
ABSTRACT-Devices that respond to radiation on 
a cell level will produce histograms showing the relative 
frequency of cell damage as a function of damage. The 
measured distribution is the convolution of mstributions from 
ramation responses, measurement noise, and manufacturing 
parameters. A method of extracting device characteristics and 
parameters from measured distributions via mathematical and 
image subtraction techniques is described. 

I. INTRODUCTION 

cell level [l], [2], [3], [4], [5]. That is, individual cells in a 
device will report a total ionizing dose (TID) andor a 
displacement damage response. DRAMs, SRAMs, floating 
gate devices such as EPROMs and Flash memories, and ASICs 
have all demonstrated a change in a measurable quantity. 
DRAMs show a change in retention time [4]. SRAMs exhibit a 
change in minimum operating voltage [ 11. EPROMs and Flash 
memories demonstrate a shift in programming and erasure 
charge [5]. In the older (large feature size) technologies, dose 
coverage is effectively uniform and identical radiation 
exposures applied to identical devices produces nearly 
identical results. In contrast, the individual cells in a device of 
VLSI or greater density (the subject of interest here) can show 
varied responses to the same irradiation exposure. For a 
radiation source like gamma or electrons, the radiation 
response of identical cells may be tightly grouped because the 
dose coverage is effectively uniform even when viewed on a 
small scale [l], [2], [3]. Localized radiation, like protons and 
heavy ions, will cause more variance in the radiation responses 
[4], [5]. In the latter case, the device response is plotted either 
as a histogram or a probability distribution, showing the 
relative frequency of cell damage as a function of damage. 
Such a plot, whether it be a histogram or a normalized 
probability distribution, will be called a radiation response 
curve. 

The issue of how dose distributes across an array of 
sensitive cells has been an issue for several different types of 
systems. Extracting and determining the parameters that 
influence the dose distribution has been a major focus [6]-[8]. 
The extraction of device parameter from distributions of 
microdose damage across substrates has been described [6]. 
Hard errors in memories are described by changing in damage 
distributions in [7]. Methods have also been employed to 
directly measure the spatial distribution of dose. 

VLSI devices will exhibit a response to radiation on a 
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This paper shows how the radiation response curve 
can be equated to two numerical parameters that can be used 
to quantify the susceptibility of the cells to radiation damage. 
The parameters are also determinations of the physical 
parameters governing the interaction of radiation across the 
device. Given a radiation response curve, the two 
susceptibility parameters can be extracted. Conversely, if the 
two parameters are given, a radiation response curve can be 
predicted. These parameters are more directly related to the 
physical characteristics of a device and damage mechanisms 
than the radiation response curves, so de-convolving a curve 
into these parameters can add insight regarding physical 
mechanisms. These parameters depend not only on device 
characteristics, but also on the type of irradiation (e.g., 
protons versus heavy ions), so different irradiation types can 
be compared to each other by comparing these parameters. 

The theory applies to any measure of damage that 
has the additive property. The additive property means that 
the measure of damage in a cell, accumulated from multiple 
particle hits, is the sum of the damage measures from each hit. 
The dark current in a device that responds to displacement 
damage is an example of such a measure of damage. Each 
carrier generation site created by a particle hit makes an 
additive contribution to the dark current, and the dark current 
from the collection of sites created by one particle hit is added 
to the dark current from the collection of sites created by 
another hit. In this study, the total amount of fluence is low, 
so the damage to the device does not saturate and is therefore 
linear. To emphasize the generality of the theory, the generic 
term “damage” will be used throughout ths  paper. The type 
of damage is arbitrary, and the units that it is expressed in are 
arbitrary, providing that it has the additive property [9]. 

