscopy 
applications once more has been illustrated. 
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COUPLING HYPERSPECTRAL REMOTE SENSING WITH FIELDSPECTROMETER TO MONITOR 
INLAND WATER QUALITY PARAMETERS 

Naseer A Shafique, 1 Florence Fulk2 and Susan M. Cormier,2 Bradley C. Autrey' 

INTRODUCTION 
Stream ecosystems around the world are being impacted by eutrophication. Eutrophication is the state of 

having high nutrient content and high organic production (Wetzel, 1995). It diminishes water quality by promoting 
the excessive growth of algae, cyanobacteria (blue-green algae) and macrophytes. Environmental researchers have 
been making efforts to monitor, simulate and control eutrophication for more than two decades. Various 
mathematical models have been developed and applied to rivers, lakes and estuaries (Lung, 1986; Thomann and 
Mueller, 1987; Kuo and Wu, 1991; Kuo et al., 1994). Most water quality models simulate increases in 
eutrophication based on initial conditions of the water body, therefore, demanding comprehensive water quality 
sampling programs. However, the conventional measurement of water quality requires in situ sampling and 
expensive and time-consuming laboratory work. Due to these limitations, the sample size often cannot be large 
enough to cover the entire water body. Therefore, the difficulty of synoptic and successive water quality sampling 
becomes a barrier to water quality monitoring and forecasting. 

Remote sensing could overcome these constraints by providing an alternative means of water quality 
monitoring over a range of temporal and spatial scales. A number of studies have shown that applications of remote 
sensing can meet the demand for the large sample sizes required of water quality studies conducted on the watershed 
scale. Imagery from satellite and aircraft remote sensing systems have been used in the assessment of water quality 
parameters such as temperature, chlorophyll a, turbidity, and total suspended solids (TSS) for lakes and reservoirs 
(Lillesand eta!., 1983; Lathrop and Lillesand, 1989; Ritchie and Cooper, 1991 ), estuaries (Verdin, 1985; Harding et 
a!., 1995) and tropical coastal areas (Ruiz-Azuara, 1995). 

Previous studies have focused on the discovery of the relationship between remote sensing data and in-situ 
measurements. To make remote sensing tools useful for practical applications, water quality modeling must be 
incorporated with water quality monitoring programs. Moreover, integrating a geographic information system (GIS) 
allows for the display of refined monitoring simulation results, rather than the use of traditional numerical figures. 
This provides a means by which water quality modeling data can be presented in a way that is practical for water 
quality management. The specific objectives ofthis study were to: I) establish a model to process remote sensing 
data and provide a rapid and efficient water quality monitoring technique for a wide area, 2) present predicted water 
quality conditions temporally and spatially on a georeferenced map and 3) display sequential (temporal) images of 
water quality predictions to provide decision makers with easily understandable information. 

Study Area 
The study site is located in southwest Ohio and includes the Great Miami River (a tributary of the Ohio 

river), as well as adjacent water bodies, including fishponds, reservoirs and other rivers that are tributaries of the 
Ohio River. 

The Great Miami River is situated in the Miami basin, which encompasses the drainage basins of both the 
Little and Great Miami Rivers (Figures I and 2). The Miami basin includes most of southwestern Ohio and portions 
oflndiana. The major waterways are the Great Miami River (including the tributaries, the Stillwater and Mad 
Rivers), the Little Miami River, and Whitewater River in Indiana. 

Landforms in the Great Miami River Watershed have been shaped by glaciations, which left flat-to-gently
rolling terrain, glacial till, and in some areas, exposed limestone and shale. Soils in the watershed tend to be neutral
to-slightly alkaline and drainage varies from well drained to very poorly drained, depending on parent material and 
topography. The river lies within a broad valley with a wide flood plain (Ohio EPA, 1997). The area drained by the 

1 SoBran Environmental Inc: Shafique.Naseer@epa.gov 
2 US Environmental Protection Agency: Fulk.Florence@epa.gov 
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major waterways includes both agricultural and urban lands (Ohio EPA, 1997). The Miami basin includes the major 
cities of Cincinnati and Dayton, Ohio, and the smaller cities of Hamilton and Middletown, Ohio along the Great 
Miami River. Currently, it is estimated that 70% of the total land area is used for agriculture, dominated by row 
crops of com and soybeans. Urban areas occupy 13% of the land, forested areas occupying 7%, and wetlands and 
water bodies occupy 1% of the total land area in the Miami basin (USGS, unpublished report). 

The Ohio Environmental Protection Agency (Ohio EPA) noted that most industries and municipalities near 
the Great Miami River utilize groundwater as a principal water source but discharge treated wastewater to the river. 
Surface run off from agricultural or urban areas and industries along the river is not treated or impeded prior to 
entering the river (Ohio EPA, 1997). 

Both the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS) have 
identified six important water quality issues in the Miami basin. These include: 1) the degradation of surface-and 
ground-water quality by urban and agricultural sources of fertilizer and pesticides, 2) assessing the relative 
importance of point and non-point sources to contaminant loads in the Great and Little Miami River basins, 3) 
habitat degradation and decreases in stream biodiversity as a result of urbanization, 4) the occurrence of water-borne 
pathogens in streams and shallow ground water in rural and urban land-use settings, 5) the effect of septic systems 
and combined sewer overflows on surface and shallow ground-water quality, and 6) the disruption and 
fragmentation of stream habitats by low dams and impoundments and their effects on fish and benthic invertebrate 
communities (Ohio EPA, 1997). 

Figure 1: Location map. 
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Figure 2: Sampling site of the Great Miami River within 
the Miami River basin. 

The presence of these environmental concerns in the Miami basin and the availability of ancillary data in 
the offices ofthe USEPA, OEPA, Ohio Department ofNatural Resources (ODNR), Natural Resources Conservation 
Commission (NRCS) and USGS make the Miami basin an appropriate pilot study site for this type of research. A 
map of the study locations within the Miami basin is shown in Figure 2. 

DATA 
Ground truth (reference) and spectral data were collected from 26 January 1999 to 30 September 1999. 

The data can be roughly divided into two sets, preliminary and pilot, based on the date and location from which the 
data were collected and the amount of data collected. The preliminary data sets were collected from 26 January 
1999 to 12 Aprill999 and the pilot data sets were collected from 14 May 1999 to 30 September 1999. In addition, 
all pilot data were collected from the Great Miami River between river miles (RM) 45 and 92, where remote sensing 
imagery was acquired in the latter part of the study period. The purpose of the preliminary data was to examine the 
response of the Full Range Field Spectroradiometer (FieldSpec FR, Range 350-2,500 nm) to different water quality 
conditions found in the various water bodies. Generally, the preliminary spectral reading was accompanied by 
turbidity measurements using a field turbidimeter. In addition, in-vivo chlorophyll measurements were made on two 
additional dates. The other major data set for this project includes two sets of hyperspectral imagery. The airborne 
sensor that acquired the imagery was the Compact Airborne Spectrometer Imager (CASI), taken on 8 and 9 
September 1999. The CASI acquired imagery in 19 spectral bands and the HyMap acquired imagery in 126 spectral 
bands. 
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Spectral Data Collection 
Two types of spectral data were collected during the study period: above water reflectance spectra and 

underwater radiance or irradiance spectra. The reflectance data represent the ratio of reflected energy to incident 
energy with values ranging from 0.0 to 1.0. The irradiance data represent actual energy received by the sensor as 
downwelling (irradiance) or upwelling (radiance) in units of power per unit area per unit wavelength (W/m2/sr/nm). 
The above water reflectance data were collected using the FieldSpec FR instrument from Analytical Spectra Devices 
(ASD), Inc., 1999. The underwater radiance spectra were collected using two methods. The first method used the 
FieldSpec FR instrument fitted with an underwater extension cord and an Underwater Remote Cosine Receptor 
(UWRCR). The second method used aLi-Cor brand light meter (LI-189) with an underwater sensor (LI-1000). 
While the FieldSpec FR samples energy (reflected or radiant) at 1-nm intervals, the Li-Cor measured an aggregate 
energy in the visible range between 400 and 700 nm. Due to the amount of time it takes to assemble and 
disassemble the underwater extension to the Field Spec FR, the underwater extension was used only during the first 
day of the CAS I flyover. Thus, the instrument of choice for most underwater light measurement was the Li-Cor 
meter. An apparatus was constructed to position the sensors at the desired depth, pointing upward to measure 
downwelling irradiance and downward to measure upwelling radiance). 

Imagery 
On 8 and 9 September 1999, Hyperspectral Data International (HDI) flew the CAS! sensor over the Great 

Miami River from approximately RM 45 to approximately RM 92. This sensor acquired data in 19 spectral bands 
with a spatial resolution of2 m. Twenty three flightlines covered approximately 80 km (49.7 miles) of the Great 
Miami River, from Middletown, Ohio to the Taylorsville Dam, approximately 15 km (9.3 miles) north of Dayton, 
Ohio. The imagery was delivered on 36 compact discs (CDs) in a band sequential (BSQ) file format that was 
imported with the Environment for Visualizing Images (ENVI) processing software. Some of the flight lines were 
split into several segments for the purpose of pre-processing (Hyperspectral Data International, 2000). Data obtained 
with the hand-held spectroradiometer were analyzed, revealing seven spectral bands that demonstrated usefulness 
for water quality studies. These include, bands 2 (440 nm), 7 (625 nm), II (672 nm), 14 (705 nm), 16 (740 nm), 17 
(816 nm) and 18 (840 nm). These are the minimum number ofbands that could be used to develop preliminary 
water quality maps. 

METHODS 

Criteria o(Band Selection 

Absorption 
Through the components of light absorption and scattering coefficients, the water body controls the ratio 

between light scattering and absorption values, and thus determines the subsurface reflectance and in turn the 
emergent flux that will be sensed by radiometers (Jupp eta!., 1994). Because the medium composition affects the 
absorption and scattering coefficients differently at various wavelengths, the resulting spectral distribution can be 
mathematically modeled and/or measured by a spectroradiometer from above and under the water's surface, and 
thus can be used to provide information about the water body. 

Both field and laboratory spectrometric measurements of reflectance and absorbance are essential to 
developing semi-empirical and analytical (radiative transfer) models that can describe the interactions of light and 
in-water materials (Dekker, 1997). Field spectrometry is the quantitative measurement of radiance, irradiance, 
reflectance or transmission of light in the field. There are many reasons why it is desirable to perform spectral 
measurement in the field. Field spectra of ground and water targets that are homogeneous at the scale of the 
imaging sensor and collected using ambient solar illumination can be used to convert radiance images to reflectance 
(Cone! eta!., 1987a,b). Often, field spectra of target materials are collected to allow for more precise image analysis 
and interpretation (Goetz and Srivastava, 1985). Hand-held spectroscopy is also used as a tool to perform feasibility 
studies to understand if and how a process or material of interest can be detected using remote sensing. Field spectra 
of both the material( s) of interest and spectra of other materials present in the environment can be used to address 
such issues as what spatial and spectral resolutions are required for detection. Lab spectroscopy measurements are 
also desirable because they are used for the determination of the inherent optical properties of water by measuring 
the absorption and scattering spectra of dissolved materials and particulate matter. 
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Correlation 
The correlation between temporally pooled groundtruth and spectral data was used to locate spectral 

signatures for water quality parameters. Replicate groundtruth data at a sampling point were averaged before 
conducting the correlation. Thus, when available, a data point represented the mean of three replicates. There were 
two spectral samples, taken a few seconds apart, for each sampling point. These values were averaged before 
calculating the correlation with the groundtruth data. A statistical sununary of all ground truth data was first 
computed using descriptive statistical parameters (e.g., mean, maximum value, minimum value). This allowed the 
data sets to be examined for the detection of the extreme outliers. 

One of the tools used to quantify the relationship between the spectral data and the groundtruth data was a 
correlation matrix. Scatter plots of groundtruth data against spectral data and of ground truth parameters of interest 
against each other were made to investigate relationship trends that may not be captured by correlation values. 
Depending on the magnitude of the correlation values and the trend in the scatter plots, linear and non-linear 
equations were developed to predict water quality parameters from spectral indices. 

First Derivative 
Spectroscopic derivatives are tools that can be used in spectroscopy (Philpot, 1991 ). They are obtained by 

taking the difference between the reflectance of two bands and dividing that value by the difference between the 
wavelengths separating the two bands. Then, a correlation test is performed between derivative reflectance and the 
field measurement of turbidity. When the two bands used in the calculation are adjacent to one another, the result is 
the first derivative. It is assumed that the components of variation are additive constants acting in a spectrally 
independent way over a spectral range of a few nanometers (nm). This assumption fits well with knowledge of the 
behavior of radiation and reflectance in the atmosphere and water, moreover it is much less demanding than the 
assumption made for the use of broad waveband indices. The mathematical basis of derivative spectroscopy has 
been reviewed (Dixit and Ram, 1985) and applied to the remote sensing of vegetation (Curran, 1989; Demetriades
Shah et al., 1990; Curran et al., 1991 ). 

The use of derivative spectroscopy for estimating turbidity and suspended particles is not frequently 
reported in the literature, however its potential can be inferred from previous studies (Dick and Miller, 1991; 
Philpot, 1991) and demonstrated using three laboratory spectra (Chen et al., 1991 ). The derivative reflectance 
spectra vary in a regular way with turbidity. Three regions of the spectrum at wavelengths near 450-550 nm, 675-
750 nm and 800-1000 nm show particularly large changes in derivative reflectance with turbidity and these are, 
therefore, candidate spectral regions for the estimation of turbidity with derivative spectroscopy. 

RESULTS AND DISCUSSION 
The evaluation of band selection criteria leads to the selection of certain cha!Ulels from the whole dataset 

for various water quality parameters. The bands integral to the most significant parameters, chlorophyll a and 
turbidity, are discussed below. 

Chlorophyll a 
Chlorophyll a is a phytopigment present in all algae groups in inland waters and shows distinct absorption 

bands in the blue wavelength range at 440 nm and in the red wavelength range from 672-678 nm (Figure 3), leaving 
a maximum green reflectance due to an internal cell scattering process. The red edge ascent near 705 nm that is 
narrowed to a peak by growing water absorption in the infrared is also correlated to increasing chlorophyll a 
contents (Figure 4). 
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Figure 3: Absorption maxima and minima in 
reflectance spectra of pure algal culture. 

Figure 4: Reflectance spectra for known chlorophyll a 
values from CASI data. 

Based on the correlation with the ground truth data, one of the most important relationships observed in this 
study was the relationship between turbidity, ISS, and chlorophyll. Turbidity was positively correlated with ISS 
(r = 0.76) and less positively correlated with chlorophyll (r = 0.37). Turbidity was negatively correlated with Secchi 
disk depth (r = -0.55), river depth (r = -0.19), and pH (r = -0.64). ISS was moderately correlated with chlorophyll 
parameters (up to r = 0.5! ). Of the chlorophyll parameters, turbidity and ISS generally appear to correlate better 
with a chlorophyll parameter that combines chlorophyll a and pheophytin data. Dissolved oxygen showed a low 
positive correlation (r = 0 to 0.49) with most parameters, but with a relatively stronger value with chlorophyll 
variables (r = 0.44), asserting that more living algal activity enriches the water with DO through the process of 
photosynthesis. 

The two most significant bands, 672 nm and 705 nm, were selected for the calibration of chlorophyll a 
concentration. The ratio of 672 and 705 nm wave bands produced a good correlation (r = 0.86) with the 
chlorophyll a concentration (Figure 5). Using this linear model, a chlorophyll-a distribution map of the river was 
made (Figure 6). It is interesting to see that a plume of relatively clean water (lower chlorophyll-a concentration) is 
entering the river from the wastewater treatment plant. 
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Figure 5: Correlation between spectral index and chlorophyll concentration obtained from the ground truth data. 
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Figure 6: Chlorophyll a concentration map developed from the spectral index. 

Turbidity 
To examine the association between spectral reflectance and turbidity, correlation analyses were applied to 

the Fieldspec FR channels between 400 and 880 nrn. A strong relationship existed between turbidity and reflectance 
with r = 0.8 at (625-440)*705/672. However, this relationship resulted in much higher predicted values of turbidity 
in the river than the turbidity values that were actually collected on the ground. In an effort to improve resul ts, first 
derivatives were calculated by dividing the difference between successive reflectivity values by the wavelength 
interval separating them. A corre!ogram for turbidity was developed using the first derivative and normal 
reflectance at a particular wavelength. Figure 7 illustrates the difference between the correlation coefficients from 
the raw reflectance data and the first derivative method. 

The maximum correlation, r = 0.76 was found at the derivative of (700-675)/25 nm (Figure 7). Therefore, 
the bands at this wavelength were selected for the turbidity measurement. 
The first derivative reflectance and turbidity scatter plot (Figure 8) fits with a linear model: 

Turbidity = 1224.4* (R(685)) + 3.9561 with R2 = 0.7917 

Using this linear model, a turbidity map of the river was made (Figure 9). This model showed a strong 
agreement between observed and estimated turbidity values (Figure I 0). 
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Figure 9: Turbidity distribution map ofGMR, relatively clear water is entering into 
the river from the wastewater treatment plant. 
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Observed vs Estimated Turbidity 
(CASI Data with First Derivative) 
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Figure 10: Observed and estimated turbidity plot, high R2 reflects the validity of the results. 

CONCLUSIONS 
Remotely sensed hyperspectral data have been used successfully to map the spatial distribution of 

chlorophyll a concentrations and turbidity in the Great Miami River, Ohio. Spectral signatures from the hand-held 
spectrometer and airborne hyperspectral imagery showed promising correlations with ground truth water quality 
parameters such as algal chlorophyll concentrations, turbidity values, secchi disk depths and light extinction 
coefficients. Due to the presence of the strong correlation between laboratory-measured TSS and derivative 
reflectance with both field spectrometer data and CASI data, a first derivative spectrometry was used which showed 
promising results for the low-turbidity conditions of the Great Miami River. This was not possible with normal (i.e., 
ratio or combination) indices due to the lack of gradient in actual turbidity measurements. The imagery and the final 
map confirmed this uniformity in the distribution of turbidity for most of the river. Finally, maps of relative spatial 
distributions of chlorophyll and turbidity were created from the selected signatures derived from the imaging 
spectrometer data. 

The hyperspectral chlorophyll and turbidity map demonstrate the spatial variability of the contents of 
chlorophyll and suspended matter that help determining the point and non point sources responsible for the spatial 
variability for the Great Miami River. As a result these maps may help to obtain more representative monitoring 
locations of suspended matter and related parameters as chlorophyll and secchi depth. Overall conclusion of this 
study was that the combined use of water quality model resu lts, hyperspectral data and field spectrometer in situ data 
leads to better monitoring and understanding of suspended matter and transparency in the Great Miami River. 
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MULTISCALE OPPONENT APPROACH FOR 

HYPERSPECTRAL TEXTURE RECOGNITION 

USING AVIRIS DATA 

Miaohong Shi and Glenn Healey* 

1 Introduction 

Hyperspectral sensors measure spectral radiance for a number of contiguous spatial locations to form an 

image. Several imaging spectrometers provide spectral coverage with hundreds of bands over the visible through 

short-wave infrared from 0.40 to 2.45 micrometers (Basedow et al. , 1995) (Vane et al., 1993) (Simi et al., 2000). 

Hyperspectal data with its high spectral resolution may be used to identify specific features on the earth's surface 

such as soils with different composition. 

Developing efficient methods to process hyperspectral data becomes important as the number of spectral 

bands increases. Many existing algorithms for processing hyperspectral data are the direct outgrowth of algo

rithms that were developed for single band or multispectral sensors where the number of bands is small. These 

approaches resort to a variety of approximations to reduce the computational burden. Important questions for 

these approaches include which data-reduction procedure to use and which features to compute. 

A large number of techniques for analyzing image texture have been proposed (Haralick, 1979) (Reed et al. , 

1993). Recent work on texture analysis mainly focuses on statistical approaches and filter-based approaches. 