11. IMAGE SUBTRACTION 
An instrumentation readout of a measure of damage 

will be called a signal. For example, if the damage is 
measured by the dark current in a cell but the instrumentation 
reports this as a number of mV, this number is the signal. 
Several sources contribute to the cell-to-cell variations in the 
measured signal. In addition to a distribution of radiation 
responses, there is also a distribution due to the variance of 
manufacturing parameters across the die of the device. We 
will call this the original distribution. A third contribution is 
the variance of the noise distribution inherent in the 
measurement techniques [ 101. Each contribution adds another 
dimension to the analytical complexity, so it is desirable to 
eliminate as many as possible. The noise distribution is 
included in the analysis but the original distribution is not. 
Instead, it is removed from the measured data via the image 
subtraction method (emlained below). In addition to . *  
analytical complexity considerations, another motivation for 
using image subtraction instead of other methods (such as 
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mathematical de-convolution) is sensitivity. Image subtraction 
can resolve a radiation response from the original distribution 
with high precision even if the cell-to-cell variation associated 
with the original distribution is large enough to completely 
mask the radiation response when other methods are used. 
Image subtraction is the process of analyzing the change in 
signal at every spatial point on an image. Previous studies 



have called the result of image subtraction the “shift spectrum” 
[ 11. If the signal of each cell is measured prior to irradiation, 
and then measured again after irradiation, the signal difference 
at every cell can be calculated and the resulting distribution 
will be the convolution of the radiation response distribution 
and the noise distribution. If the second measurement was done 
without irradiation, i.e., if two measurements are made prior to 
irradiation, the resulting distribution will be the noise 
distribution. 

111. EXPERIMENTAL DATA 

be compared to experimental data. The data are discussed now, 
before the model, because this discussion also explains how the 
data should be processed and presented for comparison with 
the model. 

The devices used in this study were FPA fabricated 
from a JPL design. The imaging array consisted of a 5 12 by 
5 12 array of 3T active pixel sensors. The CMOS devices were 
built on a 0.6 pm HP process. This device is completely 
digital, so the signal from each FPA cell is reported digitally 
on the output pins. This allows for temperature compensation 
of dark current. The peripheral circuitry sets integration time 
and data is clocked out synchronously with a clock input. For 
this study, a PC interrogated the device using a LABVIEW 
based code. The pixel size is 12 um by 12 um with a fill factor 
of 44%. The full well capacity is 2 .4~10- l~  C. The output range 
is 1.63V. The charge collection gain is the ratio of output 
voltage to charge collected and is 4.2 uVle at the photodiode. 
The ADC consists of a radiation hardened 10 bit 225 kHz 
device. The maximum data acquisition rate is 20 Mpixelsh. 
Therefore, the minimum integration time is equal to the frame 
read time or 300ms. 

For this experiment, the biased device was irradiated 
with 60 MeV protons supplied by the Crocker Nuclear 
Laboratory. All irradiations occurred at normal incidence. The 
fixed pattern noise (FPN) and the dark current were measured 
between irradiation steps. The supply current and other CMOS 
parameters were monitored to ensure integrity of the read out 
circuitry. Two different integration times were also set to 
measure dependence on the integration time. The operating 
bias was set to 5 volts and the operating temperature was held 
at -25 “C throughout the study. 

dark current distributions were measured prior to irradiation. 
The histograms are plotted in Fig. 1. Both plots were readouts 
measured from the same virgin chip at different times. The 
abscissa of Fig. 1 is the dark rate at which each cell in the FPA 
reports when read. The ordinate of Fig. 1 is the number of cells 
that report that dark rate. Each distribution is the convolution 
of the original distribution and the noise distribution. The 
original distribution should be identical for the two 
measurements, but the noise distribution is not. The result is 
that the two measured distributions are very similar but not 
identical. Image subtraction was used for a precise 
determination of the noise distribution and the result is shown 
in Fig. 2. The non-zero mean of this distribution is typical of 
offset noise in the ADC of this device. 

The theoretical model discussed in later sections will 

To establish a baseline response of the device, two 

The device was then irradiated with protons. After 
each irradiation step, the signal distribution was measured and 
image subtraction was used to remove the original 
distribution. The resulting histograms are plotted in Fig. 3a. 
Each distribution is the convolution of the radiation response 
distribution and the noise distribution. The figure shows that 
the distribution gets wider and the mean shifts higher with 
increasing dose. This is typical of microdosimetric response 
in cell arrays [l], [2], [3], [4], [5]. 