The statistical approach characterizes textures as arising from probability distributions on random fields. This 

approach typically uses a small number of parameters to provide a concise representation for textures. Markov 

random fields (MRF) (Cross et al. , 1983) (Li, 1995) are a popular statistical model for texture. However, 

these models require prior selection of spatial structure. Multiband correlation models allow for a more generic 

representation and have been used for geometry-invariant recognition (Kondepudy et al., 1994) and illumination

invariant recognition (Healey et al., 1996) (Healey et al., 1995). Filter-based approaches (Daugman, 1985) 

(Mallat, 1989) are inspired by multi-channel filtering mechanisms in human vision. Gabor filters have been 

used extensively to compute texture features for image interpretation tasks (Bovik et al., 1990) (.Jain et al. , 

1991) (Manjunath et al., 1996). These filters achieve optimal joint localization in space and spatial frequency 

(Daugman, 1985) and can be used to decompose images into components corresponding to different scales and 

orientations. 

The modeling of hyperspectral textures is important for many applications including terrain classification 

and material identification. The number of spectral bands in hyperspectral imagery provides a large number 

of spectral/spatial correlations that can be exploited for texture modeling. There have been few attempts to 

·Department of E lectrical and Computer Engineering, University of California, Irvine, CA 92697 
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exploit texture information in hyperspectral images. Schweizer and Moura (Schweizer et al., 2001) used Gaussian 

Markov random fields to model hyperspectral textures to support detection applications. 

In this paper, we introduce a representation for hyperspectral textures using unichrome and opponent features 

computed from Gabor filter outputs. The unichrome features are computed from the spectral bands indepen

dently while the opponent features combine information across different bands at different scales. Using an 

AVIRJS data set acquired at Indian Pines in 1992, we evaluate the performance of the multiscale approach using 

opponent features for recognizing hyperspectral textures. 

2 The Gabor Texture Features 

(a) (b) 

Figure 1: Gabor function approximation of type II opponent cell 

Gabor filters are defined in the spatial domain by 

(1) 

where m is the index for the scale and n is the index for the orientation. We consider a filter bank with two 

scales and four orientations (0°, 45°,90° and 135°). 

2.1 Unichrome features 

U nichrome features are extracted from a single spectral band. Let Li ( x, y) be the i th spectral channel of a 

hyperspectral image and let fmn(x , y) be a filter in the filterbank. Denote the filtered image 

himn(X, y) = Li(X, y) * fmn(X , y) (2) 

and the unichrome feature U;mn by 

(3) 

For C spectral channels, M scales, and N orientations, a set of C M N unichrome features can be computed. 
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2.2 Opponent features 

Hering's opponent process theory (Goldstein, 1996) of human color vision was formulated in the 1800's and 

later experimentally tested by Hurvich and Jameson (Hurvich eta!., 1957). The theory is still a subject of strong 

interest (Masland, 1996). We can use Gabor functions to model receptive field structure on the ret ina. For 

example, we can approximate a type II cell response (Wiesel et a!., 1966) using the difference of Gabor functions 

at the same scale (see Fig. 1 ). For filtered bands himn(x, y) and hjmn (x , y), we consider the normalized difference 

d. ( ) _ (himn(x , y) hjmn(x ,y)) 
t 1mn x,y - U· - U · tmn Jffln 

(4) 

Then the type II opponent feature 'l/lijmn (Wiesel et a!., 1966) (.lain et al., 1998) is obtained by 

'l/lijmn = [ (L:afjmn(x,y )) 
x,y 

(5) 

By normalization in ( 4) , we remove information that is already contained in the unichrome features of (3). 

The opponent features capture the spatial correlation between different spectral channels at a certain scale and 

orientation. 

3 Experiments 

3.1 Data set 

We used AVIRIS (Vane et a!., 1993) hyperspectral data for our experiments from Purdue University's Mul

tiSpec web site1
• The 20m GSD data was acquired over the Indian Pine Test Site in Northwestern Indiana in 

1992. Band 8 (0.58-0.62~-tm.) of this data is shown in Fig. 2. From the data, we obtained 50 test texture images 

of size 10 x 10 pixels which belong to the following 8 texture classes: Corn-notill, Corn-min, Soybean-notill, 

Soybean-min, Grass/Trees, Grass/Pasture, Woods, and Hay-windrowed. 

3.2 Band reduction 

As the number of spectral channels increases, the ability to discriminate similar ground cover classes should 

also increase. Often the number of pixels available to texture classification techniques is limited, thus limiting 

the accuracy with which texture characteristics can be estimated. From the 220 AVIRIS bands, we chose a 126 

band subset by excluding bands with low signal due to water absorption or the solar radiance function. Fig. 3 

plots an AVIRIS spectral radiance function using the 126-band data set. In order to reduce the dimension of 

the spectral space, we average every three adjacent spectral bands of the 126 spectral bands to get 42 spectral 

bands. This significantly reduces feature computation requirements. Fig. 4 shows the spectral radiance function 

corresponding to figure 3 in the reduced band system using the 42 spectral bands. 

3.3 Feature subset selection 

For filters defined using 2 scales and 4 orientations, there are a total of 336 unichrome features for the 42 

spectral bands. We compute opponent features 'l/lijmn for all i, j with i = 1, 2, . .. , 42; j = 1, 2, . . . , 42 and i -j. j 
1 http: / /dynamo.ecn .purdue.~u/~biehi/MultiSpec/ 
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Figure 2: Band 8 (0.58-0.62JLm) of AVIRJS Indian pine test site image 

to get 6888 opponent features. Thus, a test texture image can be represented by a vector of 7224 unichrome and 

opponent features. We compute a mean feature vector for each of the 8 texture classes by averaging the feature 

vectors for all of the test texture images of that texture class. 

We define a distance metric between two feature vectors by 

(6) 

where ut, !4. ... , J;) is the feature vector for texture image i and Ui, !~, ... , Jt) is the feature vector for texture 
image j. !(fk) is the standard deviation of fk over the 8 texture cla..c;ses. For each test texture image, we compute 

the distance of the test texture image from the mean feature vector for each of the eight texture classes using 

(6). We classify a test texture image as an instance of nearest class. We can use a stepwise optimal algorithm to 

build up approximately optimal feature subsets. At each step, we add a new feature that leads to a maximum 
increase in classification rate. 

3.4 Classification results 

We show a comparison of the classification performance for the best subsets of six feature sets in Fig. 5. 

The first feature set includes the 42 mean features and 42 variance features. The mean feature is defined 

by m; = tbo Lx,
11

L;(x,y) with L;(x,y) denoting the ith spectral band. The variance feature is defined by 

var; = 1:m Lx,
11
(L;(x,y) - m;)2

. The second feature set includes only the 42 mean features. The third feature 

set includes only the 42 variance features . The fourth feature set includes the 336 unichrome features. The fifth 

feature set includes the 6888 opponent features . The sixth feature set includes all 7224 unichrome and opponent 

features. We see that for a given number of features, the mean and variance feature set performs better than only 

the mean or only the variance feature set. The unichrome feature set performs better than the mean and variance 

feature set. Vve also see that using the opponent features significantly improves the cla..c;sification accuracy over 

only using the unichrome features. 
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Figure 3: AVIRIS spectral signature (bands 1-126) 
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Figure 4: Spectral signature in the reduced band system (bands 1- 42) 
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Figure 5: Best classification rate for each of six feature sets 

3.5 An example 

Texture cla.<>s 1 (Corn-notill) and texture class 2 (Corn-min) are taken as an example to illustrate how the use 

of opponent features improves classification performance. There are seven test texture images of size 10 x 10 in 

cla.'>S 1 and five test texture images of size 10 x 10 in class 2. We define a unichrome filtered image by jhimn (x, y)j 
and an opponent filtered image by jdijmn (x, y )I so that the square of the unichrome feature defined by (3) is the 

energy of the unichrome filtered image and the square of the opponent feature defined by (5) is the energy of 

the opponent filtered image. We label several points in figure 5 with A; or B; symbols. We denote the best two 

unichrome features at A1 as /JJ, JJ2 , the added unichrome feature at A2 as JJ3 , and the added unichrome feature 

at A3 a.<> JJ4 • Point Bz coincides with point A1 since the best two selected features from the unichrome and 

opponent feature set are only unichrome features. We then denote the added opponent feature at B2 as 'lj;1 and 

the added opponent feature at B3 as '1/Jz. Fig. 6 displays the filtered images for the seven 10 x 10 instances of 

texture 1. From top to bottom in Fig. 6 are filtered images corresponding to Ill , Jlz, f..l3 , 'I/J1 and 'I/J2 • Similarly, the 

filtered images for the five instances of texture 2 are shown in Fig. 7. We see that while the unichrome filtered 

images for the two texture classes are quite similar, the opponent filtered images are significantly different. The 

opponent filtered images for texture class 1 have more energy than the opponent filtered images for texture class 

2. This can also be seen by examining the computed features shown in Table 1. The values of Ill , /J2, and JJ3 are 

close for the two classes while the values of 'I/J1 and 'lj;2 are significantly larger for class 1 t han for class 2. 

Using (6) , we also compute the distance between the mean of the seven instances of texture class 1 and the 

mean of the five instances of texture class 2 at points A1 , A2, A3, Bz and B3. The results are shown in Table 2. 

For a fixed number of featnres, the distance increases greatly with the opponent features added to the feature 

350 



set. This indicates that texture classes 1 and 2 are more easily discriminated when using the opponent. features 

versus only unichrome features. 

To show why the opponent features improve classification performance, we consider the first selected opponent 

feature 'lj;1 which captures the spatial correlation between hand 9 and band 28 at a certain scale and orientation. 

'lj;1 is much larger for texture class 1 than for texture class 2 which suggests that the band 9 and band 28 

intensities across rows are more correlated for texture class 2 than for texture class 1. If normalized band 9 and 

band 28 are equal, then from ( 4) the opponent feature 'lj;1 wiri be zero. We compute normalized intensities of 

band 9 and band 28 for texture class 1 along a row by averaging the rows of the filtered image for these two 

bands respectively. The normalized intensities are plotted in Fig. 8. Similarly, we plot the normalized intensities 

for texture cla.c;s 2 in Fig. 9. As we can see, the normalized band 9 and band 28 curves are more similar for 

texture class 2 than for texture class l. 

Figure 6: Filtered images for texture 1 (from top to bottom: p,1 , p,2 , p,3 , 'lj;1, 7j;2 ) 

Figure 7: Filtered images for texture 2 (from top to bottom: p,1 , p,2 , p,3 ,7j;1, 7j;2 ) 
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Table 1: Selected features for texture 1 and 2 

Texture 1 Texture 2 

J.ll 0.0320 0.0312 

J.l2 0.0228 0.0258 

J.l3 0.0133 0.0132 

'If; I 0.0452 0.0256 

'lj;2 0.1335 0.0964 

Table 2: Distance metrics between texture 1 and 2 

Number of Features Distance Metrics 

AI 2 uni 1.6203 

A2 3 uni 1.6260 

A a 4 uni 1.6298 

B2 2 uni 1 oppo 1.8742 

B 3 2 uni 2 oppo 2.1826 

0.1,---~---~--~---~--~------., 

10 15 20 25 30 

Column Number 

Figure 8: Normalized intensities of band 9 and band 28 across rows for texture 1 
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Figure 9: Normalized intensities of band 9 and ba:nd 28 across rows for texture 2 

4 SUMMARY 

In this paper, we have examined feature subspaces for texture recognition in hyperspectral imagery using 

unichrome and opponent features computed from Gabor filter outputs. The opponent color features are motivated 

by opponent processes in human vision. With the unichrome and opponent features, we can capture the spatial 

information within and between spectral bands. Using an AVIRIS data set, we demonstrated the discriminatory 

power of optimized feature sets that include opponent features for texture recognition. We have shown that 

using both unichrome and opponent features significantly improves the performance of texture classification over 

only using the same number of unichrome features. 
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HYPERSPECTRAL REMOTE SENSING OF THE BRAZILIAN PANTANAL LAKES 

Lenio Soares Galvao, 1 Waterloo Pereira Filho/ Myrian de Moura Abdon, 1 

Evlyn M. M. L. Novo,' Joao S. V. da Silva,3 and Fl<ivio Jorge Ponzoni 1 

I. INTRODUCTION 

Located in the center of South America, mostly in Brazil, the Pantanal is considered the largest complex of 
wetlands of the world (Aiho eta!., 1988; Tundisi, 1994). From the ecological, biological and economical points of 
view, thousands of small shallow fresh and salt water round lakes are responsible for the supply of water and food 
for human beings and animals and of salt for cattle. They have also a very important role as temporary or unique 
habitats for several native species of mammals, reptiles and aquatic birds (Brum and Souza, 1985; Pott eta!., 1987; 
Campos, 1991 ). 

The Pantanal is one of the least known regions of the planet. The difficulty to access many areas is one of 
the major factors responsible for the scarce scientific knowledge on the lakes. In the study of the lakes, remote 
sensing investigations are restricted to a very small number of published papers. For example, Abdon et a!. ( 1998) 
reported the discrimination of aquatic plant covers especially in areas with Salvinia auriculata and Scirpus cubensis 
through the use of multispectral remote sensing (TM!Landsat 5 and HRV/SPOT images). However, to address the 
difficulty to distinguish areas occupied by different mixtures of aquatic plants, they suggested the use of data with 
better spatial and spectral resolution. In this sense, hyperspectral remote sensing introduces new perspectives for the 
study of the Pantanal lakes. The possibility of comparing pixel spectra with field spectra of water or aquatic plants, 
retrieving narrow absorption bands on a per-pixel basis, and of relating the spectral characteristics of the Pantanal 
lakes with physico-chemical databases is essential to understand the relationships between reflectance and water 
constituents. 

In August 1995, at the peak of the regional dry season, the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) acquired images in the Brazilian Pantanal region in 224 bands (400-2500 nm) with 20 meters of spatial 
resolution. By inspection of these images, a subset of 12 lakes with distinct characteristics was selected for field 
investigation and spectral and physico-chemical data collection. The objective of this article is to discuss the 
spectral behavior of these lakes face to variations in water constituents. ·· 

2. METHODOLOGY 

The location of the study area (approximately 10 x 20 km) is depicted in Figure l. A VIRIS data were 
acquired in August 1995, at the peak of the regional dry season, from an altitude of20 km. Images were obtained in 
224 bands (I 0 nm in width) positioned in the 400-2500 nm interval, with a solar zenith angle of 34° and a nominal 
spatial resolution of 20 m. A VIRIS radiance values were converted to surface reflectance data, that is, corrected for 
the scattering and absorption atmospheric effects, through the use of the Atmosphere Removal (A TREM) technique 
(Gao eta!., 1993). After calculating the surface reflectance data, the Empirical Flat Field Optimal Reflectance 
Transformation (EFFORT) technique (Boardman, 1998) was applied over the images at selected spectral intervals to 
smooth noisy data resulting from the atmospheric correction procedure. 
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Caixa Postal 515, 12201-970, Sao Jose dos Campos, SP, Brasil (lenio@ltid.inpe.br). 
2 Universidade Federal de Santa Maria - UFSM 
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Figure 1 - Spatial distribution of the Pantanal in Brazil and location of the study area. 

The selection of the lakes for field inspection was based on the analysis of true color composites and of 
pixel spectra. The Bidirectional Reflectance Factor (BRF) at 39 sampling sites of seven fresh water and five salt 
water lakes were collected from a boat using a portable spectrometer (SPECTRON SE-590). The sensor collected 
data in the 400-900 run range at spectral intervals of 3 nm and with !5° FOV lens. A BaS04 plate of known 
reflectance was used as reference. Each one of the 39 collected spectra was the average of five continuous readings. 

At each site, besides the reflectance data, the following in-situ measurements were performed: electrical 
conductivity, pH, total depth of the lake and Secchi disk transparency or Secchi depth. In laboratory, 33 water 
samples were submitted to chemical analysis. The methods used for determination of the water constituents were: 
calcium (Ca), total iron (Fe), magnesium (Mg), potassium (K) and sodium (Na) (atomic absorption spectrometric 
method); total phosphorous (P) (colorimetric and ascorbic acid method); total organic nitrogen (N) (Kjeldahl 
method); dissolved organic carbon (DOC) (colorimetric method); and total concentration of chlorophyll a plus 
phaeophytin (Chi) (spectrophotometric method). Details on these methods are described in Eaton et a!. ( 1985). The 
total suspended solids (TSS) was determined by filtering samples onto 0.45 llffi filters of known weight, drying 
them, and measuring the weight gain due to sediment concentration. 

To characterize variations in depth of the main absorption bands present in pixel spectra, the continuum 
removal method (Clark and Roush, 1984) was applied to normalize the curves, to isolate the features, and to allow 
their comparison from a common baseline. Straight line segments connecting the edges (reflectance max.ima) of the 
absorption band centered at 630 nm were chosen to define the continuum. The depth of the absorption band (D) was 
computed from the equation "D = I - Rb/Rc", where Rb is the reflectance value at the center of the absorption band, 
and Rc is the reflectance of the continuum at the same wavelength as Rb. 
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3. RESULTS AND DISCUSSION 

Figure 2 shows a true color composite (A VIRlS bands centered at 667 nm, 559 nm and 480 nm displayed 
in red, green and blue colors, respectively) and the location of the lakes selected for field inspection. Despite the 
non-existence of A VIRIS data for lake 7, which is located very close to the border of lake 6, its selection for 
investigation is due to its similarity in field with the bluish lake 3 indicated in Figure 2. 

Figure 2- True color composite of the study area with the A VIRlS bands centered at 667 nm, 559 nm and 480 nm 
depicted in red, green and blue colors, respectively. The location of the lakes selected for investigation (except lake 
7) is indicated. The location of the "Vazante do Castelo", a temporary drainage channel, is also shown. 

The fresh water lakes l, 2 and 4, which display dark or light green colors in Figure 2, are characterized by 
the occurrence of small amounts of aquatic macrophytes (e.g., Eichhornia azurea and Sa/vinia auriculata) in their 
margins. On the other hand, the surface of the fresh water lakes 9 and 12 are dominated by a dense cover of floating 
vegetation, composed of Nymphaea amazonum, Nymphaea lingu/ata and sa/vinia auriculata. These aquatic plants 
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are responsible for the green colors observed in the color composite of Figure 2. A lesser dense cover of aquatic 
plants, composed of Eicchornia azurea, Oxycaryum cubense and Nymphaea amazonum, are predominant in lakes 10 
and II. 

The salt water lakes appear in greenish (lakes 5, 6 and 8) and bluish (lake 3) colors in the true color 
composite offigure 2. However, the green color of lake 8 is the result of the strong background influence of the 
submerse rooted macroscopic algae Chara rnsbyana that densely covers the bottom of this shallow lake. 

Table I shows average and standard deviation values of the physico-chemical characteristics ofthe studied 
lakes. In general, when compared with the fresh water lakes, the salt water lakes, especially the more saline water 
bodies (lakes 3, 5 and 6), tend to present lower values of total depth and Secchi depth, and higher contents of DOC, 
TSS, Ca, Mg, Na and K. As illustrated in Table I, the salt water lakes are composed of alkaline waters (pH > 9) with 
high values of electrical conductivity that may reach more than 3500 11-S/cm in the more saline lakes. 

Table 1 -Average and Standard Deviation (in Parentheses) Values of the Physico-Chemical Characteristics 
of the 12 Studied Fresh Water (F) and Salt Water (S) Lakes. 

L Chi DOC TSS Secchi Depth pH EC Ca Fe. P, Mg N, K Na N 
!!g/L mg/1 mg/1 m m J.LS/cm mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 

1 724.6 0.13 3.07 0.35 0.97 8.99 97.1 1.07 0.63 0.12 0.63 120.3 8.60 2.37 3 
(F) (570.9) (0.02) (0.42) (0.00) (0.25) (0.36) (2.44) (0.06) (0.04) (0.04) (0.27) (9.52) (0.56) (0.23) 
2 579.4 0.13 2.17 0.30 0.83 8.87 62.5 1.40 2.73 0.08 0.27 79.9 4.43 2.20 3 

(F) (429.5) (0.02) (0.19) (0.00) (0.21) (0.60) (0.15) (0.61) (0.31) (0.02) (0.27) (40.0) (0.46) (0.44) 
4 68.0 0.11 16.41 0 .40 0.87 6.68 72.2 1.97 3.85 0.65 0.29 121.6 4.02 1.75 4 

(F) (25.9) (0.01) (2.30) (0.00) (0.09) (0.17) (1 .60) (0.09) (0.93) (0.62) (0.14) (44.0) (0.40) (0.90) 
9 62.4 0.05 5.25 0.80 0.88 6.37 105.0 4.10 2.00 0.01 0.25 22.2 3 .20 9.20 2 

(B) (35.7) (0.00) (2.33) (0.00) (0.04) (0.04) (38.0) (0.14) (0.00) (0.00) (0.08) (7.92) (0.28) 1.13 
10 468.8 0 .02 0.80 1.32 1.57 6.11 37.5 1.75 0.80 0.01 0.30 12.5 4.70 2.27 4 
(F) (395.5) (0.00) (0.58) (0.09) (0.15) (0.26) (2.01) (0.01) (0.40) (0.00) (0.09) (5.30) (0.22) (0.29) 
11 62.0 0.03 1.10 1.10 1.10 6.29 34.9 1.80 1.60 0.01 0.14 9.80 5.10 2.00 
(F) 
12 183.7 0.06 3.40 0 .70 0.70 6.14 105.2 6 .30 2.75 0.01 0.61 16.75 6.05 7.95 2 
(F) (96.5) (0.01) (4.24) (0.00) (0.00) (0.11) (2.90) (0.28) (1.06) (0.00) (0.19) (8.84) (6.86) (0.07) 
3 95.6 1.05 39.16 0.07 0.42 9.33 4907 13.66 28.9 4.55 9.11 66.3 188.5 394.4 7 

(S) (73.9) (0.04) (10.9) (0.00) (0.07) (0.03) (55.0) (1 .35) (4.42) (0.45) (5.78) (23.7) (26.9) (56.4) 
5 538.3 0.62 200.6 0.08 0.45 10.19 3882 9 .08 1.22 0.02 0.87 66.3 117.2 255.5 5 

(S) 324.9 (0.01) (51 .4) (0.00) (0.28) (0.11) (25.9) (1 .28) (1.67) (0.03) (0.91) (64.9) (64.0) (142) 
6 778.9 0 .43 220.3 0.09 0.45 10.44 4293 8.73 0.38 0.01 1.47 42.2 165 384.4 3 

(S) (34.3) (0.02) (9.81) (0.00) (0.05) (0.07) (130) (2.31) (0.1 6) (0.00) (0.55) (5.91) 44.2 (123) 
7 267.3 2.07 42.70 0.06 1.10 9.07 1530 9.40 105.3 0.39 5.87 17.5 46.1 145.6 2 

(S) (-) (0.05) (37.2) (0.00) (0.21) (0.17) (14.1) (0.00) (0.00) (0.11) (0.64) (1 .13) (0.14) (7.07) 
8 103.6 0.06 5.88 0.30 0.30 9 .91 1590 5.33 0.35 0.01 0.26 12.7 73.6 88.2 3 

(S) (30.5) (0.01) (5.07) (0.00) (0.00) (0.47) (70.0) (1.15) (0.31) (0.00) (0.32) (1 .75) (7.52) (7.91) 

Figure 3 exhibits water reflectance spectra representative of the saline lakes (Fig. 3a), of the fresh water 
lakes affected by the floods of the Vazante do Castelo (Fig. 3b), and of the fresh water lakes covered by aquatic 
plants (Fig. 3c). In Figure 3a, the greenish salt water lakes 5 and 6 show spectra with well-defined chlorophyll 
absorption bands at 450 nm and 667 nm, a green reflectance peak at 556 nm, a narrow absorption band at 630 nm 
due to phycocyanin, and a broad spectral feature around 750 nm due to water absorption. The phycocyanin feature 
is not present in the spectrum of lake 8, which is a mixed spectral response of relatively transparent water and algae 
(Chara rnsbyana). The featureless spectra oflakes 3 and 7 and their resulting blue colors in the images are produced 
by an increase in the DOC concentration, which masks absorption bands due to other constituents, and by a decrease 
in the content of chlorophyll (Table 1). In Figure 3b, the larger concentration ofTSS in lake 4 (Table 1), in relation 
to lakes I and 2, produces an increase in reflectance in the red interval. 
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Figure 3 - Field bidirectional reflectance factor (BRF) values for the (a) salt water lakes, (b) fresh water lakes 
without dense aquatic plant covers at the Vazante do Castelo drainage, and (c) for the fresh water lakes with 
extensive aquatic plant covers. 

The comparison between field (Spectron) and airborne (A VIRJS) data reveals interesting aspects. The 
capability of A VIRJS in retrieving the narrow 630 nm absorption band is shown in Figure 4 , which displays 
variations in the depth of the 630 nm absorption band derived from the continuum removal method. The 
characterization of this feature is important because it can be useful in the identification of broad algae group of 
species (Jupp et al. , 1994). As indicated in Figure 4, the deepest 630 nm absorption band occurs in pixel spectra of 
the fresh water lakes I and 2 and of the greenish salt water lakes 5 and 6, which is consistent with the results of 
Figure 3. 
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Figure 4 - Variations in the depth of the 630 nm absorption band for lakes without dense covers of aquatic plants. 

On the other hand, the strong spectral influence of the macrophytes on the lakes 9 to 12 is illustrated in 
Figure 5 that displays A VIRJS pixel spectra. Lakes 9 and 12 are densely covered by Nymphaea amazonum, 
Nymphaea lingulata and Salvinia auriculata that completely obliterate the spectral response of the water. The pixel 
spectra of these lakes exhibits a well-defined green reflectance peak. Lakes 10 and 11 are dominated by Eicchornia 
azurea, Oxycaryum cubense and Nymphaea amazonum that show a different spectral pattern. As a result, spectra of 
Figure 5 are very different from those displayed in Figure 3c that shows field water reflectance spectra of lakes 9 to 
12. 
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Figure 5 - A VIRlS pixel spectra representative of lakes 9 to I 2 with covers of aquatic plants. 

4. CONCLUSIONS 

The transition from the fresh water lakes to the salt water lakes in the study area is characterized by lower 
values of total depth and Secchi depth, greater concentrations of DOC, TSS, Ca, Mg, Na and K, and higher values of 
pH and electrical conductivity. The saline lakes presented a higher overall reflectance than the fresh water lakes. In 
comparison with the greenish salines, the bluish salt water lakes show an increase in the DOC concentration, which 
masks absorption bands due to other constituents, and a decrease in the content of chlorophyll. In some fresh water 
lakes, the presence of dense covers of aquatic plants restricts the spectral response of water to a small number of 
pixels. 

Hyperspectral data are very important in the selection of the Pantanal lakes with distinct spectral 
characteristics for field sampling, which facilitates the subsequent construction of empirical relationships or more 
elaborated methods for the remote estimate of water constituents. They allow a better characterization ofthe 
variations in reflectance and in related absorption band parameters due to changes in water constituents. Major 
spectral features present in field spectra, such as the narrow 630 nm absorption band, were also observed in A VIRJS 
spectra of some lakes and mapped on a per-pixel basis. Hyperspectral sensors can provide also an important 
contribution in the characterization of aquatic plant covers in the Pantanal lakes because of the well-defined spectral 
signatures of some species. 
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LOW-ALTITUDE AVIRIS DATA FOR MAPPING LANDFORM TYPES ON WEST SHIP ISLAND, 
MISSISSIPPI 

Joseph P. Spruce, 1 Ervin G. Otvos/ and Marco J. Giardino3 

1. INTRODUCTION 

Barrier islands help protect the southern and southeastern U.S. shoreline from hurricanes and severe storms. 
They are important for coastal resource management and geologic research, especially in studies that involve 
changes in island areas and surface environments, and they display a dynamically changing and diverse mix of 
landform and vegetative cover habitats. Many Gulf Coast barrier islands have undergone dramatic decreases in areal 
extent, often due to hurricane and severe storm damage. For example, Louisiana's barrier islands have lost 55 
percent of their surface area over the past 100 years (Williams eta!., 1992; Louisiana Department of Natural 
Resources, 1998). 

Aerial photography and Landsat data have been used to monitor changes in barrier island areal extent, 
although neither data source is optimal for making maps of detailed landform types at site-specific scales. High
spatial-resolution hyperspectral imagery, such as that obtained from the high-spatial-resolution Airborne 
Visible/Infrared Imaging Spectrometer (A VIRIS) sensor, may enable improved mapping of landform types, which 
would benefit studies of the dynamics of barrier island environments. 

During the summers of2000 and 2001, a study was conducted to assess low-altitude AVIRIS data for 
mapping the landform types of West Ship Island, a barrier island in Harrison County, Mississippi (Figure 1). Otvos 
eta!. (2001) submitted an internal report on this work to the National Aeronautics and Space Administration 
(NASA). This study area was selected because of the availability of low-altitude A VIRIS data acquired on July 22, 
1999, and because of the area's accessibility to the investigating team. West Ship Island is one of six barrier islands 
that belong to the Gulf Shores National Seashore, which is managed by the National Park Service. This island 
contains an impressive range of landform categories. Surface types include beach, dune, and sand flat environments 
(Otvos, 1995; Otvos eta!., 2001). West Ship Island also harbors Fort Massachusetts, a historic fort used during the 
Civil War. Because it is located near Stennis Space Center, the island is frequently imaged by NASA's airborne and 
spaceborne sensors. 

West Ship Island was formed when Hurricane Camille split the former Ship Island in half on August 17, 
1969. Between 1849 to 1974, Ship Island lost 463 acres due to segmentation and shoreline erosion. As of 1991 , 
West Ship Island was about 3.5 miles long by 0.4 miles wide and 555 acres in extent (Otvos eta!., 2001). West Ship 
Island further diminished in size in 1998 when erosion caused by Hurricane Georges decreased the island area to 
about 468 acres (Schmid, 2001). At the same time, East Ship Island was temporarily split into two segments (Otvos 
et a!., 200 I ; Schmid, 200 I). Otvos ( 1981; 1995) provides much additional information on island formation processes 
for Ship Island and related barrier islands along the Mississippi Sound. 

2. RATIONALE FOR RESEARCH 

Aerial photography is frequently used in geomorphologic mapping, including the mapping of coastal 
landforms (Way and Everett, 1997). Aerial photography is a standard data source for wetland mapping for the U.S. 
National Wetland Inventory. Landsat data have been used for monitoring change compared to pre-existing wetland 
maps (Wilen and Smith, 1996; Tiner, 1997; Koe1n and Bissonnette, 2000). Aerial photography is also used for 
mapping general vegetative cover types of barrier islands (e.g., Army Corp of Engineers, 1981; Tiner, 1997; Torres
Pulliza et al., 2002). In addition, aerial photography is frequently employed to map shoreline change (e.g., Gorman 

1 Lockheed Martin Space Operations - Stennis Programs, John C. Stennis Space Center, 
Joseph. Spruce@ssc.nasa.gov 
2 University of Southern Mississippi, Gulf Coast Research Laboratory, ervin.otvos@usm.edu 
3 NASA Earth Science Applications Directorate, Marco.Giardino@ssc.nasa.gov 
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et al., 1998), although some scientists have used Landsat data to assess shoreline and/or wetland change at regional 
scales (e.g., Dobson eta!., 1995; Wilen and Smith, 1996; Tiner, 1997; Shao eta!. , 1998; Koeln and Bissonnette, 
2000). 

Figure 1. Oblique View of U.S. ~logical Survey 30-Meter Digital Elevation Model for Mississippi Gulf 
Coast Showing Study Area Location 

While aerial photography is commonly used in coastal wetland studies, it is not without its shortcomings 
(Wilen and Smith, 1996; Tiner, 1997). For example, the use of aerial photography for accurate mapping of land 
cover categories requires a trained analyst to interpret and delineate cover types, usually stereoscopically. This 
process is highly subjective and time-consuming and can be confounded by poor contrast between spectrally similar 
features. In many cases, panchromatic, true color, or color infrared aerial photographs provide insufficient contrast 
for identifying spectrally similar cover types, especially monoscopically, and often even with stereoscopic viewing. 
Hyperspectral remote sensing offers an alternative method that can be more automated and less subjective in that the 
analyst does not have to delineate and identify each polygonal surface cover feature. 

With numerous narrow contiguous bands recording visible through short-wave reflective infrared energy, 
airborne hyperspectral imagery, such as A VIRIS, can be useful in separating spectrally similar cover types. 
However, detection can depend on data quality, on reference training data, and on processing technique. More 
recently, hyperspectral remote sensing has been tested for improving maps and for assessing coastal habitats (e.g., 
Bachman eta!., 2001; Donato eta!., 2001; Garcia and Ustin, 2001; Neuenschwander eta!., 1998; Ustin, 2001). Ustin 
(2001) and Bachman eta!. (2001) have mapped invasive plants in coastal environments with some success. Carter 
and Young ( 1993) conducted hyperspectral analyses of stressed vegetation on a barrier island. 

A few of the hyperspectral studies were in regard to classifications of barrier island environments 
(Bachman et al., 200 I; Donato et a!., 200 l; Neuenschwander et a!., 1998), although none employed low-altitude 
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hyperspectral data for mapping landforms. The study by Neuenschwander eta!. ( 1998) applied high-altitude 
A VIRlS data with 20-meter spatial resolution to produce highly accurate coastal land cover maps of Kennedy Space 
Center. Neuenschwander et a!. ( 1998) reported that the best map produced from A VIRlS data used the 13 most 
signal-rich minimum noise fraction bands, subjected to a supervised neural net classifier. This map contained seven 
upland and five wetland categories with an overall accuracy of93.5 percent. The results provided some indication 
that low-altitude A VIRIS data of 3 .4-meter spatial resolution could produce high-quality maps of landform types 
over West Ship Island. 

Depending on the data type, the use of low-altitude, high-spatial-resolution airborne sensor data can enable 
smaller minimum mapping units as well as more detailed maps of island landforms, vegetative communities, and 
elevation. This study utilized the high spatial resolution of low-altitude hyperspectral and multispectral imagery for 
mapping barrier island landform types and also employed digital terrain models for mapping landform elevation. 

3. GEOSP A TIAL DATA ACQUISITION 

A wealth of remote sensing and other geospatial data exists for West Ship Island, mostly originating from 
Federal and State agency sources. Severa') remote sensing datasets were downloaded from NASA's data archive for 
use in the study, including I) low-altitude AVIRIS hyperspectral imagery acquired July 29, 1999, at 3.4-m ground 
sampling distance (GSD); 2) Airborne Data Acquisition and Registration (ADAR) multispectral imagery acquired 
November 9, 1997, at 0.5-m GSD; and 3) Star-3i Digital Terrain Map data acquired November 11, 1999, at 10-m 
GSD. The ADAR and Star-3i datasets were acquired by NASA as part of the Scientific Data Purchase program from 
Positive Systems, Inc., and lnterrnap, respectively. 

Additional geospatial datasets were acquired for use in a reference capacity, including I) digital orthophoto 
quarter quadrangle (DOQQ) imagery acquired by the U.S. Geological Survey (USGS) on January 11, 1997, and 
produced at 1-m spatial resolution; 2) Digital National Wetland Inventory map; 3) 1:24,000 scale USGS digital 
raster graphic topographic map; and 4) field survey data collected August 2, 2001, in the form of locations 
determined with a Global Positioning System receiver, with digital handheld photography, and with field-annotated 
hardcopies of remote sensing imagery and related mapping products. 

4. MAPPING METHODS 

The A VIRlS and Star-3i data came as preregistered segments, whereas the ADAR imagery was in the form 
of seven nonregistered frames of image data. The A VIRIS, ADAR, and Star-3i data were subsequently mosaicked to 
provide complete coverage of the island. Doing so was straightforward for the A VIRIS and Star-3i data but required 
additional image-to-image coregistration of ADAR data frames prior to mosaicking. Once mosaicked, the path
oriented A VIRIS mosaic was atmospherically corrected with Atmosphere Removal (ATREM) Program software 
(Gao et al., 1993), which outputs data scaled to apparent ground reflectance. Insufficient information was available 
for atmospheric correction of the ADAR data. The data were scaled in terms of raw digital numbers. Analysts later 
georeferenced the A VIRIS and ADAR data to fit the Universal Transverse Mercator map projection (WGS84 
spheroid and datum). Doing so required use of USGS DOQQ data as reference data for selecting ground control 
points (GCPs). The A VIRIS data was georeferenced with a second order polynomial fit, 52 GCPs, and a+/- 3.4-m 
root mean square error (RMSE). The ADAR data needed additional effort to georeference, requiring a fourth order 
polynomial fit, 195 GCPs, and +/- 3.7-m RMSE. 

The A VIRIS datasets were then classified into cluster classes, using the unsupervised Iterative Self
Organizing Data Analysis Technique (ISODATA) clustering algorithm resident to ERDAS IMAGINE software. 
This approach was selected because it requires much less information for effective application in comparison to the 
supervised method. The latter approach puts the burden on the analyst to derive spectral training statistics (i.e., 
signatures) for segmenting the landscape into discrete land cover types. When the study began, the research team 
knew of the landforms that occur in the study area but was largely unaware of the spectral variability of these 
features; consequently, the unsupervised approach was selected. In doing so, each JSODAT A classification run was 
performed by using 50 iterations, 99 percent convergence between iterations, cluster means initialization along the 
first principal component axis, automatic scaling, and sampling of every pixel. 
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Classification was performed on a subset of AVIRIS bands rather than on the entire spectrum of224 bands. 
In particular, the A VIRlS data cube was subset into a file of 15 select bands (Table I). The selected bands appeared 
to offer comparatively high spectral separability between common land and water surface cover types. Analysts 
assessed spectral signature separability across bands by visualizing and interpreting A VIRlS-based spectral 
signatures for several upland and wetland forest, shrub, grass, barren, and water surface types using A VIRlS data 
from a previous study described by Spruce (200 1) and Spruce et a!. (200 I). ISODAT A classifications of land cover 
can be quite effective with quality multispectral datasets of 15 bands or less. The use of 15 select A VIRlS bands was 
expected to result in a similar if not better classification, especially if the bands had high spectral contrast between 
land cover types of interest and acceptable signal resolution. 

Table 1. Bands of A VIRIS Data Selected for Classification 

1 15 508.02 Left side of Qreen 

2 20 557.14 Green peak 

3 32 675 Red absorption well 

4 35 673.25 Red absorption well 

5 36 682.79 Lower part of red edQe 

6 45 768.66 Upper part of red edge 

7 56 873.67 NIR plateau, left side 

8 66 974.58 NIR plateau, right side 

9 77 1078.06 NIR, transition to SWIR 

10 91 1209.73 NIR, transition to SWIR 

11 102 1305.43 NIR, transition to SWIR 

12 137 1654.04 SWIR-1 (Landsat TM 5) 

13 194 2211.8 SWIR-2 (Landsat TM 7) 

14 204 2311.49 SWIR-2 

15 212 2391.06 SWIR-2 
NIR = near-infrared 
SWIR = short-wave infrared 

The A VIRlS data were classified initially into 20 clusters, which analysts subsequently recoded into a 
binary mask containing land and water categories. Additional masking techniques were then employed to isolate the 
raw data obtained from the land cover. The masked raw data was then reclassified with ISODAT A cluster busting 
(Jensen, 1996) into 30 cluster classes. These classes were described and assigned to apparent landform types by an 
experienced coastal geomorphologist. 

Unsupervised classification proceeded similarly for ADAR multispectral data, except that it was based on 
four broad multispectral bands in the visible/near-infrared portion of the electromagnetic spectrum. Only one 
classification was performed on the ADAR data and no attempt was made to reclassify the raw data corresponding 
to the land features, because the 1997 ADAR data were believed to be out of date because of the land cover change 
caused by Hurricane Georges in 1998. Fortunately, the A VIRIS data collection occurred after Hurricane Georges 
and the island had suffered no subsequent hurricane damage. Consequently, more effort went into developing the 
A VIRlS classifications. 