In addition to removing the original distribution, 
image subtraction can also be used to remove prior irradiation 
distributions. Fig. 3b depicts the image subtraction of two 
consecutive irradiations, which is the convolution of the 
incremental irradiation and the noise. Now the fact that the 
image subtraction spectra for each incremental dose are not 
identical indicates that the sensitivity of the APS cells change 
with does. The distributions are wider as dose increases, 
which imply that the cells are more sensitive to damage as 
dose increases. The measurement of the change in the 
sensitivity of device parameters is a primary focus of this 
study. 

The vertical scales in the histograms in Figs. 2 and 3 
depend on the arbitrarily selected signal bin size. This 
dependence can be removed by renormalizing the histograms 
so that the integral of each is 1. This normalization converts 
each hstogram in Figs. 2 and 3a into a probability density and 
the results are shown in Fig. 4. The horizontal axis in the 
figure is an adjusted dark signal obtained by offsetting the 
original axis by the amount needed to center the noise 
distribution at zero signal. This compensates for the offset 
noise in the ADC of the device. 

IV. CROSS SECTION FOR INCREMENTAL DAMAGE 

next task is to derive a model that can be compared to the 
data. Note that cumulative damage reflects two kinds of 
statistics. One describes the number of particle hits (some 
cells can be hit by more particles than other cells), and the 
other describes the damage produced by a single hit (some 
particle hits may be more damaging than other hits within the 
same cell, for reasons explained below). Both kinds of 
statistics can be derived from a single function, which is the 
cross section for the incremental damage to exceed a specified 
value. “Incremental damage” is defined to be the damage 
created by a single particle hit, so it is a single event effect. 
Different hits can produce different amounts of incremental 
damage for any combination of several reasons. One possible 
reason is that cell sensitivity depends on the location at which 
damage is created, so some hit locations are more damaging 
than other hit locations within the same cell. Another possible 
reason is that damage is caused by collision reactions that are 
described statistically, i.e., some hits produce a given reaction 
while others do not. Whatever the reason, incremental damage 
is a single event effect that can be described by a cross section 
.(DI), which is associated with an individual cell and is the 
cross section for the incremental damage to exceed a specified 
value DI. Note that the cross section depends not only on the 
selected level of damage, but also on the type (species and 
energy) of incident particles that the device is exposed to. The 

Having presented the experimental data in Fig. 4, the 



notation does not display this dependence because the particle 
type is held fured throughout the analysis. 

This cross section could be experimentally defined if 
it is possible to record the incremental damage in each cell 
each time an increment of damage is created. In the absence of 
an actual experiment, the concept of a cross section can still be 
made clear by referring to a thought experiment. In this thought 
experiment, incremental damage is measured in a selected cell 
each time an increment of damage is created. We select a value 
for DI, expose the cell to some fluence F, and count the 
number of times in which a single particle hit created a damage 
exceeding DI (the fluence must be large enough to make this 
count large enough for good counting statistics). The cross 
section is this count divided by F. 

does not depend on the physical mechanisms by which damage 
is created, but the physical interpretation of ~ ( D I )  does depend 
on such mechanisms. For illustration, consider a device 
(hypothetical if not real) in which damage is created by charge 
liberated by direct ionization by the incident particle. 
Neglecting statistical variations in the amount of liberated 
charge from different particle hits, the damage may still depend 
on the location within the cell at which the charge is liberated. 
In th s  case, the cross section o(DI) is the area of that portion 
of the cell in which the fured liberated charge produces a 
damage exceeding DI. For another illustration, consider a 
device (hypothetical if not real) in which the sensitive area of 
each cell is a single number in the sense that the cell sensitivity 
is spatially uniform within this area. Damage is created, in this 
example, by collision reactions that produce displacements. 
Displacement clusters are described statistically because some 
can be larger (more damaging) than others. In this case, the 
cross section o(DI) is the sensitive area multiplied by the 
probability of producing a displacement cluster that is large 
enough to produce a damage exceeding 01. 