The Star-3i digital terrain model was used to create a shaded relief map for the island. This was a trial and 
error process because of the subtlety of the terrain, over which vertical microtopographic differences of0.5 feet 
might result in different landform and/or vegetation type. The local relief was not apparent on the shaded relief map 
until the elevation height was stretched 25 times in the "Z." This information was subsequently utilized in refining 
the A VIRlS and ADAR classifications. 
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Hardcopies of resulting landform maps and remote sensing imagery were produced for field validation on 
August 2, 200 I. The field survey occurred about two years after A VIRJS data collection. Land cover changes were 
evident in the lowest lying areas. Approximately 70 percent of the island area was visited during the survey and 
many points of interest were noted on hardcopy imagery and maps for subsequent entry into a GIS-based coverage. 
Handheld photography was taken at each point of interest. GPS locations were also collected for areas that were 
difficult to locate on hardcopy imagery and maps. 

The field survey data were then used to refine descriptions of cluster classes on the A V!RlS and ADAR 
classifications. Publications by Duncan and Duncan ( !987) and by Tiner ( !993) were consulted in describing 
vegetation-dominated landforms. Work by Otvos ( 1995) and Godfrey ( 1976) were also used in developing class 
descriptions. 

5. PRELIMINARY ANALYSIS OF RESULTS 

Figure 2 shows a low-altitude A VIRlS Red, Green, Blue (RGB) composite image that has been enhanced 
with the raw data for the land stretched independently of the raw data for the water using masking techniques to 
isolate the raw data for the land cover and water features, respectively. The enhancement enabled clear visualization 
of the comparatively sparse vegetation in the beach and dune zones of the island perimeter. This enhancement is an 
important tool in assessing the A VIRJS landform classification shown in Figure 3. This figure also provides a map 
legend and summarizes the areal extent of each cluster class. This preliminary map displays all of the common 
landforms on the island. Both the island perimeter and the interior include numerous landform and environment 
categories. 

Figure 2. A VIRIS Color Composite Image of Study Area 
with Bands 56 (873 nm), 32 (675 nm), and 20 (557 nm) Assigned to RGB 

Based on comparisons to AVIRJS imagery and field checks, the AVIRJS map of the island exterior clearly 
separates the foreshore and backshore environments. The island perimeter includes several landform classes with 
bare sand and with sand covered by various types of sparse vegetation. Among the foreshore sand cover categories, 
the A VIRJS map distinguishes between bright siliceous, slightly calcareous sand that occurs mainly on the 
Mississippi Sound side and dark sand concentrates of heavy minerals found commonly on the Gulf beaches. For the 
backshore, the A VIRJS map shows barren sand flats as well as partially vegetated dunes containing pioneering 
herbaceous vegetation, low shrubs, or xeric grasses. Although sand cover types usually occur predominantly on the 
beach, sand sheets created by storm overwash and eolian blow out extend from the north shore southward to the 
island interior in some areas. Major eolian sand accumulations can also be found near Fort Massachusetts. 
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Figure 3. A VIRIS Classification of Landform Type 
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The A VIRlS classification of the island interior identifies many land cover types. Several vegetation 
categories were identified mainly on the interior sand flats, including various types of marsh dominated by sedges 
and rushes. Grassland, shrub/scrub, very low-forested swamp, shallow ponds occurring in swales between old beach 
ridges, and a few small patches of slash pine forest were among the surface cover categories. The interior also 
included beach ridges, indicative of ancient island shoreline positions and the dynamic nature of barrier island 
changes. Such landforms of the island interior can be viewed on the Star-3i shaded relief map (Figure 4). The 
shrub/scrub type often grows on the higher ground, including relict beach ridges and the higher sand sheet surfaces. 
In this case, land cover type is not necessarily the same as landform. Land cover on the island is in part affected by 
the site conditions: wetness, salinity, tidal influence, and level of disturbance. However, at least for the island 
interior, the same vegetation type can occur on multiple landforms that are of interest to coastal geomorphologists. 

1.25 

Elevation in Feet 

3.19 4.13 5.80 18.25 

Figure 4. Hillshaded Digital Terrain Model Derived from Star-3i Radar Data 
and Draped Over A VIRIS RGB Shown in Figure 2 

The field survey enabled common landforms and cover types evident on the A VIRJS classification to be 
visited and documented for further research. These field checks indicated that the A VIRJS color composite imagery 
displays island landforms: foreshore, backshore, vegetated dunes, and island interior zones. The A VIRJS 
classification does not distinguish between backshore and dune landforms when covered by dry bright sand and does 
not show interior vegetated beach ridges as a distinct landform type. The A VIRIS map is a consistent and reliable 
predictor of common cover types as compared to field checks. However, rare cover types, such as the relict pine 
forest, were not uniquely identified. Some of the sparsely vegetated dunes appeared to be misclassified as barren 
sand types. Such problems can be addressed through additional cluster busting techniques as described by Jensen 
( 1996) and Spruce (200 I). The field survey also confirmed the finding of Schmid (200 I) that Hurricane Georges 
resulted in significant land cover change. These changes made it difficult to evaluate the landform classification 
produced from the 1997 ADAR multispectral dataset. However, certain areas showed only minor land cover change. 
In those areas one could use hardcopies of ADAR color composite imagery in the field. These image maps were 
especially useful in locating the few small patches of remnant pine forest that were difficult to see on the A VIRIS 
color composites because of the coarser spatial resolution. 

The research focused on the mapping of landforms in the intertidal zone and higher terrestrial landform 
environments of the island. It was difficult to map land cover in more specific terms because of the lack of timely in 
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situ data on vegetation community distributions, especially in the marshlands. The dynamic nature of barrier island 
environments made it impractical to map specific plant communities, particularly in the marshy island interior. 
Marsh cover type distributions did not correspond well with the field survey, largely because of the 2-year time 
difference between the AVIRIS data collection and the field survey. No attempt was made to map subtidal 
geomorphologic environments using the A VIRJS data. A quantitative accuracy assessment of the A VIRJS landform 
classification is underway and will be reported at a later date. 

6. CONCLUDING REMARKS 

Preliminary results suggest that low-altitude A VIRJS data can be effective for mapping landform-specific 
environments of both the island's exterior and interior. In particular, the A VIRJS classification enabled multiple 
cover types to be identified on the beaches and dunes on the island's exterior. A VIRJS classification also enabled 
mapping of multiple environments (i.e., cover types) in the island's interior, including vegetated land cover types 
occupying relict beach ridges, inter-ridge swales, and sand flats. The A VIRJS classification did not always clearly 
identify all landforms in specific terms. However, this classification supplied a great deal of information on land 
cover associated with barrier island landforms. 

The unsupervised classification method employed in this study appeared to be effective, although 
refinement and perhaps other techniques would be needed to identify land cover types in more specific terms. While 
the band selection approach worked, in retrospect it would have been better to include a blue band for classification 
and for A VIRJS color composite screen displays. 

The Star-3i digital terrain model was useful for aiding the assessment of the A VIRIS classification as it 
enabled viewing of the subtle island interior landforms {e.g., ancient beach ridges) that were difficult to see on the 
A VIRIS imagery. Its 1 0-meter spatial resolution was not optimal for this task, although it was much better than the 
alternative 30-meter USGS Digital Elevation Model. The current landform map of West Ship Island could perhaps 
be improved by using a much higher-spatial-resolution digital elevation map than the Star-3i product in conjunction 
with the A VIRIS classification discussed here. However, the combined use of the A VIRIS and Star-3i data could 
also enable a better landform map to be produced. 

Hardcopies of the 0.5-meter ADAR multispectral imagery were effective in aiding the field survey. 
However, the classification ofthe ADAR data was difficult to evaluate because of hurricane-induced land cover 
changes that had impacted the island after the ADAR data were acquired. Despite this shortcoming, the ADAR data 
did provide general information on land cover types and a useful estimate of the areal extent of the island prior to 
Hurricane Georges. 

This study enabled assessment of low-altitude A VIRJS data for mapping landform environments of barrier 
islands in the Gulf Coast region of the United States. Based on initial results, high-spatial-resolution hyperspectral 
imagery, such as AVIRIS, appears to be a useful tool for mapping the landform and land cover of barrier island and 
other coastal environments. Additional work is underway to confirm these preliminary observations. 
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Mineral Mapping Mauna Kea and Mauna Loa Shield Volcanos on Hawaii Using A VIRIS Data and the USGS 
Tetracorder Spectral Identification System: Lessons Applicable to the Search for Relict Martian 

Hydrothermal Systems 

Gregg A. Swayze, 1 Roger N. Clark, 1 Stephen J. Sutley, 1 Carol A. Gent, 1 Barnaby W . Rockwell, 1 Diana L. Blaney/ 
James L. Post,3 and Brian P. Farm4 

INTRODUCTION 
The Hawaiian A VIRIS campaign conducted during the spring of 2000 provided an opportunity to collect 

hyperspectral data over a unique geologic environment on the sides of two of the Earth's largest shield volcanos. 
High altitude A VIRJS data were collected on April 14, 2000 along a 75 km NE traverse passing over the summits of 
Mauna Kea (4205 m) and Mauna Loa (4064 m) encompassing the saddle (1940 m) between them. This traverse 
covers diverse climatic and ecological zones extending from tropical coastal forests to alpine rundra over an 
elevation range of 3200 m. The summits of both volcanos are among the highest and driest readily accessible areas 
in the world with the summit of Mauna Kea chosen as the site for the largest collection of telescopic observatories in 
the world. In the cool-dry atmosphere atop these shield volcanos, rocks are nearly devoid of macroscopic life and 
chemical weathering is relatively low. These extreme climatic conditions and extensive basalt outcrops combine to 
form one of the best terrestrial analogues to the Mart ian shield volcanos. Several studies have suggested that certain 
palagonitic soils from Mauna Kea are good spectral analogues of Martian surface materials (Singer et al. , 1979, 
Singer, 1982; Evans and Adams, 1979, 1980; Allen eta!., 1981, 1982). Other studies suggest that hydrothermal 
systems may have been sanctuaries for ancient life on Mars (Walter et al., 1993; Farmer and DeMarais, 1994; Wade 
eta!. , 1999). Examples of relict hydrothermal systems exist at the summits of both Mauna Kea and Mauna Loa, and 
these areas were measured by A VIR IS as terrestrial analogues of the mineral associations and spatial extent of 
hydrothermal systems developed in mafic volcanic rocks. 

VOLCANIC HISTORY OF THE BIG ISLAND 
There are five distinct volcanos that grew and merged to form the Big Island of Hawaii. The loci of volcanism 

(Fig. l) has shifted progressively southeastward over time reflecting the NW motion of the Pacific plate over the 
Hawaiian hot spot (Clague and Dalrymple, 1987) . 
The most intense subaerial volcanic activity is now 

Kohala 

1- Shlold 

Hualalai , .... 
1- I 5IIWd 

, .... 
1- I 5IIWd I ·-

Maunaloa .__ I Shlold 

Big Island 
Shield 

Volcanos 

centered at the two southernmost volcanos, Mauna 
Loa and Kilauea. The youngest and smallest 
volcano in the Hawaiian chain is Loihi which is 
growing beneath the sea 30 km SE of the Big Island 
(Wolfe and Morris, 1996 and references therein). 
Ideally a Hawaiian shield volcano goes through four 
stages during it life: preshield, shield, postshield, 
and rejuvenation (Clague and Dalrymple, 1987, 
1989). Accordingly, the preshield stage involves 
initial eruption of alkalic basalt, followed by the 
shield building stage eruption of tholeiitic basalts 
(low in alkalis), which eventually gives way to the 
postshield stage eruption of more Si0 2-rich alkali 
hawaiite lavas. The rejuvenated stage involves the 
eruption of Si02 -poor lava after a few million years 

I ..-d ! Loihi 
Sourceofrelati,.._: 
WoHe-Monls(1!196) 

Time 
Present 

Figure I. Growth stages of the Big Island shield volcanos. 
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of quiescence, but no volcanos on the Big Island have 
reached this stage. Loihi is thought to be in transition 
from the preshield stage to the shield stage (Moore et al., 
1982). Mauna Loa and Kilauea are in the shield building 
stage, which produces 95 to 98% of a volcano's volume 
(Wolfe and Morris, I 996) and typically lasts for about 
500,000 years (Moore and Clague, 1992). Kohala, 
Hualalai, and Mauna Kea, being the oldest, are in the 
postshield stage and are capped by alkalic lavas. Shield 
volcanos grow from lava erupted at the summit of the 
volcano and from vents aligned along rift zones extending 
out from the summit, forming mountains elongated 
parallel to the rift zones (Wolfe et al., 1997). The Big 
Island has grown by addition of lavas to its SE flank and 
by seaward displacements along its active NE-trending rift 
zones. Mauna Loa has a fault-bounded caldera 
approximately 5 km in diameter (Fig. 2) which is a 
relatively recent feature only active for several centuries 
(Wolfe and Morris, 1996). Postshield eruptions transform 
broad, smoothly sloping shields into steeper, more 

Figure 2. View of Mokuaweoweo Caldera (looking 
SW) on the summit of Mauna Loa. Argillic alteration 
possibly produced by a small relict hydrothermal 
system is visible as a bleached area along the SW wall 
of the caldera. 

irregularly-shaped edifices, by addition of more viscous lavas (Wolfe eta!., 1997). The summit of Mauna Kea has 
numerous scoria cinder cones formed from the explosive eruption of more viscous and volatile-rich alkalic lavas 
typical of postsh ield volcanism . 

IMAGING SPECTROSCOPY 
Solar radiance, atmospheric absorptions, and scattering were removed from the AVIRIS data using the ATREM 

program (Gao et a!., 1993 ). Artifacts from the A TR EM processing were then removed by first subtracting a path 
radiance correction from the data and then multiplying by correction factors derived from field spectra of a ground 
calibration site using the method of Clark et al. (this volume) . Because we were most interested in the geologic 
materials exposed near the summits of both volcanos, a calibration site at high elevation was chosen to minimize the 
effects of imperfect removal of atmospheric C02• Landsat 7 ETM + data were analyzed and a spectrally bland, non
hydrothermally altered area was chosen as a field calibration site. Field spectral measurements of a relatively flat 
post-glacial alluvial fan deposit located near the summit of Mauna Kea at 4000 m and 0.45 km SE of the Puu Poliahu 
Cinder Cone were used to derive a multiplicative correction (Figs. 3 and 4) . A total of 233 spectral measurements 
were collected with an ASD FR spectrometer, averaged, and corrected to absolute reflectance using a NIST traceable 

Figure 3. True color composite A VIRIS image of the 
summit of Mauna Kea. Cinder cones are circled in 
black and the field calibration site is circled in yellow. 
Strongly altered areas show up as bleached areas. 

374 

Figure 4. Collection of field calibration spectra at the 
base of the Puu Poliahu cinder cone near the summit 
of Mauna Kea. Erosion has exposed a zone of argillic 
alteration produced by a relict hydrothermal system 
seen as a bleached area. 



spectralon reflectance correction. Shadowed areas below theSE margin of the Mauna Loa summit caldera (about 

4000 m elevation) were used to derive a path radiance correction. 

A VIRIS data calibrated to apparent reflectance were spectrally mapped using the USGS Tetracorder System 

(Clark et al., 2003). Tetracorder uses a modified least-squares band-shape fitting technique to spectrally identify 

materials and create maps of their distribution. The primary algorithm works by scaling a library spectrum to an 

observed spectrum using a modified least-squares solution to derive a numerical value called "fit." The algorithm 

derives fits for all of the spectra in its library and selects the material with the highestjit as the best spectral match. 

Comparisons are done only in the wavelength regions of diagnostic absorptions. In most cases Tetracorder identifies 

the spectrally-dominant material in each spectral region (e.g . electronic and vibrational), but it is capable of 

identifying mixtures if representative spectra of those mixtures are added to its library. When Tetracorder identifies 

a material as spectrally dominant that material does not have to be pure, it can also be intimately or aerially mixed 

with other phases. Spectral dominance means the diagnostic absorptions of that material are the strongest features in 

a given spectral region and are not obscured beyond recognition by absorptions from other phases. Other parameters 

like depth andjit*depth are determined for each comparison, and if the highestjit, depth, orjit*depth falls below a 

threshold then no match is found and the observed spectrum is not identified. Mineral maps of the electronic (0.4-
1.35 IJ.m) and vibrational ( 1.35-2.5 IJ.m) spectral regions were produced for the entire flight line. 

DISCUSSION 
Types of A Iteration 

Alteration of mafic volcanic rocks can occur in a number of ways: I) pervasive supergene alteration caused by 

weathering and oxidation of minerals when they are exposed to atmospheric oxygen, 2) widespread deuteric 

alteration related to degassing of the hos t lava or alteration caused by interaction with meteoric water or the 

atmosphere during emplacement of hot lava, and 3) localized hydrothermal alteration caused by hot fluids tha t 

circulate along fractures or other conduits after extrusion of the lava . These processes create a continuum of 

alteration mineral associations superimposed on each other. Supergene alteration cause by weathering forms 

palagonitic soils nearly devoid ofphyllosilicates but containing nanocrystalline ferric oxide and hematite (Morris et 

al., 2001 ). Dueteric alteration may also lead to the formation of pa lagonite and various Fe-minerals. Hydrothermal 

alteration can usually be recognized by the presence of characteristic mineral associations that vary depending on the 

chemistry and temperature of the fluids, and composition of the host rock (Guilbert and Park, 1986). The types of 
hydrothermal alteration present on Mauna Kea and Mauna Loa are characteristic of the argillic and advanced 

argillic associations formed when hot, sometimes acidic, fluids or vapors percolate up through cinder cones or along 

ca ldera walls leaching iron from host rocks leaving bleached zones rich in clays like kaolinite, montmorillonite, 
ferruginous smectite, saponite, and in a few places hydroxysulfates like alunite and jarosite (Table I). Ugolini 

(1974) investigated the altered materials from the summit cinder cones and found evidence of montmorillonite and 

saponite formed during hydrothermal alteration due to influx of hypogene fluids causing Mg-enrichment ofsaponite 
relative to non-hydrothermally altered tephra. 

Table I . Generalized chemical formulas for some clays and hydroxysulfates 

discussed in this paper. 

Montmorillonite (N a,Ca0 5) 0 dA I,Fe3+,Mg)2Si40 10(0H)2•nH p 

Ferruginous smectite (N a ,Ca0 5) 0 33(A I ,F e3+,Mg)z(S i,AI)40 10( 0 H)2•nH p 

Nontronite (Na,Ca0 5) 0_33(Fe3+h(Si ,A l,Fe3+)40 10(0H)2•nH p 

Saponite (Na ,Ca0_5) 033(Fe2+·Fe3+,Mgh(Si,A l)p 10(0H)z•nH20 

Kaolinite Al2Si20 5(0H)4 

Alunite (Na,K,Hp)Al3(S04MOH)6 

Jarosite (Na ,K,H p)Fe3(S04)z(OH)6 
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Figure 5. A) Electronic region (0.4- 1.35 IJ.m) minerals on the summit of Mauna Kea . Cinder cones are outlined 

in black. Arrows show collection locations of samples. B) Vibrational region ( 1.3 5 - 2.5 IJ.m) minerals on the 
summit of Mauna Kea. Cinder cones are outlined in white. 

Mauna Kea Mineral Maps 
Five hydrothermally altered cinder cones were identified at the summit of Mauna Kea: Puu Pohaku, Puu Poliahu, 

Puu Hauoki, Puu Wekiu, and Puu Waiau . Formation of the Puu Waiau (I 07 ka) and Puu Poliahu (53 ka) cinder 

cones during the Pleistocene was subaerial and not subglacial as once believed with their once cone-like profiles 
rounded by subsequent glacial erosion (Wolfe et al., 1997). Alteration occurred during or soon after the eruptions 
that formed the cones. The mineral map of the electronic region shows that the cinder cone hydrothermal alteration 

is characterized by nanocrystalline hematite, hematite, goethite, and amorphous Fe-minerals in this spectral region 
(Fig. SA). The hydrothermally altered cinder cones have the same types ofFe-minerals as non-hydrothermally 

altered cones and surrounding lava flows, therefore in this case Fe-mineralogy determined by A VIRIS cannot be 
used to distinguish between alteration as a result of supergene oxidation due to weathering and oxidation due to 
interaction with hydrothermal fluids. 

The mineral map of the vibrational region shows the distribution of the alteration mineral s more clearly. The 
hydrothermal alteration is characterized by zones of spectrally dominant kaolinite, Al-montmorillonite, ferruginous 
smectite, and saponite (Fig . 5B). The task of 
interpreting the relative positions of these mineral 
zones is made difficult because the alteration 

zones have been variably exposed by erosional 
dissection of the origin a I cinder cone topography. 

Figure 6 shows a very generalized model of the 

relative sequence of spectrally determined 
mineral zones. Kaolinite + Al-montmorillonite 

alteration is limited in extent while the other 

alteration minerals are more widespread within 

the areas of hydrothermal alteration . The At
montmorillonite zones (blue) usually enclose 

smaller kaolinite+ Al-montmorillonite zones 
(ye llow), and are them selves bordered, in places, 

by ferruginous smectite + Fe-Mg saponite zones 

Key 

Kaolinite+ 
AI-Montmorillonite 

• AI-Montmorillonite 

Ferruginous Smectite 
+ Fe-Mg Saponite 

Mg-Fe Saponite 

Fe 3+-Saponite 

Figure 6. Idea lized model of spectrally determined mine ra l 

zones. 
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(magenta) as seen on Puu Poliahu. On Puu Waiau a Mg-Fe saponite zone (tan) borders the southwestern side of a 
donut-shaped ferruginuous smectite+ Fe-Mg saponite zone (Fig. 5B), which is bordered on the east by a Fe3

+

saponite zone (red). Nontronite-like Fe3•-saponite is the only spectrally detectable clay widely dispersed among the 
non-hydrothermally altered volcanic rocks. The large bleached area on the western slope of Puu W aiau was initially 
identified as either saponite, hectorite, or talc because absorption features of these minerals look spectrally similar at 
A VIRIS spectral resolution . Analysis of field samples was needed to confirm that we were indeed mapping Mg-Fe 
saponite in this area (Fig 5B). 

The absence of alunite is conspicuous at the spatial scale of A VIR IS on Mauna Kea and Mauna Loa when 
compared to alteration formed in continental settings, and may be explained by the possible lack of H2S in Hawaiian 
magmatic gasses required for alunite formation near the surface (Robert Rye, personal comm.). Some alunite, 
however, has been identified in hand samples collected from the altered rocks of the Puu Poliahu cinder cone on 
Mauna Kea (Wolfe et al., I 997). Spectra from three pixels on this cinder cone did show possible evidence of alunite 
but its spectral features are nearly concealed by more abundant kaolinite . It is possible that the dry nature of 
tholeiitic magmas and rapid migration of meteoric water through highly porous volcanic rocks down to sea level and 
out into the ocean may not allow the formation of large circulating hydrothermal systems (Don Thomas, personal 
comm.). Indeed, it is the presence of clays produced by alteration of the Puu Waiau cone that has allowed surface 
waters to accumulate forming Lake Waiau in an otherwise arid landscape (Wolfe et al., 1997). Jarosite may also be 
present mixed with gypsum and illite on the slopes of Puu Lilinoe, but due to its marginal detection there in the 
AVIRIS data, this possible 
occurrence needs field verification. 

Guinness et at. (200 I) also 
spectrally analyzed the A VIRTS 
data acquired over Mauna Kea and 
found that the alteration systems in 
the cinder cones had central cores 
of montmorillonite, surrounded by 
saponite zones, in turn surrounded 
by outer kaolinite zones. Their 
findings differ from those discussed 
here by our identification of 
ferruginous smectite and only 
minor amounts of kaolinite. We 
were unable to detect kaolinite 
outside of the hydrothermally 
altered areas when we extracted 
spectra from pixels that 
corresponded to the areas they 
identified as containing kaolinite. 
Our field calibration site coincides 
with a cluster of kaolinite pixels on 
their map; examination of our field 
spectra revealed no spectrally 
detectable kaolinite. Apparently 
the kaolinite they mapped in 

unaltered rock was an artifact of 
simultaneously mapping ferric 
minerals in the 1-~m region and 
kaolinite in the 2-~m region using 
Spectral Angle Mapper that has 
been e'liminated from their more 
recent maps (Guinness, pers com.). 
Two levels of verification were 
used to check the mineral maps: I) 
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Figure 7. A) Averaged A VIR IS spectra extracted from alteration mineral 
zones in hydrothermal systems on Mauna Kea . Spectra offset vertically for 
clariry. B) Laboratory reflectance spectra o f alteration minerals in fi eld 
samples collected from the hydrothermal systems on Mauna Kea. 
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extraction and comparison of AVIRIS spectra to library spectra of well-characterized minerals, and 2) mineralogic 
analyses of field samples. Because of the remoteness of most areas in the flight lines comparison of extracted 
spectra to library spectra was used as the primary means of mineralogic verification of the mineral maps. Field 
samples were collected from hydrothermal systems on Puu Poliahu, Puu Waiau, and Puu Wekiu cinder cones (Fig. 
3). Five samples from the alteration zones on Mauna Kea were subjected to X-ray diffraction analysis (XRD). 
These samples were also measured spectroscopically in the laboratory with results compared to those from XRD (see 
Fig. 7 and Table 2). 

Sample ID 

HI00-4F 

HI00-6F 

HIO 1-7 

HIO l-2 

HI00-5F 

Table 2. Field sample verification of mineralogy derived from imaging spectroscopy. 

Sample location 

Nl9°49' 15" West side 

Wl55° 28' 18" Puu Wekiu 
Cinder Cone 

Nl9°49'17'' Northeastern 

Wl55 ° 28' 55" Puu Poliahu 

Nl9° 48' 37" Western top of 

Wl55o 28' 46" Puu Waiau 

Nl9°48'43" Western slope 

Wl55 ° 28' 47" of Puu Waiau 

Nl9° 49' 23" Northeastern 

Wl55 ° 28' 48" Puu Poliahu 

Tetracorder 
resu It 

Nanocrystalline 
hematite 1

, 

kolinite +AI-
montmorillonite 

NanocrystaUine 
hematite, A 1-
montmorillonite 

Glassy volcanics, 
ferruginous 
smectite+ Mg-
Fe-saponite 

Fe-minerals, 
Fe-M g saponite 

Amorphous Fe-
hydroxide, 
Fe-sapon ite 

Verification 

XRD: albite (M ), micro cline (m), smectite 
(m) consistent with montmorillonite, 
nontronite or saponite (m) , kaolinite (tr). 
LS: nanocyrstalline hematite or goethite, 
kaolinite, Al-montmorillonite, Fe-saponite, 
ferruginous smectite. 

XRD:albite (M), microcline (m), smectite (m) 
consistent with montmorillonite, nontronite 
or saponite (tr), hematite (tr). 
LS: nanocrystalline hematite, Al
montmorillonite, ferruginous smectite, Mg
Fe sa onite. 

XRD : Anorthite (M), nontronite or saponite 
(m), montmorillonite (m), kaolinite (tr). 
LS: ferruginous smectite, Mg-Fe saponite, 
Al-montrnorillonite. 

XRD:saponite from glycolation of clay 
separate . Main fraction not measured . 
LS: trace Fe-minerals , Fe-Mg saponite. 

XRD:albite (M), microcline (m), saponite by 
glycolation of clay sep. (m), hematite(tr). 
LS: trace Fe-mineral(s), Fe-saponite, 
ferruginous smectite, A I -montmorillonite. 

XRD = X-ray diffraction analysis; LS = laboratory spec troscopy; clay sep. = clay separate; bold mineral names in 
"Tetracorder results" column also verified in field samples; (M) = major component 20wt% or more; (m) = minor 5-
20 wt%; (tr) = trace < 5 wt%. 1Trace hematite, goethite, jarosite and other Fe3+-bearing minerals can be difficult for 
XRD to detect, even when red and yellow Fe l+ colors are present in the sample. Sample position is ± 50m (posi tions 
based on N AD8 3 datum). 

Burns ( 1993, and references therein) suggest that deep weathering of mafic and vitric tuffs initially forms Fe2+
saponite that subsequently oxidizes to partially dehydroxylated Fe3•-Mg saponite, Fe3

+- montmorillonite, and 
nontronite intimately intergrown with ferrihydrite, nanocrystalline hematite, or FeOOH phases . A 2.232-j..Lm band of 
variable strength often forms a shoulder or a completely independent absorption on the longward side of the 2 .213-
I.J.m montmorillonite AI-OH combination band in many of the Mauna Kea samples, and may be caused by the 
presence of ferruginous smectite. In Fe-rich dioctahedral smectites some or all ofthe octahedral AI is replaced by 
Fe3+ with total replacement occurring in nontronites. The term ferruginous smectite applies to dioctahedral 
smectites when Fe3+ > 3% whereas montmorillonites have Fe3+ < I% (Frost and Kloprogge, 2000) . Ferruginous 
smectite may be an Fe-montmorillonite equivalent formed by oxidation and dehyroxylation of the Fe2+-saponite on 
Mauna Kea. Both saponite and ferruginous smectite (a.k.a . Fe-montmorillonite) are present in variable proportions 
in nearly all of the samples collected from the Mauna Kea alteration systems (F ig. 78) at concentrations much higher 
than in the surrounding non-hydrothermally altered rock (Fig. 58). Burns suggest that intracrystalline oxidation of 
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Fe2+ to Fe3+ in cation clusters with metal vacancies creates additional 
absorptions that can form shoulders on the main combination bands 
in the 2- 2.5 11m region resulting in broader but weakened 
absorptions that might be difficult to identify with remote sensing . 
Dehydration may also be an important mechanism for reducing H20 -
related band strengths in ferrihydrite-bearing smectites (Bishop et al., 
1993). A combination of both mechanisms may be at work in the 
saponites and ferruginous smectites observed at Mauna Kea as their 
absorption bands rarely have depths greater than a few percent but 
XRD indicates abundances of 5 - 20 wt% in these relatively bright 
soils with 20-40% reflectance in the 2- 2.5 J.Lm region. 
Nanocrystalline hematite and ferrihydrite have been identified in 
individual samples ofpalagonitized tephra and soil from Mauna Kea 
(Morris et al., 1993, 2001; Golden et al., 1993). The apparent lack of 
ferrihydrite at the spatial scale of AVIRIS may be explained by its 
tendency to dissolve and reprecipitate as goethite (Bigham et al., 
1992), its spectral obscurity when intimately mixed with other Fe
minerals, or its nanocrystalline character (Morris et al., 1996) causing 
it to be classified into the more generic amorphous Fe-hydroxides 

category. 

Spectrally differentiating between nontronite and Fe3+-saponite is 
difficult because their diagnostic absorptions overlap in some cases. 
Mg-rich saponites have an Fe-OH combination band that forms a 
shoulder at 2.292 J.Lm (see sample SapCa-1 in Fig.8) on the short 
wavelength side ofthe 2.3121-lm Mg-OH combination band. This 
shoulder and absorptions at intermediate wavelength positions may 
be due to octahedral layer hydroxyl groups adjacent to cation clusters 
with vacancies (V) like Fe3~e3\V), MgFe3+(V), and fully occupied 
clusters like MgFe2~e3+ formed by the intracrystalline oxidation 
described above. Oxidized Fe-Mg saponite has two bands at 
intermediate positions between these endmember band positions that 
overlap significantly forming one broad composite absorption 
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Figure 8. Comparison of continuum-removed 
absorptions from spectra of nontronite and 
saponites. Vertical line is a reference from 
which to measure the wavelength shift of the 
band centers. Spectra offset vertically for 
clarity. 

centered at 2.305 J.lffi (e.g. see sample HIO 1-2 in Fig. 8). The spectrum of sample HI00-5 has a 2.292-I..Lm absorption 
at the same wavelength position as that of nontronite (source clay mineral standard NG-1) but is missing an Mg-OH 
absorption at 2.312 11m. Differentiation was equally chaJlenging using XRD on non-glycolated samples because of 
over-lapping saponite and nontrontite peaks. Thinking this sample contained nontronite we tested for the presence of 
saponite by analyzing a glycolated clay separate of this sample with XRD. Saponite was identified as the dominant 
smectite in the glycol a ted clay fraction of both HI00-5 and HIO 1-2 based on the appear-ance of a peak at I 0 .5° 26 
characteristic of glycolated saponite and lacking in the other smectites. Spectroscopy suggests the presence of 
nontronite in HI00-5 while XRD indicates saponite; perhaps this is evidence of an intermediate di- and tri-octahedral 
nontronite-Iike Fe3+-saponite phase in this sample (Guven, 1988). Thus it appears that Fe3+-saponite produced by 
intracrystalline oxidation is geochemically and: spectrally a defacto nontronite with the original crystal lattice of a 
trioctahedral Fe2+-saponite . It is possible to detect compositional variations of saponite with A VIR IS (see Fig. 5B ). 
The spectral map key is coded to indicate the spectrally dominant cation in saponite: Fe3+-, Mg-Fe, Fe-Mg, and Mg
saponite categories are listed here in order of increasing Mg content. It may be that Fe2+-saponite is oxidized to Fe3+
saponite where there is no hydrothermal Mg-enrichment, possibly accounting for the observed widespread 
nontronite-like 2.29-l!m spectral signatures outside of the hydrothermally altered areas (Fig. 5B) in weathered rocks. 
In contrast, Mg-rich saponite, like kaolinite, may be indicative of hydrothermal alteration on Mars. 

A tentative model for the alteration zones present in the summit cinder cones on Mauna Kea is presented in Fig. 
9. This model was constructed from the mineral assemblages present in the vibrational mineral map (Fig. 5B) and 
spectra of field samples (Fig. 7B). Multiple clay phases exist in variable proportions in nea rly all of the samples, 
therefore the alteration mineral associations were arranged into zones named after the spectrally dominant mineral 
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f.Lm (Fig. 13) reminiscent of the diffraction scattering peak 

seen at ultraviolet wavelengths in common opal and at visible o.o4 

wavelengths in precious opal (Darragh et al., 1976). The blue 

iridescence appears to be related to the initial stages of basalt 

weathering in the relatively moist environment at lower 

elevations because spectra of the same flows at higher 

elevations(> 3000 m) on the mountain and older flows(> 0 .7 

ka) at lower elevations have no peaks. 

In the vibrational spectral region, older flows show spectral 

evidence of a 2.24-f.Lm Si-OH absorption probably related to 

hydration of basaltic glass whereas the younger flows lack this 
spectral feature (Fig.l4) . A possible explanation is that over 

time, water diffuses into the surface of a flow forming a water

rich hydration rind that increases in thickness with time . 

Studies have shown that growth of hydration rinds is a non

linea r function of time, relative humidity, temperature, and 

lava composition (Friedman and Smith, I 960, Friedman and 
Obradovich, 1981, Friedman eta!., 1994 ). Various techniques 

have been developed to date obsidian archeo logica I artifacts 

using the thickness of hydration rinds as an indicator of 

relative age. Based on analysis of them ineral patterns in 

Fig. II A, it appears that spectral maps ofthe Si-OH 

absorpt ion can be used to perform the same type of relative 
dating using hyperspec tral data collected by airborne or 

orbital instruments. Hydration rinds are either spectrally 

concealed or destroyed by accelerated weathering at lower, 

more humid, elevations below about 2600 m on theN and 

SW flanks of Mauna Loa . A comparable mineral map 

pattern ofSi-OH absorptions is absent at the summit of 
Mauna Kea probably because of the relatively older 

(generally > I 0,000 years based on the geologic map of 

Wolfe and Morris, I 996) and more weathered flows exposed 
there (Fig 5B ). Possible application of this tee hnique to date 

Martian lava flows would depend on how fas t volcanic glass 
hydrates in the cold-thin atmosphere of Mars. The spectral 
signature ofhydrated volcanic glass is similar to those of 
chert, chalcedony, opal, hydrated cristobalite, and coesite in 
the 2.2 -2 .3 f.Lm region, but can be differentiated with 
adequate spectral resolution and signal-to-noise ratio. This 

is a potentially important distinction to make when search ing 

for hydrothe rmally-altered areas on Mars. 

Hydroth ermal Alteration as a Function ofTectonic Setting 
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A VIRIS spectrum . 
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Figure 13 . Averaged AVIRJS spectra extracted 
from a portion of a recent flow ( < 0.2 Ka) on the 
NW flank of Mauna Loa just above the saddle 
that mapped as w eathered blue iridescent basalt 
(Fig. I OA). 

Over the past two decades geologists have analyzed hyperspectral data col lee ted over 15 re lict and 3 active 

hydrothermal systems ranging from those d eveloped on hot spot shie ld vo lcano s, to those on contine nta l margin 

stratovolcanos and continental interior calderas (Goetz a nd Strivastava, 1985; Kruse and Huntington, 1990; Simon, 

1990; Swayze et al., 1992; King eta!., 1995 ; Kruse et al., 1996; Crowley and Zimbelman, 1997; Swayze, 1997; Livo 

eta !. , 1999; Dalton et a l., 2000; Rockwell e ta!., 2000; Martinez-Aionso, 2000; Smailbegovic e t al., 2001 ; Martini et 

a!., 2001; Vaughan e ta!. , 2001). Some usefu l patterns emerge when th e characteristics of hydrothermal systems 

developed in these three tectonic environments are compared (Fig. 15). It is apparent that the composition and 

vo la tile content of mag mas influe nce the duration, mineral associations, size, and geo metry of hydrotherm al systems 

with drier, more ma fi c, magmas producing smaller, short-lived hydrotherma l systems and wetter, more silicic, 

magmas produc ing larger, long-lived systems charac teris tic of continental inte ri or ca lderas. Mo st notable is the 
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greater diversity of spectrally detectable alteration 
minerals, including alunite, and the presence of 
large propylitic zones and silica caps in 
hydrothermal systems of the continental interior 
calderas compared to the handful of alteration 
minerals, little to no alunite, and lack ofpropylitic 
zones or silica caps in hydrothermal systems on 
shield volcanos. In summary, very small 
hydrothermal systems develop along fault 
bounded caldera walls of tholeiitic basalt shield 
volcanos during the shield-building stage as seen 
at Mauna Loa and Kilauea. Small systems 
develop in summit and flank cinder cones during 
the postshield-building stage of alkalic volcanism 
on shield volcanos as seen at Mauna Kea. 
Medium-sized hydrothermal systems develop at 
the summits and on the flanks of andesitic 
stratovolcanos along subduction margins as seen 
at Mt. Rainer (Crowley and Zimbelman, 1997) 
and the Nansatsu District in Japan (Hedenquist et 
a!., 1994 ). And large hydrothermal systems 
develop in or along the margins of continental 
interior bimodal rhyolite/basalt calderas as seen at 
Cuprite (Swayze, 1997) and Goldfield, Nevada 
(Ashley and Silberman, 1976). 

Figure 14. Averaged A VIR IS spectra of tholeiitic basalt 
flows of different age from the southwestern flank of Mauna 
Loa. Spectra were exrracted from sites shown in Fig. I I A 
(circled numbers). Note that older flows have deeper 2.24-
J.Lm Si-OH absorptions. 1.0 Ka = one thousand years ago. 

There are exceptions to these trends 
with large continental interior-style 
hydrothermal systems occurring in 
subduction margin island arcs like 
the Philippines (Reyes, 1990). 
Likewise, many of the alteration 
minerals observed in hydrothermal 
systems of continental interior 
calderas are present in the sub
duction margin systems but at spatial 
scales too small to specrrally 
dominate entire pixels. 

THE SEARCH FOR MARTIAN 
HYDROTHERMAL SYSTEMS 

The spectral search for alteration 
minerals will undoubtably continue 
to play a critical role in the search 
for relict hydrothermal systems on 
Mars (Fanner, 1996). Results of this 
study suggest that the classical set of 
alteration mineral associations found 
in active continental interior calderas 
like Yellowstone, Wyoming or relict 
systems like Goldfield, Nevada, are 
not all likely to be found in Martian 
volcanic hydrothermal systems given 

the lack of comparable tectonic 
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settings on Mars. Alternatively, the Figure 15 . Hydrothermal alteration as a function of host rock composition, 
Hawaiian alteration mineral tectonic setting, and magmatic volatile content. 
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associations are probably closer to what we should expect to find on Mars. Alteration minerals such as chalcedony, 
chlorite, dickite, halloysite, opal, pyrophyllite, and sericite are absent in the Hawaiian systems at the spatial scale of 
A VIRIS ( 14 m pixels). The presence of only small hydrothermal systems on Hawaii at the surface may be an 
observation biased by what is exposed. Larger systems formed at depth, if they exit, have little chance of being 
exposed due to rapid subsidence of the islands (Don Thomas, personal comm.). If large hydrothermal systems have 
developed at depth on Mars, they may have been subsequently exposed by erosion, edifice collapse, or exhumation 
during meteorite impact. 