property, the cross section for incremental damage implicitly 
contains all information regarding device susceptibility 
whether expressed as a function of incremental damage or 
cumulative damage. Numerical parameters that measure device 
susceptibility are obtained by fitting the cross section with a 
function containing adjustable parameters that are selected for 
a best fit. The fit selected for this analysis is given by 

a(D1)  = A e 
where A and B are constants. These constants are the 
parameters that describe device susceptibility. A and B can be 
functions of DI, but for this analysis the variation with DI is 
negligible. If the actual cross section on the left does not have 
the functional form indicated on the right, it is still possible to 
define A and B parameters for any given cross section by 
stipulating that they be selected for a best fit. The A parameter 
is the saturation value of the cross section. The B parameter 
has two interpretations. One interpretation obtained directly 
from (1) is B=llDI,l,e, where DI,J/~ is that value of incremental 
damage at which the cross section is lle times the saturation 
value. A second interpretation is obtained by using (1) to 
evaluate the integrals to obtain 

The experimental definition of ~ ( D I )  is generic, i.e., 

Given that the damage measure has the additive 

(1) 
-B 01 

1 
B 

which can also be written as 
B =~JDI ,AvG 
where 

Note that DLAVG defined by (2b) is the weighted average 
incremental damage, weighted by the cross section. This is 
also a conditional statistical average; the average (over 
particle hits) incremental damage, given that the cell was hit. 
Stated another way, it is the average incremental (or per hit) 
damage that averages over a large random sampling of 
particles that hit the selected cell (particles that m i s s  the cell 
do not add to the damage but also do not contribute to the 
sample size). This type of average, which averages over 
particles, is distinguished from another type of average that 
averages over cells. For example, the number of hits can be 
averaged over cells. The average number of hits from a 
fluence F is AF, and the average number of hits that produce 
an incremental damage that exceeds DI is o(DI)F. 

V. MODEL PREDICTIONS 
Appendix A shows how the cross section for 

incremental damage is used to construct a probability 
distribution for cumulative damage. The appendix also shows 
how the latter distribution is combined with a noise 
distribution to obtain the measured probability distribution, 
denoted here as p ~ .  The final results from the appendix are 
summarized here, without the derivations, in the form of a 
plotting recipe. This recipe plots model predictions in the 
format of Fig. 4, i.e., different curves correspond to different 
fluences and each curve plots p~ as a f ic t ion of D. The 
recipe requires numerical values for the A and B parameters. 
If the objective is to fit an existing curve, for which these 
parameters are not known in advance, trial values are 
assigned. The best values are those that produce the best fit. 
The equations indicated in the recipe are in Appendix A. The 
protocol is as follows: 

Step 1: It is assumed that the noise distribution has already 
been measured. Assign a numerical value to the parameter C 
in (14). 
Step 2: Assign numerical values to the parameters A and B. 
Step 3: Different curves are characterized by different values 
of F. Select a particular curve by assigning a numerical value 
to F. 
Step 4: Calculate ,up from (13a) and then S,' from (13b). 
Step 5: Calculate K, and then K2 from (1 9). 
Step 6: Select an entry from the table in Appendix B. Each 
entry produces another point to be plotted. Use the selected 
entry to assign numerical values to z and G. 
Step 7: Calculate D' from D'=21(,4Bq. Then calculate D 
from D=(D'-K2)IKI. 



Step 8: Calculate A D )  from (14) and then calculate pM from 
(18a). Plot the point (D, pM). 
Step 9: Repeat Steps 6 through 8 for additional points on the 
selected F curve. 

compared to those in Fig. 4. In Step 1, setting the amplitude C 
of the fitting function equal to the peak value (0.7/mV) of the 
measured noise curve gives an excellent fit. Trial values were 
assigned in Step 2 and those that gave adequate fits to the 
measured curves in Fig. 4 were recorded. The results are 
shown in Fig. 5. The first irradiation, irrad 1, was not 
sufficiently distinctive from noise to successfully extract the A 
and B parameters. That is, when noise is deconvolve from the 
h a d  1 data set, the result does not give and measurable A or B 
parameter. Ths  inability sets the lower bound of the method, 
which is the signal distribution must be appreciably above the 
noise distribution. The A and B parameters are indicated in 
each plot and compared in Table I. 