Successfully locating Mart ian hydrothermal systems will require the identification of alteration minerals with 
enough spectral contrast to avoid confusion with minerals formed by weathering in non-hydrothermally altered areas. 
Unfortunately many of the alteration minerals found in the Hawaiian hydrothermal systems also form during 
weathering of mafic volcanic rocks. Nontronite-like Fe3+-saponite is a weathering product of the non-hydrothermally 
altered basaltic rocks surrounding the hydrothermal centers on Mauna Kea (Fig. 5B). Similarly hematite and 
goethite form as products of weathering of non-hydrothermally altered sulfide-rich volcanic rocks on both mountains 
(Figs 5A and I OA). The most reliable indicator of hydrothermal alteration in mafic volcanic rocks, from a remote 
sensing perspective, is the presence of kaolinite. It is present in the hydrothermal centers on both Mauna Kea and 
Mauna Loa, in the most intensely altered areas. The process of hydrothermal alteration must hasten the formation of 
Fe2+-saponite from basaltic rocks with resulting oxidation and dehyroxylation to form Fe3+- and Mg-saponites, and 
ferruginous smectite. Although this assemblage is normally present in weathered basalts (Burns, 1993), it seems that 
hydrothermal action may enhance the weathering process, creating areas with higher than background concentrations 
of these minerals. And if the mineral associations in the cinder cones on Mauna Kea are an applicable spectral 
analogue, then Mg-rich saponites may also be indicative of hydrothermal alteration on Mars . Care must be exercised 
to avoid potential confusion between the spectral signatures of hydrated volcanic glass, which might be widespread 
on Mars, and hydrated S i02 minerals indicative of localized hydrothermal alteration systems. 

The duration of activity in a hydrothermal system also varies as a function of tectonic setting, lasting a few orders 
of magnitude longer in more silicic magmatic systems like those formed in continental interior calderas (Fig. 15). It 
seems logical that long-lived hydrothermal systems would provide a better shelter for Martian life and may be more 
likely to preserve evidence of that life than short-lived systems. This observation has important implications for the 
search for past life on Mars: the largest and best-developed hydrothermal systems may be those associated with 
postshield basalts or andesites on Mars. Cinder cones and exhumed altered rocks formed during the postshield stage 
of volcanism may be the best targets for remote detection of hydrothermal systems and for exobiology sample 
collection missions. These would be the areas to concentrate on in the search for sample return sites at spatial 
resolutions no coarser than 30 meters. Exopalaeontological studies may also benefit from studying the biota of 
active and relict hot springs of the Hawaiian and Icelandic oceanic hotspot hydrothermal systems. Areas of reduced 
permeability may be necessary for the formation of large hydrothermal convection cells at the surface. 

Volcanism may not be the only mechanism for forming hydrothermal systems on Mars. Newsom ( 1980) has 
suggested that hydrothermal systems may have developed in meteorite impact melt sheets on Mars. Studies of 
terrestrial impact structures in continental settings have found evidence of extensive long-lived hydrothermal systems 
and their associated calc-silicate alteration mineral associations (McCarville and Crossey, 1996). For the same 
reasons discussed above, host-rock composition may influence the type of alteration minerals formed during impact 
induced heating. Unfortunately, terrestrial analogues of impact-driven hydrothermal alteration applicable to Martian 
mafic volcanic rocks may not exist because plate subduction has probably destroyed the oceanic impact structures 
they reside in, biasing the terrestrial geologic record toward those preserved in silicic cratons. Nevertheless, the 
alteration minerals formed in the hydrothermal systems on Mauna Kea and Mauna Loa may be useful guides in 
deducing the effects of heat and water on mafic rocks expected during impact heating. 
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TERRAIN NORMALIZATION OF A VIRIS AND HYPERION IMAGERY IN FORESTED LANDSCAPES 

Philip A. Townsend and Jane R. Foster1 

1. INTRODUCTION 

The effects of topographic shadowing in satellite and aerial imagery can be substantial in rugged 
landscapes with steep hills or mountains. These effects can affect interpretations and quantitative analyses of 
imagery, and in forested areas can complicate the classification of forest types or the extraction of biophysical 
parameters from the reflectance data. Because of this, numerous techniques have been devised to correct for terrain 
illumination differences, including the simple cosine (or Lambertian) correction, the Minnaert correction (Minnaert, 
1941 ), and a variety of other approaches (e.g., Civco, 1989; Conese et a!., 1993; Meyer et a!., 1993). The purpose of 
this study is to demonstrate the application of one technique, the empirical approach of Meyer et a!. ( 1993) to high 
altitude AVIRIS and Hyperion imagery. Previous work by Martinet a!. (1999) compared the application of two 
techniques- the Lambertian (simple cosine) and Minnaert corrections- on A VIRIS, finding superior performance 
by the Minnaert correction. Neither of these approaches is used here, as the cosine correction is generally 
recognized to over-correct on shaded slopes, while the Minnaert correction requires the derivation of a cover-type 
specific correction coefficient, which is especially difficult when cover types are either not known or not mapped 
(see Allen, 2000). The empirical approach also has the benefit of providing several tools (described below) for the 
quantitative evaluation of the correction. 

2. STUDY AREA AND METHODS 

2.1 Study Area 

The study area is the 15,700 ha Green Ridge State Forest (GRSF) in 
western Maryland (Figure 1). GRSF is located in the Ridge and Valley 
physiographic province of the central Appalachian Mountains, and is 

· characterized by steep southwest-northeast trending mountains with gently 
sloping to steeply incised valley bottoms. Elevation ranges from 250-700 m. 
The forests are comprised largely of deciduous oaks, with Virginia pine on 
some west-facing slopes and hemlock in some valley bottoms. This research 
was undertaken as a component of a larger project to compare multiple sensor 
combinations for mapping and modeling forest composition and structure. 

Sensor 

AVIRIS 
AVIRIS 
Hyperion 

Table l. Image Characteristics 

Date Time (UTC) Solar Azimuth 

5/14/2000 15:42:46 133.8 
7113/2001 
7/24/2001 

15:47:47 
16:09:30 

134.94 
126.35 

2.2 Image Preprocessing 

Solar Elevation 

62.62 
66.72 
61.13 

PA 

Figure 1. Location of 
Green Ridge State Forest in 
western Maryland. 

The research presented here uses two A VIRIS images, acquired on 14 May 2000 and 13 July 2001 from an 
altitude of -19,900 m, and one E0-1 Hyperion image acquired on 24 July 200 l (Table 1 ). The images were 
atmospherically corrected using the ATmospheric REMoval program (ATREM) (Gao eta!., 1993) followed by an 
empirical line calibration (e.g., Moran eta!., 2001) developed from measurements taken by an Analytical Spectral 
Devices (ASD) FieldSpec spectroradiometer. The AVIRIS imagery exhibited a cross-track view-angle dependent 
brightness gradient. This gradient of increasing brightness on the west side of the images results from the A VIRIS 

1 University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland 2 1532; 
townsend@al.umces.edu 
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scan angle and direction, flight path orientation and solar azimuth, and was corrected by fitting a first-order additive 
quadric curve to the mean radiance by view angle (Kennedy et al., 1997). The images were georeferenced to UTM 
coordinates using a triangulation method with > 70 GCPs per scene and nearest neighbor resampling. 

2.3 Terrain Normalization 

All of the images used in this research exhibited substantial terrain effects (Figure 2). To determine the 
effects of differential illumination, we modeled solar illumination for each image using slope and aspect derived 
from a digital elevation model (DEM) and solar altitude and azimuth information for the time of imaging (Table 1). 
The incidence angle of solar radiation is defined as cos(i), i.e. the angle between the normal to the surface and the 
source of light {the sun). A linear model was then constructed to predict reflectance (on a pixel-by-pixel basis) as a 
function of illumination (Figure 2). The influence of illumination was then removed through detrending based on 
the slope of the regression equation. In general, the approach removes the slope between reflectance and 
illumination, while the variance in reflectance at any given incidence angle remains unchanged. The approach 
assumes that illumination differences are constant among cover classes (Allen, 2000). However, the training pixels 
used to determine the regression equation (i.e., Figure 3) are sampled from sites with similar canopy composition. 
For this research, the regression equations were developed using reflectance data from leafed-out mature oak forests, 
the dominant cover type in the region. Following Meyer et al. ( 1993), reflectance on the normalized image is then 
computed as: 

LH = Lr - cos(i) m - b + LJJ + e (Equation l ), 

where LH is the normalized reflectance, Lr is the observed reflectance on sloped terrain, LJJ is the mean Lr for a 
channel, m is the slope and b is they-intercept of the linear regression model; e represents model error. This 
regression-based approach allows the reporting of a variety of diagnostics to evaluate the efficacy of any corrections 
that are applied. In particular, the R2 of the regression equation indicates the strength of the linear relationship 

(a) (b) 
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70 60 90 100 
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Figure 2. (a) A VIRIS image of 
GRSF from 14 May 2000. Bands 
shown in RGB are 1663 nm, 1089 
nm, and 549 om. (b) Hyperion 
image of the same area from 24 
JuJy 2001, showing 1659 om, 1256 
nm and 570 nm. Note the strong 
illumination effects along the 
mountain ridges. 
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Figure 3. Relationship between illumination and reflectance for the three bands in the A VIRIS 
image shown in Figure 2a (14 May 2000). Values on they-axis are 10000 *reflectance. The data 
shown here are for deciduous oak forests. 
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between reflectance and cos(i). In addition, the steepness of the slope of the regression equation for any particular 
band denotes the relative amount of shadowing in that band, with steeper slopes indicating greater amounts of 
shadowing and illumination. 

3.RESULTS 

Regression relationships between reflectance and illumination were developed using automated routines for 
all bands in the A VIRIS and Hyperion images. The fit (R2

) between cos(i) and reflectance for all bands is shown in 
Figure 4. Excluding the water absorption wavelengths, most bands exhibited some relationship between cos(i) and 
reflectance (i.e., p < 0.05) that allowed the implementation of the normalization. For example, the R2 for A VIRIS 
Band 19 (549 nm) shown on Figure 3a was 0.3; even so, implementing Equation I still resulted in the detrending of 
the data so that reflectance was no longer related to cos(i) (Figure 6). Most notable, however, was that the strength 
of the relationship between illumination and reflectance appeared to parallel the general reflectance curve for forests 
in GRSF. That is, the ability to correct for illumination is greater at wavelengths where the reflectance is the 
greatest, e.g., the near infrared where R2 was around or above 0.6 for most bands. For example, the improved 
correction at the reflectance peak in the green wavelengths (558 nm) (compared to other visible bands) is especially 
notable on the 13 July 2001 A VIRIS image. These results are not surprising; they simply indicate that topographic 
effects are most readily corrected at wavelengths where the signal to the sensor is greatest. However, these results 
also show that robust corrections can be developed at wavelengths with low reflectance. 

From a statistical perspective, an examination ofR2 only indicates how strong the relationship between 
illumination and reflectance is, but not the magnitude of the effect of illumination. On a band-by-band basis, the 
degree of terrain effect is best illustrated by examining the slope of the relationship between illumination and 
reflectance. That is, the greater the effect of illumination, the higher the slope between less illuminated pixels (low 
cos(i)) and more illuminated pixels (high cos(i)). The effects of illumination are most pronounced at those 
wavelengths with the highest reflectance (Figure 5). Again, this result is not surprising; it simply indicates that 
effects of shading are more dramatic where there is greater reflectance by the surface and hence signal strength at 
the sensor. 
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Figure 4. R2 of renectance as a function 
of illumination by wavelength (dots) for 
the images. Also shown is the average 
renectance for oak forests in each image 
(lines). 
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Figure 6. Relationship between illumination and reflectance following normalization for the 14 
May 2000 A VIRJS image. Reflectance values on the y-axis are 10000 * reflectance. 

The terrain normalization resulted in a substantial reduction of the effects of solar illumination in the 
A VIRJS and Hyperion images (Figures 6 and 7). In particular, areas on the illuminated and shadowed sides of steep 
ridges now exhibit comparable reflectance. It is notable that some areas along the ridges do not appear to have been 
corrected; in most cases these represent areas characterized by pines rather than oaks and as such have lower 
reflectance than surrounding areas. However, some areas were undercorrected, meaning that shaded slopes appear 
to remain shaded. These problems occur in areas where the images and DEM are slightly misregistered. An offset 
of even 2 pixels along the top of a steep ridge will result in a thin band of undercorrected pixels along the top of the 
ridge. Other DEM errors can also create problems; for example, our DEM, which was acquired from the National 
Elevation Database (NED), exhibited some regular striping that was corrected using a low-pass filter. However, this 
filtering has the effect of reducing slopes and thereby lowering apparent illumination differences as modeled from 
the DEM. This leads to the potential for underestimating the slope of the regression between cos(i) and reflectance. 
Nevertheless, the net effect of the correction was to reduce the effects of solar illumination, which should improve 
the ability to interpret the images and quantify differences in reflectance between forests with different properties. 

4. CONCLUSIONS 

An empirical method of terrain normalization (Allen, 2000; Meyer eta!., 1993) was applied to A VIRJS and 
Hyperion images for a forested area of steep topography in the central Appalachian Mountains. The effects of 
differential illumination of the landscape were reduced in the corrected images, but were not eliminated altogether 
because of potential misregistration between DEMs and images. The empirical fit between reflectance and 
illumination was best at the near infrared wavelengths having the highest reflectance. However, statistically 
significant relationships between illumination and reflectance were found at almost all wavelengths. The greatest 
amount of correction - indicated by the steepness of the slope of the regression equation - was applied at 
wavelengths having highest reflectance. Therefore, we conclude that topographic effects are greatest when 
reflectance is highest and that those effects are also most easily modeled and corrected at the same wavelengths. 
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Figure 7. Normalized images of 
those shown in Figure 2: (a) 
AVIRJS from 14 May 2000 
showing 1663 nm, 1089 nm, and 
549 nm; (b) Hyperion from 24 
July 2001, showing 1659 nm, 
1256 nm and 570 nm. When 
compared with Figure 2, the 
illumination effects are greatly 
reduced. Dark areas on these 
images are generally pine 
forests; some areas are under
corrected due to mis
registration between the DEM 
and images. 



Because the approach is rapid, and- with the exception of the selection of training pixels- automated, it can be 
readily applied to large hyperspectral data sets. Further, once training sites are established for a given area, the 
extraction of training data can also be automated. This approach is especially relevant for sites where the detailed 
information on tree physiognomy and bi-directional reflectance factors (BRDF) necessary for canopy based models 
are unavailable. Topographic normalization is essential for analyses of forests in rugged terrain, and the approach 
described here provides a simple approach with effective results. 
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MAPPING NON-NATIVE PLANTS USING HYPERSPECTRAL IMAGERY 

Emma Underwood,1 Susan Ustin/ Deanne Dipietro1 

l. INTRODUCTION 

One of the significant threats to global biodiversity and ecosystem functioning is the spread of invasive 
plant species (Mooney and Cleland, 2001 ). Continuing anthropogenic related disturbances such as land conversion, 
grazing, and habitat fragmentation, combined with international trade and climate change indicate that these trends 
are likely to continue (Zedler and Scheid, 1988). In this context, the major challenge for land managers and 
ecologists is how to effectively manage non-native plants to preserve native biodiversity. Being able to delineate the 
spatial extent and ascertain the severity or intensity of the invasion is essential for resource management (Byers et 
al., 200 I). This information provides a baseline for monitoring future expansion, the effectiveness of control efforts, 
and assists in identifying targets for control activities, such as satellite populations and 'invasion fronts.' 

Techniques such as remote sensing offer significant opportunities for providing timely information on 
invasions of non-native species into native habitats. To date, there have been two divergent approaches (Everitt et 
al., 1996, Dewey et a!., 1991 ). The first approach uses imagery with a high spatial, but low spectral resolution, such 
as black and white or color infrared aerial photographs. These photographs have the benefit of being relatively 
cheap, large amounts of archival data are available for many sites, and photographs are available at hyperspatial 
resolutions (0.1- 2 m). However, the major disadvantage is that they rely on the non-native plant possessing visually 
detectable unique characteristics, extensive manual labor for processing and, finally, the resolution means that it is 
only feasible to collect data over a relatively small spatial area. The second approach uses digital images with 
greater spectral resolution, although coarser spatial resolution have been utilized-predominantly various airborne 
or spaceborne multispectral instruments. The use of digital multispectral imagery offers the opportunity for 
automated image processing, access to recent historical data for time series analyses, and large spatial coverage. 
However, the spatial resolutions of these sensors, such as TM and AVHRR imagery, mean that invasive species 
populations can often only be detected once, dense and widespread (Carson et a!., 1995). In addition, traditional 
classification techniques like isodata or maximum likelihood, usually identify vulnerable land cover classes, rather 
than the non-native species itself. Consequently, maps have only a general applicability. 

The availability of Airborne Visible/Infrared Imaging Spectrometer (A VIRIS) imagery with both increased 
spatial, but in particular spectral, resolution offers an enhanced potential for mapping invasive species. Because of 
the large number of wavebands (224) image processing is able to capitalize on both the biochemical and structural 
properties of the target invader. However, to date, there has been little evaluation of different processing techniques 
suitable for imaging spectrometry data for identifying invasive plants. The objective of this research is to 
investigate the use of A VIRIS imagery to detect the invasive species iceplant (Carpobrotus edulis) andjubata grass 
(Cortaderiajubata). More specifically, to compare three techniques for processing the imagery: Minimum Noise 
Fraction, Continuum Removal, and Band Ratio Indices, and to critically evaluate the relative ease of processing and 
repeatability of each method. 

2.METHODS 

2.1. Study Site and Vegetation Descriptions 

The study site for this research is Vandenberg Air Force Base (V AFB) located along the central coast of 
California. V AFB is 39,800 ha in size and is used primarily for developing and testing missiles and satellite 
launches for the Department of Defense and NASA. Consequently, there are still significantly sized intact blocks of 
land representing one of the last undeveloped open areas of coastal California (Keil and Holland, 1998). There are 
836 vascular plants documented at V AFB, of which almost a quarter are invasive species. In particular, 
Carpobrotus edulis and Cortaderia jubata have successfully invaded two native community types: coastal dune 
scrub community and maritime chaparral (Keil and Holland, 1998). The coastal scrub community forms a relatively 

1 Center for Spatial Technologies and Remote Sensing (CST ARS), Dept. of Land, Air & Water, University of 
California, Davis, One Shields A venue, Davis, California 95616, USA Corresponding author: 
eunderwoodrussell@ucdavis.edu 
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continuous cover of low to medium shrubs(< 1m tall), subshrubs, and herbs (Keil and Holland, 1998), and is 
dominated by California sagebrush (Artemisia californica), coyote bush (Baccharis pilularis), and mock heather 
(Ericameria ericoides). It is one of the most threatened community types in California, being rapidly fragmented 
and replaced by suburban developments, which makes the extensive iceplant invasion into remaining habitats of 
particular concern. The second community that iceplant is encroaching on is the maritime chaparral community 
characterized by broad-leafed and needle-leafed sclerophyllous shrubs, such as manzanita (Arctostaphylos 
purissima, A.rudis) and chamise chaparral (Adenostomafasciculatum). An extensive area ofthis community-the 
Burton Mesa chaparral-is noted as one of the rarest and most threatened chaparral types in California, harboring 
extraordinary biodiversity (The Nature Conservancy, 1991 ). Invading iceplant, jubata grass, and other invasive 
species such as veldt grass (Ehrharta calycina) form mosaics with the native species. The focus of this research is 
the encroachment of iceplant and jubata grass into these native communities and specifically on the ability of 
AVIRIS to identify pixels of different densities of these species- the premise being that lower densities at the 
margins of the distribution, represent invasion fronts, and thus critical areas for management attention. 

Iceplant (Carpobrotus edulis) (Figure I) is native to South Africa and was introduced into California in 
ballast sand. By the 1950s it was used extensively for stabilizing land adjacent to roads. C. edulis is a succulent 
perennial forming mats up to 20m wide and 50 em deep (D'Antonio, 1993). The species' success is due to its 
tolerance of a range of soil moisture and nutrient conditions, and utilizing a number of mammals for seed dispersal 
(D'Antonio, 1993). Ecological impacts of iceplant include aggressive competition with native species, such as 
Tidestrom's lupine (Lupinus tidestromii), destabilizing native dune communities, and modifying soil pH. Economic 
impacts stem from the time and financial costs associated with both manual and mechanical control. Jubata grass 
( Cortaderia jubata), the second species of concern, is a perennial tussock grass from the Andes Mountains, 
characterized by huge creamy-pink plumes and long leaves (Figure 2). Introduced as an ornamental species it now 
dominates much of the coastal habitat of California. Jubata grass poses a significant threat to Mediterranean 
ecosystems because of its prolific wind dispersed seeds, tolerance of a broad range of habitats, and its 
competitiveness for light, moisture, and nutrients (Cowan, 1976). 

2.2. Description of Fieldwork and Global Positioning System (GPS) Data CoUection 

Existing Geographic Information System (GIS) data layers were acquired from VAFB, including 
topographic maps, vegetation maps, road layers, and land use history, which were converted into a common 
Universal Transverse Mercator (UTM) projection. A field sampling methodology was designed and implemented in 
summer 2000 to coincide with the acquisition of the A VIRIS imagery. Sampling was undertaking in five 
community types identified a priori: intact coastal dune scrub, intact maritime chaparral, invaded scrub, invaded 
chaparral, and chaparral invaded by jubata grass. The location of the 352 fieldwork plots was random, but 
consideration was given to ease of access and location within the flightline. Field data was collected at three 
different scales to provide information from the plot through to the community level: measurements included 
percent cover by species, species height, type and size of disturbances, and soil characteristics. GPS readings 
(Trimble Pro-XRS, Trimble Navigation, Inc.) were taken of plot centers and around pure polygons oficeplant, 
jubata grass, and intact community types. Fieldwork also involved the acquisition of field-based reflectance spectra 
of the dominant native and non-native plant species and soil types in the area. Data were acquired at the time of the 
overflights using a GER 2500 (Geophysical Research, Corp.) field-portable spectrometer (400-2500 nm). Owing to 
almost continual coastal fog during the period around the overflight, only 80 individual spectra of target species at 
V AFB were acquired. A VIRIS data was acquired by the NOAA Twin Otter aircraft on 9 September, 2000 at 3,810 
m, providing a nominal pixel resolution of 4 m. 

2.3. Data Processing Techniques 

The imagery was atmospherically corrected from radiance to reflectance with ACORN (Analytical Imaging 
and Geophysics LLC v.4) a commercial package based on MODTRAN, using the reflectance of target features from 
spectrometer data acquired in the field. The A VIRIS scenes were spectrally and spatially sub-setted to allow for 
rapid georeferencing and noisy bands were removed (ENVI software v.3.4; Research Systems Inc.). Masks were 
created to limit processing to vegetated areas - identified as pixels with an NDVI > 0.2, to reduce the number of 
classes in the classification process. GPS points and polygons of known community types and species were 
differentially corrected (Pathfinder Office v.2.8; Trimble Navigation, Inc.) and used to generate regions of interest 
(ROis). These ROis then served as training polygons for conducting supervised classifications. 

Three processing techniques were compared: a supervised classification based on the results of a Minimum 
Noise Fraction, an unsupervised classification using the results of the Continuum Removal applied to the 932 nm 
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water absorption feature (875- 1032 nm), and finally a supervised classification performed on a dataset composed 
of selected Band Ratio Indices. 

2.3.1. Minimum noise fraction classification 

A Minimum Noise Fraction (MNF) was performed on each flightline to reduce and compress the data and 
to increase the speed of data processing. The MNF sequentially performs two Principle Component Analyses (PCA) 
on the data: the first separates white noise (i.e., uninformative data), the second recombines these bands into new 
composite bands which account for most of the variance in the original data (informative data). Based on the MNF 
output graph of eigenvectors and visually inspecting the new bands, a conservative noise floor was established and 
the first 12 bands were selected as inputs for the classification. The results of the MNF were georegistered and a 
maximum likelihood supervised classification performed. Twelve intact and invaded community classes were 
generated for V AFB, including five different densities of iceplant, three densities of jubata grass, and a class for 
intact scrub. 

2.3.2. Continuum removal for water bands 

The second technique investigated to classify specifically iceplant was a Continuum Removal of the water 
absorption bands, which was assumed to be particularly applicable to the fleshy succulent leaves of C. edu/is 
(Figure 3). The Continuum Removal technique isolates spectral features and standardizes reflection across the 
liquid water absorption features so that they may be intercompared (Clark and Roush, 1984). The advantage is that 
values are independent of differences across the image such as illumination or shadow. The process involved 
spectrally subsetting 34 bands of the image; 17 around 932 nm (between the wavelengths 875-1032 nm) and 17 
around 1155 nm (1070-1221 nm). Water absorption is calculated from the area under the absorption feature divided 
by the area under the continuum, resulting in a range of values from 0 to 1; the lower the value, the greater the 
absorption. This is illustrated in Figure 3, which shows a comparison of the reflectance spectra of pixels having two 
different densities of iceplant compared to a pixel of intact coastal scrub. The graph shows two distinctive 
absorptions for dense iceplant centered on the 932 nm and 1155 nm wavelengths. Visual inspection of the resulting 
images showed greater accuracy when using wavelengths centered around 932 nm than the 1155 nm feature due to 
the atmospheric water vapor absorption at 1240 run. An unsupervised classification (K-means method) was then 
conducted using the derived image, classifying five community classes for V AFB. 

2.3.3. Band ratios indices 

Finally, use of selected vegetation indices that emphasize bands containing important biochemical and 
biophysical properties of the vegetation. Vegetation indices are clearly correlated with foliage chlorophyll 
absorption as well as Leaf Area Index, percent green cover and biomass, productivity, and photosynthetic capacity 
(Ustin et al., 1999). The NDVI is perhaps ,the most well known of these vegetation indices, while the water band 
index has been shown to be a good indicator ofleaf and canopy water content (Pei'iuelas et al., 1997; Serrano et al., 
2000), and the red-edge spectral parameters for chlorophyll concentration (Zarco-Tejada and Miller, 1999). Even 
so, using a combination of vegetation indices for a classification has received limited application for ecological 
studies (Fuentes et al, 2001). We seek to assess how well a land cover classification based on data from this 
technique compares to the results using MNF and Continuum Removal approaches. Five indices were calculated on 
the calibrated image, capturing NDVI, water absorption, greenness, and pigment properties (Table 1), and combined 
into a single image. A maximum likelihood supervised classification was performed on the results. 

3. RESULTS 

A visual comparison of the three classification results (Figures 4, 5, 6) shows iceplant is clearly 
distinguished in all analyses with a similar spatial configuration: highest densities parallel to the coastline and 
tapering off with increasing distance inland (in a northeast direction). Separation of different density levels of 
iceplant is evident in all three images. Field validation was undertaken in August 2001 to perform ocular cover 
estimates by species of the classification performance and also acquire GPS polygons for a formal verification of 
image classes. 

A total of twenty-three regions of interest were acquired during the second period of fieldwork across intact 
scrub and iceplant at four different densities(~ 50%, 51-75%, 76-90%, 91 - 100%) to provide the reference data for 
validation (Table 2). An evaluation of the three images for simply classifying presence/absence of iceplant of any 
density had very high success: 99% for the MNF, and 98% for the Continuum Removal and Band Ratio 
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techniques-indicating that the distinctive succulent characteristics of iceplant are being identified in each method. 
It is more informative; however, to compare the accuracy assessment for the intact scrub class and each of the 
different densities of iceplant classes in tum using a confusion matrix (Congalton, 1991 ). For intact scrub and any 
density of iceplant the Band Ratios and MNF results achieved comparable levels of accuracy: 92% and 91% 
respectively. When this assessment was limited to intact scrub and iceplant with densities > 50% and then further 
refined to intact scrub and iceplant density> 75% the Band Ratios technique performed marginally better in both 
cases: 90% v. 88% and 90% v. 86%. The Continuum Removal approach also performed well - achieving 89% and 
84% respectively. But in a comparison of intact scrub and the densest class of iceplant (> 90%) the MNF approach 
performed best. 

Significant differences between the three approaches were only revealed by looking at the overall accuracy 
across all four density classes: intact scrub, iceplant 51%-75%,76%-90%, and 91%-100%. In this case, the MNF 
result was superior, achieving a 55.2% overall accuracy and a kappa value of 0.36, compared to Band Ratios with 
44% accuracy (kappa= 0.26), and finally Continuum Removal with a 39% accuracy (kappa= 0.20%). It is 
interesting to note the percent of iceplant pixels that were confused as scrub pixels is relatively low for all methods, 
on average 8% and 4%, and 13% for MNF, Band Ratios, and Continuum Removal respectively. This illustrates that 
the primary source of confusion is in classifYing different densities of iceplant, rather than confusing iceplant with 
scrub pixels. 

Although no formal accuracy assessment was performed for the results of the jubata grass classification, 
fieldwork verification indicated that the results from the MNF and Band Ratio Indices performed similarly. The 
MNF method did distinguish three density classes although it overestimated the total extent, in some cases confusing 
jubata grass with areas of eucalyptus trees (Figure 5). The Band Ratio technique provided a more realistic estimate 
of extent of jubata grass (Figure 6), identifYing the major infestations in the northeast comer of the image where 
jubata grass has rapidly invaded areas of disturbed chaparral. 

4. DISCUSSION 

Effective management of invasive species requires accurate knowledge of their spatial distribution and 
density, which all three processing methods succeeded in capturing, producing some encouraging results. The 
following discussion evaluates the three methods in terms of accuracy, logistics of processing, and ease of 
interpretation. 

The techniques were extremely successful in detecting the presence of iceplant and jubata grass. However, 
the MNF and Band Ratio techniques were better able to distinguish different densities of iceplant. This is because 
these two techniques utilize significantly more information from the image. The MNF classification utilized the 12 
most informative transformed bands while the Band Ratios used five key indices capitalizing on the physiological 
properties of the species. In contrast, the Continuum Removal method relies solely on the seventeen bands around 
the 932 nm water absorption feature, which explains why it performed relatively well for classifYing areas of dense 
iceplant, but poorly when the iceplant forms more complex mosaics with the scrub species. The confusion matrices 
demonstrate that the MNF and Band Ratio methods performed equally as well, one disadvantage of the Band Ratio 
classification is that it produced a speckled image with single and double pixels scattered throughout. Even after a 
sieving and clumping of the image was performed to generalize the spatial patterns, the accuracy only increased by 
1.8%. This improvement in accuracy is not significant and not warranted at the expense of losing information, 
particularly along critical invasion boundary areas. Also, a proportion of the inaccuracies occurring in the 
classification are most likely attributable to a combination of errors in both the georegistration of the image and the 
accuracy of the GPS polygons despite differentially correcting the acquired positions. 

Interpretation of the different techniques varied markedly. The MNF method was the most difficult to 
interpret. Although values from each of the eigenvectors generated by the PCA can be graphed, interpreting the 
basis of spectral variation was difficult. Even in wavelengths of water absorption there were no consistently high 
eigenvalues. Alternatively, using the Band Ratios has the advantage of being more intuitive, highlighting 
ecophysiological information about the vegetation that can be readily related to the data collected in fieldwork. 

From a processing perspective, the Continuum Removal method was by far the most efficient, which 
involved running a single standard procedure in the ENVI software. In contrast, the MNF procedure was time and 
processing intensive, taking several hours to run and creating a 1.8 GB file for each of the two processing modes. In 
terms of identifYing repeatable methods for future use, the Continuum Removal and Band Ratio techniques are 
easily transportable for images acquired at different times or over different geographic areas. In contrast, the MNF 
approach cannot be applied to new data as it is unique to the variance of each flightline. 
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In brief, the Continuum Removal method is a reliable method for depicting presence/absence of iceplant 
within a scrub community. Coupled with this is the ease and efficiency of processing, which makes it an attractive 
approach for inexperienced users of hyperspectral data. Such a method is also likely to be applicable to other 
invasives such as the giant reed (Arundo donax) which has a high water content in the stem. In contrast, the MNF 
and Band Ratio approaches were most accurate in delineating the spatial extent and density of iceplant and jubata 
grass. This might be particularly important for management activities, where the early detection of iceplant 
encroachment into endangered native scrub communities is important for prioritizing control methods and activities. 
By using field derived polygons as inputs for the supervised classification, these techniques also had the additional 
advantage of classifying all communities across the image. 

Land managers wishing to use imagery for mapping and monitoring invasive plants have a tradeoff 
between spatial and spectral resolutions and costs. At one extreme the virtues of low spectral, high spatial resolution 
imagery (aerial photos) are well known, while this research illustrates that AVIRIS imagery offers improved 
opportunities for mapping invasive plants in a matrix of other vegetation types. The improved spectral resolution of 
the A VIRIS imagery permits identification of vegetation characteristics that are not possible using multispectral 
wavebands traditionally used in remotely sensed imagery. However, one interesting question is whether further 
improvements in resolutions are necessary. Interestingly, we found for the target species that it was possible to 
achieve adequate results using only a portion of wavebands available (Band Ratios and Continuum Removal), which 
could potentially mean fewer bands need to be acquired and processed, with possibly lower associated costs. 
However, the specific bands needed to map the full range ofland cover types may still require a hyperspectral 
imager. Similarly, the 4 m resolution of the A VIRIS data also proved sufficient for detecting C. edulis and C. 
jubata. Despite the common belief that higher spatial resolutions are necessarily better, in this case it might have 
produced only marginally improved results, but disproportionately increased the computing and processing 
requirements. Although the current costs of hyperspectral data means that frequent acquisitions over large areas are 
probably not feasible, it is a highly appropriate technique for monitoring hotspots of invasions along selected 
transects. In addition. various data nesting strategies might be employed to optimize the spatial and spectral 
resolutions required. 

5. CONCLUSIONS 

This research describes encouraging findings for using hyperspectral imagery to map iceplant and jubata 
grass in California's Mediterranean-type ecosystems. The next step is to evaluate how well these approaches can be 
applied to invasions of these species in different habitat types and also their ability to detect other invasive species. 
Given the ecological and economic impacts of invasive plants, together with their rates of spread, they constitute one 
ofthe most critical issues for many land managers (Goodall and Naude, 1998). The immediate benefit ofthis 
research has been to contribute to the knowledge base of land managers at V AFB by providing improved 
information on the spatial extent and density of the iceplant and jubata grass, that will lead to better protection of the 
native biodiversity. Additionally, the project evaluated three different methods for processing A VIRIS imagery 
which can now be tested in other geographic locations or for other invasive species. 
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Table 1. Wavebands used to calculate vegetation indices (adapted from Fuentes, 2001) 

Index Bands Wavelengths Source 

Red/green ratio Chlorophyll 683/510 Gamon and Surfus ( 1999) 

Index of pigment Pigment 7501710 Gamon and Surfus ( 1999) 

Index of water 1 Water content 970/900 Penuelas et al. ( 1997) 

Index of water 2 Water content 119311126 Image inspection 

NDVI Green vegetation 895-675/895+675 Modified from Tucker ( 1979) 

Table 2. Summary of confusion matrix results for the three methods 

Class MNF 

Single Class 

Iceplant 0-100% 98.98% 

Scrub & 1 iceplant class 

Scrub and iceplant 0-100% 91.3% 

Scrub and iceplant > 50% 87.5% 
Scrub and iceplant > 75% 86.4% 
Scrub and iceplant > 90% 82.4% 

Scrub & all 3 density classes 55.2% 
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An Integrated Approach to the Discrimination of Riparian Vegetation 
in the Navarro River Watershed, Mendocino County, California, USA 

Joshua H. Viers, 1 Charlene T. Sailer,2 Carlos M. R.amirez, 1 James F. Quinn,1 AND Michael L. Johnson3 

In July of2000, the Information Center for the Envirorunent (ICE) and Center for Spatial Technologies and 
Remote Sensing (CST ARS) collaborated with National Aeronautics and Space Administration - Jet Propulsion 
Laboratory (NASA- JPL) to obtain Airborne Visible InfraRed Imaging Spectrometer (A VIRIS) data of the Navarro 
River watershed. The Navarro River watershed is located in southern Mendocino County, California, USA. This 
watershed, 820 km2 in size, drains into the Pacific Ocean and provides a unique opportunity to investigate a closed 
hydrologic system (Figure I). A mixture of redwood and mixed conifer forests, oak woodlands, open grasslands, 
and agricultural areas provides an array of land uses from which to analyze interactions with aquatic and riparian 
habitats. The Navarro River watershed supports a resource-based economy; timbering, grazing, and limited cropping 
are the primary land use activities in the watershed. However, recent changes in the California economy have 
resulted in increased viticultural activities and an increase in the local human population (ca. 3500) within this 
watershed. These combined factors have resulted in pervasive land use change in the last !50 years, from which 
researchers have sought to inventory, catalogue, and provide a synopsis of the ecological state of the watershed. 

Using a large area, high spatial resolution collection of AVIRIS data for the Navarro River watershed, a 
classification of riparian vegetation was initiated using a combination of traditional ecological assessment 
techniques and hyperspectral data analysis~ The Navarro River watershed is the focal point of many ongoing, 
multidisciplinary investigations concerning anthropogenic disturbance of watershed processes, such as Jogging, road 
building, and land conversion to vineyards and other agriculture, and resulting ecological responses. Namely, these 
studies have focused on the role that land use activities play in perturbing anadromous salmonid populations and 
habitat. Riparian vegetation is a key habitat parameter in that it regulates many of the ecosystem components 
necessary for salmon reproduction, rearing, and migration through its effect on stream shading, contribution oflarge 
woody debris, and allocthonous inputs to the stream system, none which can be assessed comprehensively from 
ground studies due both to the size of the area and limited access to private lands. The primary goal of this project 
was to test the suitability of hyperspectral analytical techniques to identify and asses riparian vegetation over an area 
with complex topography and land use. In particular, our goals were to use ecological field data to I) provide a 
priori expectations of vegetation classifications, 2) serve as a verification for spectral classification, and 3) to serve 
as a basis from which to nest the classification results within ongoing, national efforts of cataloging vegetation. 

A series of traditional vegetation classification methods were employed on field data to determine the 
expected species composition of vegetation communities within the riparian zone. The traditional methods of 
vegetation classification from field collections are based on clustering algorithms and factor analyses, such as 
TWINSP AN (Hill, 1979), and these methods were used to establish an expected distribution of species for the 
watershed. To limit spectral feature extraction of possible riparian vegetation to locations near waterways, a riparian 
zone was delineated by using topographic features generated from a digital elevation model of the watershed. The 
process results in a hierarchical framework with expected species distributions that represent field conditions; this 
framework was then integrated with hyperspectral feature extraction methods, such as endmember selection, to 
discriminate different vegetation communities within the riparian zone. 

Efforts to bridge vegetation community ecology and spectral technologies are not new; however, the use of 
hyperspectral data analysis to elucidate both specific constituents of vegetation communities and intra-community 
differences is a dynamic, adaptive science (Roberts eta!., 1998). Techniques ofboth vegetation ecologists and 
spectrometrists are directed toward pattern detection. Vegetation ecologists typically do not test a priori hypotheses 
- studies are far more often observational or descriptive, with a focus on inductive, multivariate methodologies. 
Similarly, spectrometry relies on the multi-, or hyper-, variate differences among materials to effectively 
discriminate and identify classes of objects. In this paper, we engage in methods to identify physical relationships 
that are evident in both ecological and spectral space. Namely, riparian plant species were identified and categorized · 
into communities on the ground. A VIRIS data were used to both classify vegetation communities within the riparian 
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zone and to identify diagnostic species spectrally. The results of our study indicate that the composition of species 
within vegetation communities is reflected in both variable spaces: ecological and spectral. 