The above recipe was used to obtain curves to be 

7 . 5 ~ 1 0 ' ~  
1 2 . 5 ~ 1 0 ' ~  

Table I: Extracted parameters from deconvolution I Fluence I A [cm'] I B [ I / ~ V I  

1.9x10-'o 3.4 
2.4xlO-'O 3.4 

[1/cm2] 
5 . 0 ~  10'' I 1 . 4 ~ 1 0 - ' ~  I 3.4 

The parameter A increases with dose while the 
parameter €3 does not change with dose. It was expected from 
the analysis of Fig. 3b that one of the parameters A or B would 
change with dose. As can be seen from Table 1 , the change in 
A is small with dose. This variation is judged to be small 
enough to conclude that the model is in reasonable agreement 
with the data. Good fits are obtained by using a common B for 
all plots but there is some variation in A from one plot to the 
next. 

VI. DISCUSSION 

estimate two device parameters that would otherwise be 
obscured in measured data containing noise and an original 
distribution in addition to a radiation response distribution. 
One parameter is the average per-ht damage (averaged over 
particle hits), which is 1/B. From Fig. 5 or Table I we estimate 
this to be about 0.3 mV for the example considered. The other 
parameter is the effective sensitive area of a cell, which is A .  
The term "effective" is used because a physical area might be 
multiplied by a collision reaction probability if collision 
reactions produce the damage (displacement damage). If the 
damage is caused by direct ionization from the incident particle 
(micro-dose), A is expected to be some physical area. The 
exact value of A depends on which plot is selected from Fig. 5, 
but in any case it is between 0.01 and 0.03 pm2 for the example 
considered. This is very much smaller than a pixel area 
(12pmxl2pmwith a 44% fill factor), suggesting that the 
damage was caused by collision reactions. 

The credibility of the above assertion can be tested by 
comparing the values of A in Table I to an estimate obtained 
from an independent analysis derived from the stated assertion. 
This analysis follows earlier work by Srour et al. [7]. Those 

The model and techniques discussed here allows us to 

authors found that leakage currents produced by displacement 
damage are quantized, so the occurrence or nonoccurrence of 
detectable damage is unambiguous. Each silicon atom in the 
sensitive volume has a cross section for a collision that 
ultimately leads to detectable damage. The cross section used 
in [7] for 99 MeV protons was 4.2 barns (4.2x10-" cm'). The 
same per-atom cross section is used here for 60 MeV protons 
for order-of-magnitude estimates. The parameter A is the cell 
cross section for obtaining any amount of detectable damage 
and is the above per-atom cross section multiplied by the 
number of silicon atoms in the sensitive volume. The area of 
the volume is 0.44x12pmxl2p and the depth (depletion 
region thickness of a fully depleted pixel) is 10 pm, giving a 
volume of 6.3xlO-'O cm3. Multiplymg by 5 ~ 1 0 ' ~  atoms/cm3 
and then multiplying by the per-atom cross section produces 
the estimate Aml .3~ lo-'' cm'. This order-of-magnitude 
estimate agrees with the values listed in Table I, so the 
assertion that damage is caused by collision reactions is 
consistent with the measured data. 

VII. CONCLUSIONS 
The response of an array to microdose inducing 

radiation can be determined using a mathematical model 
combined with image subtraction. Device and radiation effect 
parameters can be extracted by using this method. In 
particular, image subtraction has sufficient resolution to 
produce the curves in Fig. 4 in spite of the large spread in the 
original histograms such as shown in Fig. 1. Furthermore, 
applying the mathematical model to Fig. 4 leads to the 
conclusion that the data are consistent with the assertion that 
damage is caused by collision reactions (displacement 
damage). 

APPENDIX A: DEFUVATION 
A .  Radiation Response 

is not included in this part of the analysis. Let P(D,F) denote 
the probability that a selected cell will receive a cumulative 
(i.e., summed over particle hits) damage D when exposed to a 
fluence F. The term cLexceeds" is a strict inequality, so P(0,F) 
is not 1. Instead, it is the probability that the cell was hit 
somewhere at least once. The cross section for incremental 
damage is given by (1) with a saturation value equal to A ,  so 
the probability that the cell was hit somewhere (i.e., the area A 
was hit) one or more times is given (via Poisson statistics) by 
P(0, F )  = 1-e- A F  . 
There is zero probability that the damage will exceed zero or 
any larger value if the fluence is zero, so another boundary 
condition is 
P(D,O) = 0 .  
The two boundary conditions in (3) join continuously at the 
point D=O, F=O, so P(D,F) will be a smooth function. This is 
the motivation for interpreting "exceeds" as a strict inequality; 
to make P(D,F) a smooth function. The penalty is that P(D,F) 
does not satisfy the traditional normalization condition (i.e., 
P(O,F)#l) because it does not include all possibilities. It does 
not include the possibility of no hits, which has a probability 