Methods: 
The following software packages were necessary for the procedures detailed below: ESRI Arclnfo v. 8.0.2 

(Environmental Systems Research Institute, Inc.); ERDAS Imagine v. 8.5(Leica Geosystems, Atlanta, Georgia); RSI 
ENVl v. 3.5 (Research Systems Inc., Boulder, Colorado); RSI IDL v. 5.5 (Research Systems Inc., Boulder, 
Colorado); PARGE v. 1.3 and ATCOR4 v. 2.0 (ReSe Application Schlapfer, Zurich, Switzerland), and PC ORD v. 
4.14 (MjM Software, Gleneden, Oregon). 

In all, NASA flew 26 of the 29 proposed flightlines over a period of three days in late July of2000. For this 
preliminary hybrid classification analysis, we have chosen one representative flightline (FL) from the collection to 
process: FL 18 (Figure I). Elevation of the study site ranges from sea level to 1054 m with most ridge tops 
paralleling the San Andreas Fault in a southeast to northwest direction toward the Pacific Ocean. 

10,000 

Meters 

Mendocino CoWJty 

Figure 1. Map of the Navarro River watershed with the proposed AVIRJS flightlines and primary hydrographic 
features. All but flightlines 1-3 were flown in July 2000. Flightline 18 is the focus of this study. Inset Map shows 
position of watershed in Mendocino County, California. 

NASA - JPL supplied the AVIRJS data in radiometrically corrected format on 8mm tape. Tape contents 
were uncompressed to a common file space on a sixteen-processor SGI Origin 2000 supercomputer; each flightline 
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totals approximately 1.5-2.5 gigabytes. To geometrically correct flightline data, a terrain correction software 
package, Parametric Geocoding (PARGE) (SchHipfer, 2000), was used. PARGE integrates the inertial navigation 
unit readings, flight GPS positions, and ground control points (GCPs) to correct for pitch, roll, heading, and yaw. 
This procedure also incorporates a Digital Elevation Model to adjust for topographic effects. Prior to initiating 
P ARGE, each frame was mosaicked in ENVI to create a seamless flightline. A VIRlS data were converted from BIP 
to BSQ in ENVI. GCPs were collected by using a combination of ENVI and Imagine tool sets and Digital 
Orthophoto Quarter Quadrangles as a visual anchor. GCPs were systematically eliminated based on their X and Y 
coordinate offsets until the GCP Residual (RMSE) was less than 5.0 m. A 10-m USGS Digital Elevation Model of 
the watershed was resampled to 5 m cell resolution using bilinear interpolation and converted in Arclnfo from a grid 
to aDEM in USGS format (ESRl, 2001). The USGS format DEM was imported into ENVI to be used with PARGE, 
along with the GCPs. The final A VIRIS data were resampled to 5m from the native 3.3-m to 4.2-m spatial 
resolution. The geo-corrected results from PARGE, in addition to field spectra of pseudo-invariant targets, such as 
Navarro Beach and the Boonville Airport, were incorporated into ATCOR4, an atmospheric correction software 
package (Richter, 2000). ATCOR4 corrects for sun angle, atmospheric moisture and particulates, topography, off
nadir viewing angles, and shadows. Once the FLs were geometrically and atmospherically corrected, "noisy" bands 
were eliminated. Bands were visually inspected and dropped from the analysis if their respective response signatures 
for a known material deviated from the expected response. The following bands were chosen as acceptable for 
further analysis: 2- 104, 116-152, 168-220 (384.46 nm-1324.15 nm, 1443.7 9 nm-1802.45 nm, 1950.66 nm-
2469.24 nm, respectively) and resulted in a final spectral product. 
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Figure 2. Processing flow diagram for the hybrid methodology to discriminate riparian vegetation. 

The process for isolating riparian vegetation relies on a hybrid methodology, which incorporates an 
intersection of two masks, an ecological field data classification, a field-integrated spectral classification, an 
ecological field data indicator species analysis, and a final spectral comparison of indicator species within classes 
(Figure 2). The dual masking procedure is part terrain analysis and part spectral transformation. The spectral 
masking involved the transformation of the spectral array into three data planes using the Tasseled Cap 
transformation (Jackson, 1983, Richards and Jia, 1999). A processing script was developed in Interactive Data 
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Language (IDL) to extract data planes via the Tasseled Cap procedure for soil brightness, vegetation greenness, and 
water saturation (Jackson, 1983, Richards and Jia, 1999). The IDL script uses Regions of Interest (ROis) as inputs 
for each data plane and the spectral downselected bands are used in the input array. To develop a series of ROis, FL 
18 was transformed using Boardman and Kruse's (1994) Minimum Noise Fraction (MNF) routine to collapse the 
input data array into 92 dimensions; ultimately the twenty dimensions with the highest eigenvalues were used for 
classification. ROis were defined for pixels encoded by the Pure Pixel Index (1000 iterations) (Boardman et al. , 
1995) on the MNF transformed arrays. ROis, in this case, were selected to represent soil brightness, vegetation 
greenness, and water saturation. Flightline 18 was examined for the distribution of values from the three-band 
transform array and each plane was bisected to separate materials based on its modal distribution. Vegetation was 
determined to have a "greenness" array value greater than the least first standard deviation from the mean. 

To reduce spectral variability and errant classification of riparian vegetation in upland vegetation 
communities, the vegetation pixels were further segmented with a Riparian Extent Mask. The Riparian Extent data 
grid was created as a combination of two inputs. The first input is a Euclidean distance from streams data grid that 
was natural log transformed and rescaled from 1- 100. A break point of37.4 was chosen; it represents one standard 
deviation less than the mean. The second input represents the least cost path away from streams where Degree Slope 
is the cost. The results were natural log transformed and rescaled 1-100. A break point of76.6 was chosen; it 
represents one standard deviation less than the mean. The Riparian Extent Mask represents the intersection of these 
two grids. This Riparian Extent Mask was then used to limit the influence of upslope vegetation on the spectral 
classification of the A VIRIS data and the Tasseled Cap Greenness plane was used as a mask to restrict the spectral 
classification to vegetation solely. 

The hyperspectral classification incorporated the results of ecological data analysis of fieldwork conducted 
in the summer of 2000. The riparian fieldwork consisted of 6-10 m x 10 m quadrats randomly placed along each 
study reach at sixteen study sites throughout the watershed (Figure 3). Study sites were stratified to represent major 
tributaries in the watershed and position in the watershed, in terms of upstream accumulative drainage area. This 
stratification also recognizes differences in elevation, geologic substrates, and distance to the Pacific Ocean--a 
primary climatological determinate. We identified all woody species, estimated percent cover of each woody 
species, measured all stems greater than lOcm at diameter breast height, measured tree heights with a LaserTech 
Impulse 2000 Rangefinder, and located quadrat boundaries with a Trimble ProXRS DGPS. Additional field 
verification plots and individual species locations were geographically located with DGPS as well. 

The species cover data were analyzed using Two-Way Indicator Species Analysis (Hill, 1979, McCune and 
Mefford, 1999). TWINSP AN can be described as dichotomized ordination analysis, in that an iterative character 
weighting is used to separate species affinities based on the incorporation of pseudo-species to represent differences 
in abundance for each observed species (van Tongeren, 1995). Similarly, sample sites are dichotomized and, 
ultimately, added to a species-by-site matrix. The result of this ordination is a fidelity matrix with an approximate 
positive diagonal, from upper-left to lower-right, which can be used to characterize un-sampled sites (van Tongeren, 
1995); in this exercise, it is used as an a priori guide to vegetation communities within the riparian zone and resulted 
in three broad classes (Appendix 1). Lastly, in terms of the ecological field data analysis, an Indicator Species 
Analysis was performed using the three Riparian Vegetation classes derived from TWINSPAN (Dufrene and 
Legendre, 1997). Indicator Species Analysis is a method that combines information on the concentration of species 
abundance for a particular group and the faithfulness of occurrence of a species in that group, as a function of 
frequency (McCune and Mefford, 1999). It produces indicator values for each species in each group, reflecting 
abundance and frequency, and this score is tested for statistical significance using a Monte Carlo technique 
(McCune and Mefford, 1999). 
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Figure 3. Map of field vegetation plots in the Navarro River watershed depicts a stratification based on major 
tributaries and watershed position. Study plots are 10m x 10m and are in clusters of six plots per site, as shown 
in the inset map. 

Two classification methods were performed on the A VIRIS data to accomplish two separate, but related, 
objectives: I) an unsupervised classification to establish vegetation communities within the riparian extent; and 2) a 
supervised classification of Indicator Species reference spectra to establish distributions of plant species indicative 
of vegetation communities. The purpose of this two-staged approach is to determine ifhyperspectral data analysis 
can be used to identify patterns of species indicative of vegetation communities observed in the field; essentially, 
this two-stage method tries to establish whether vegetation communities observed in the field, in terms of 
composition and constancy, are reflected in the spectral characteristics of AVIRIS. A Spectral Angle Mapper (SAM) 
supervised classification was performed in ENVI using ROis defined by the field quadrat boundaries and ancillary 
field identifications. The SAM classification (Kruse et al., 1993) was seeded to represent Indicator Species from the 
TWINSP AN classification using ROI endmembers for coast redwood, California bay laurel, and arroyo willow with 
a 0.1 radian deviance threshold from the reference spectra for classification. For each diagnostic species, a series of 
ROis were identified, mean and standard deviation spectra were collected, and spectral libraries created to be used in 
the SAM classification. Additionally, a K-Means unsupervised classification was implemented on the twenty-band 
MNF in ENVI to classify vegetation communities within the riparian extent (Figure 4.1 ). A total of four classes 
were chosen to represent vegetation within the riparian extent (Figure 4.2); three classes are described in field plot 
results, and one class represents cultivated crops. The K-Means classification was performed with five hundred 
iterations and a 2% class deviance. Field plots and individual species' locations were geographically located with a 
Trimble ProXRS GPS unit, differentially corrected, and brought into ENVI as vector data for verification. 
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Results: 
Using minimum criteria for TWINSP AN classification of field data, three broad classes of vegetation 

emerged. Two classes are typically considered upland vegetation; however, they are well represented in the riparian 
zone (Class A & B). These two classes have three species that are ubiquitous and representative: California bay 
laurel (Umbel/ularia californica), Douglas-fir (Pseudotsuga menziesii), and tanoak (Lithocarpus densiflorus) . These 
two classes are separated by two diagnostic species: coast redwood (Sequoia sempervirens), and big-leaf maple 
(Acer macrophyllum); representing wetter and drier climes respectively. Other species that are marginally diagnostic 
are Pacific madrone (Arbutus menziesii) for wetter environments and coast live oak (Quercus agrifolia) for drier 
environments. The riparian class (Class C) is represented by a heterogeneous mixture of species; however, arroyo 
willow (Salix lasiolepis), Himalayan blackberry (Rubus discolor), and white alder (Alnus rhombifolia) emerged as 
diagnostic species. Other indicator species in this riparian class are: California blackberry (Rubus vitifolius), Pacific 
dogwood (Cornus nuttallii), and white willow (Salix alba). Furthermore, many of these species have significant 
Indicator Values in determining riparian class as determined by Indicator Species Analysis (Table 1), which 
determines a species Indicator Value as a function of abundance and frequency (Dufrene and Legendre, 1997). For 
Class A, redwood had the highest Indicator Value. For Class B, California bay laurel was the best indicator species. 
Arroyo willow had the highest Indicator Value for Class C. 

The results of the K-Means classification of the MNF transformed flightline 18 showed an overall accuracy 
of71.77% and a Kappa Coefficient of0.58 when using post-classification verification field plots. Class A (Sequoia) 
had a Producer's I User's Accuracy of66.7% I 86.5%. Class B (Umbellularia) had a Producer's I User's Accuracy 
of71.1% I 63.4%. Class C (Salix) had a Producer's I User's Accuracy of78.9% I 72.3%. The results of the Spectral 
Angle Mapper classification for the three class diagnostic species (Table I, in bold), determined from Indicator 
Species Analysis (results in Table 2), describe the relationship between vegetation community class, as defined by 
K-Means, and spectral libraries developed from field observation ROls. The comparison of the SAM Indicator 
Species classification to the K-Means Community classification had overall accuracy 97.82% of and a Kappa 
Coefficient of0.7471. These results are further detailed in Table I. 

Table 1. Results of Spectral Angle Mapper Classification on Discriminated Riparian Vegetation using field 
mean and standard deviation spectra for selected Indicator Species defined by K-Means Classification. 

C I d. S N SAM p· I N Cl p· I P I d. b S lass n tcator )oectes 0. txe s 0. ass txe s ct. n tcatwn >'L AM 

A Sequoia sempervirens 46551 65822 70.72 
B Sequoia sempervirens 17745 46766 37.94 

c Sequoia sem[J_ervirens 4849 38890 12.47 

A Umbellularia californica 531 65822 0.81 

B Umbellularia californica 13486 46766 28.84 
c Umbellu/aria californica 1801 38890 4.63 

A Salix lasiolepis 15589 65822 23.68 

B Salix lasiolepis 13892 46766 29.71 

c Salix lasiolepis 20777 38890 53.43 

Discussion: 
R.jparian vegetation communities identified in the field were identified spectrally via a restricted K-Means 

classification on MNF transformed A VlRIS data. The results of this classification, with an overall accuracy of 
71.77%, suggest that the three vegetation classes within the riparian extent largely represent field observations 
(Figure 4.3) and the association with the field plots, classified by TWINSPAN to cluster communities of plant 
species, was generally correct. Thus, each spectral class had a representative surrogate field class that was verified 
via cluster analysis of field data plots. Additionally, and perhaps more significantly, SAM classification of A VIRIS 
data for selected species shows similar patterns of species associations observed in the field. In particular, Indicator 
Species Analysis, a method using species ' observed abundance and frequency in relation to developed classes or 
communities, produced three diagnostic species for the three observed riparian communities. Spectral libraries of 
these diagnostic species were used in the SAM classification, which in tum were compared to the K-Means 
classified riparian communities. The overall accuracy of this comparison was 97.82%. Ultimately, these results 
indicate that the cross-comparison of individual species to classes was accurate in both field and spectral settings. 
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Table 2. Indicator Species Analysis Values and Probabilites for Sampled Riparian Plant Species in the Navarro 
River Watershed by Spectral Class. 

Taxon Name Common Name Class Indicator Value ~ 
Salix lasiolepis arroyo willow c 53 .7 0.001 

2 Acer macrophyllum big-leaf maple B 30.7 0.015 

3 Umbellularia californica California bay B 68.1 0.001 

4 Quercus kelloggii California black oak B 13.2 0.069 

5 Rubus ursinus California blackberry c 20.8 0.121 

6 Aesculus californica California buckeye B 2.4 1 

7 Rhamnus californica California coffeeberry A 10.8 0.109 

8 Corylus cornuta var. californica California hazelnut A 11.9 0.225 

9 Torreya californica California nutmeg B 7.1 0.481 

10 Vitis californica California wild grape B 7.3 0.415 

11 Quercus chrysolepis canyon live oak B 10.5 0. 159 
12 Quercus agrifolia coast live oak B 17 0.069 

13 Sequoia sempervirens coast redwood A 83 .4 0.001 
14 Ceanothusincanus coast whitethorn B 7.9 0. 189 

15 Salix hookeriana coastal willow c 6.6 0.327 

16 Arctostaphylos manzanita Common manzanita B 2.6 
17 Baccharis pilularis coyote brush c 14.3 0.023 

18 Pseudotsuga menziesii var. menziesii Douglas-fir A 45.4 0.005 

19 Abies grandis grand fir A 10.7 0.143 
20 Rubus discolor Himalayan blackberry c 70.4 0.001 

21 Arbutus menziesii Madrone A 9 0.587 
22 Fraxinus latifolia Oregon ash B 3.4 0.762 

23 Cornus nuttallii Pacific dogwood c 15.4 0.021 

24 Taxus brevifolia Pacific yew B 5.1 0.579 
25 Toxicodendron diversilobum poison oak B 13.8 0.119 
26 Alnus rubra red alder B 4.7 0.662 
27 Salix laevigata red willow c 7.7 0.139 
28 Rubus spectabilis salmon berry B 5.3 0.498 

29 Salix sessilifolia sandbar willow B 2.6 

30 Salix sitchensis Sitka willow c 7.7 0.15 
31 Lithocarpus densiflorus Tan oak A 63.2 0.001 
32 Heteromeles arbutifolia To yon c 5.1 0.447 
33 Quercus lobata valley oak B 10.5 0.103 
34 Myrica californica wax-myrtle A 5.4 0.311 
35 Rhododendron occidentale western azalea A 15.4 0.038 
36 Plantanus racemosa western sycamore c 7.7 0.135 
37 Alnus rhombifolia white alder c 51 0.00 1 
38 Salix alba white willow c 23 .1 0.006 

* proportion of randomized trials with indicator value equal to or exceeding the 
observed indicator value (Dufrene and Legendre 1997). 

P = ( 1 + number of runs >= observed)/(! + number of randomized runs) 
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Figure 4.1 . Navarro River A VIRlS Image Minimum 
Noise Fraction Transform (Planes 14, 7, 8). 

Figure 4.2. Navarro River A VIRlS Riparian 
Vegetation Classification (Class A in Red, Class Bin 
Green, Class C in Yellow, and Cultivated Crops in 
Blue). 

Figure 4.3. Navarro River AVIRlS Image of Hendy 
Woods State Park (Bands 183, 104, 195) with GPS 
Verification Overlay (White Polygons) targeting Class 
C pixels 



Comparatively, California bay laurel ( Umbellularia californica) was the only Indicator Species to not 
represent more than 50% of its associated Class pixels; it represented only 28.84% of Class B. Without additional 
fieldwork, it is difficult to determine if the SAM performed poorly for bay laurel or if the incorporation of other 
diagnostic species, such as big leaf maple (Acer macrophyllum), would be more appropriate for this class. Class B 
must also be considered a "mixed hardwood" community and, as such, would naturally have a great number of 
possible species in its class. Regardless, each Indicator Species had the predominate percent of its pixels within its 
associated K-Means class. Coastal redwood (Sequoia sp.) performed the best at 70.72% of its SAM pixels in Class 
A. Furthermore, it is also apparent that traditional riparian vegetation, as represented by willow (Salix spp.) for 
example, are true to their ecological form in terms of being generally interspersed within other vegetation 
communities; this is evidenced by each of the three K-Means riparian classes having more than 20% of its pixels 
classified as arroyo willow (S. lasiolepis) by SAM. Arroyo willow represented 53.43% of Class C. In the case of 
true riparian vegetation, additional diagnostic species will need to be incorporated into future SAM classification 
efforts if the identification of species will be used as a surrogate for classifying vegetation communities. 

These results are for a limited portion of the watershed and could change with the incorporation of other 
flightlines and other field plots. Some considerations for addressing possible error include: 1) the mixed composition 
of vegetation communities are difficult to separate spectrally by species; 2) the "ribbon" forest nature of riparian 
vegetation can be overwhelmed by upland species; and 3) canopy structure, especially with 80-100 m tall coastal 
redwood trees, can obscure other vegetation features. The preliminary results of this effort indicate that hybrid 
methods of feature extraction work best in this varied landscape of topography, climate, and vegetation 
communities. Additional research will be focused on assessing other discriminatory methods for feature extraction 
within the riparian zone and other feature types. However, assessing the distribution and composition of riparian 
vegetation at a watershed scale is essential to protecting salmonid habitat and guiding restoration efforts. The 
methods outlined here, as they are improved, will aid land use managers in their ability to inventory, restore, and 
monitor riparian ecosystems. This is particularly true for north, coastal California watersheds where recent policy 
detenninations under the federal Clean Water Act and Endangered Species Act require regulatory agencies to assess 
ecosystem integrity in a comprehensive and timely manner. 
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Appendix I 
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