We start with the radiation response alone, i.e., noise 

(3a) 

(3b) 



of l-P(O,F)=e-AF, so this possibility has to be included as a 
separate term in the analysis. 

selecting a fluence value F and an additional fluence increment 
AF. The probability P(D,F+dF) can be expressed in terms of 
conditional probabilities according to 

An equation governing P(D,F) can be derived by 

P(D,F+AF)=[l-P(O,F)]Pcond(D,F+AF IO,F)+ 

lo: P(D' ,F)  Pcond(D,F+M I D' ,F)  dD' (4) 
where the symbols are explained below. The square bracket on 
the right side of (4) is the probability of zero damage (no hits) 
when the fluence is F, and the term that multiplies it is a 
conditional probability; the probability that the damage will 
exceed D when the fluence is F+AF, given that there was no 
damage when the fluence was F. The term p(D',F) is the 
probability density for the damage to be D' when the fluence is 
F, and the term that multiplies it is a conditional probability; 
the probability that the damage will exceed D when the fluence 
is F+AF, given that the damage was exactly D' when the 
fluence was F. The square bracket is e"', and p is given by 

Elementary probability theory can calculate the two 
conditional probabilities to first order in AF (i.e., in the limit of 
small dF) in terms of the cross section for incremental damage, 
and the results are 
Pcond (D,  F + AF I 0, F )  
Pcond (D,  F + AF I D ', F )  
Pcond (D,  F + AF I D ', F )  = 1 
which become exact in the limit of small AF. Substituting these 
results into (4) gives 

d D )  AF 
o(D - D I) AF 

i f  D I >  D 
i f  D > D ' 

P(D, F + AF) - P(D, F )  = e-A O(D) M 

Dividing by AF and taking the limit as AF -0 gives 

= e  a ( ~ ) -  ~ ( D - D I )  
a F  dD'  

aP(D7F) - A F  dP(D' ,F)  dDl. 

This equation can be expressed in terms of p defined by (5) by 
differentiating to get 

where Od(f is the dfferential cross section defined by 

(7) 

The equation governing p is put in its final form by combining 
(1) with (6) and (7) to get 
ap(D, F ,  + A P(D, F )  = A B e- (A F+B D )  

d F  

+ A B e -  B D  lo e B D ' p ( D ' , F ) d D ' .  ( 8 )  

Expressing the boundary conditions (3)  in terms of p gives 

lom p(D,  F )  dD = 1 - evA , 

The solution to (8) and (9) is 

p(D,O) = 0. (9) 

(10) 
( B  D+A F )  ( A  B D Flk ' k!(k+l)! 

p(D,F)  = A B F e- 
k=O 

which can be verified by substituting the proposed solution 
into (8) and (9). It is convenient to define the hc t ion  G by 

Q) 2k Z ~ ( z ) = e - ~ '  2 
k=O k!(k+l)! 

so (10) can be written as 

p(D,F)  = A B  F e -(fi-P)' G ( , / m ) .  (12) 
This is more convenient than (10) because G varies much 
more slowly than the series in (lo), so a tabulation of G can 
be prepared in advance and then interpolated for each 
application. A tabulation is given in Appendix B. For the 
benefit of readers that want to make their own tables, some 
properties of the series in (1 1) are stated here without proof. 
If the infinite series is approximated by summing all terms up 
to some finite number of terms, the relative (or fractional) 
error is bounded by the first omitted term. For example, an 
error of not greater than 1 % is insured if the terms are 
summed until the first encounter of a term that is less than 
0.01. Numerical problems (computer overflow) can occur if z 
is very large but an asymptotic expression can be used for 
such cases. This is 

(large z) 
1 G(z)  += - 

2 z J E  
which gives three-digit accuracy when ~ 3 0 0 ,  with better 
accuracy at larger z. The series (1 1) is recommended for 
z<300. 

show that the mean of p, denoted pp and variance of p, 
denoted S i ,  are given by 

Using (1 0) to evaluate the required integrals will 

B. Noise 
The radiation response probability density p is now 

combined with a noise probability density denoted p~ to 
obtain a measured probability density denoted pu. The noise 
distribution is fit with a Gaussian function given by 
pN(D)  = c e- n C2D2 

where Cis a constant. The required normalization is built into 
(14), so there is only one adjustable fitting parameter C, 
which was arbitrarily selected to be the amplitude. The mean 

(14) 



and variance of p are denoted pN and S," (respectively) and are 
given by 

pN = 0, s N 2  = 1/(2Z c2). (15) 

By starting with conditional probabilities in analogy 
with (4) we can obtain 

PN(D) 

+[l-e-AF] p ( D ' y F )  p ~ ( D - D ' ) d l l ' .  (16) - A F  1-e 
The square bracket was factored out of the integral in (1 6) so 
that the integral will be the convolution between two 
distributions that are normalized in the traditional way. The 
integral can be evaluated exactly but the result is extremely 
messy. An alternative is to replace the integral with an 
approximation. Assuming that the fluence F is large enough to 
make the radiation distribution clearly distinguishable from the 
noise distribution, the noise distribution is treated as a small 
perturbation in the sense that the in the integral is a narrow 
pulse. The convolution will then resemble the distribution 
p / [  1-e"'], but slightly altered to have the increased spread or 
variance created by the noise. We therefore use the 
approximation 

where the constants K, and Kz are selected for a best fit, as 
discussed later. Using ( 17) together with (1 2), we can write 
(16) as 

- A F  
PM (DY F )  = e PN(D)  

+K1 A B F e  -(p-m)2 G(z)  ('sa) 
where 
D'EK1 D + K 2 ,  z = J A B D ' F  . (18b) 

The objective is to make the right side of (17) have the same 
normalization, mean, and variance as the left side. The left side 
is the convolution between two normalized distributions, and a 
well-known property of such a convolution is that it is 
normalized, has a mean equal to the sum of the two means 
(p,,+p~p,,), and has a variance equal to the sum of the two 
variances (Si+S$= S,2+1/(2d)). The right side of (17) 
already has the required normalization, so KI and K2 are 
selected to give the right side a mean equal to ,up and a 
variance equal to S,2+1/(2xC?). It is easy to show that the 
required values are given by 

There still remains the task of selecting KI and K2. 

r " 2  

APPENDIX B: TABULATION OF G 
Z - 
0 

Z - 
9.0 

0.02 9.610e-1 9.5 9.441e-3 
0.04 9.239e-1 10 8.751e-3 
0.06 8.885e-1 11 7.599e-3 
0.08 8.549e-1 12 6.67 9e-3 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.5 

8.228e-1 
6.838e-1 
5.739e-1 
4.862e-1 
4.158e-1 
3.588e-1 
3.122e-1 
2.738e-1 
2.419e-1 
2.153e-1 
1.737e-1 
1.434e-1 
1.206e-1 
1.031e-1 
8.938e-2 
7.839e-2 
6.945e-2 
6.207e-2 
5.590e-2 
5.068e-2 
4.623e-2 
4.238e-2 
3.904e-2 
3.611e-2 
3.354e-2 
3.125e-2 
2.921e-2 
2.738e-2 
2.574e-2 
2.425e-2 
2.290e-2 
2.168e-2 
2.055e-2 
1.952e-2 
1.858e-2 
1.771e-2 
1.690e-2 
1.615e-2 
1.54 9e-2 
1.481e-2 
1.421e-2 
1.365e-2 
1.312e-2 
1.263e-2 
1.217e-2 
1.113e-2 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
60 
75 
94 
120 
150 
190 
240 
300 

5.931e-3 
5.312e-3 
4.794e-3 
4.356e-3 
3.980e-3 
3.655e-3 
3.372e-3 
3.124e-3 
2.905e-3 
2.710e-3 
2.536e-3 
2.380e-3 
2.240e-3 
2.112e-3 
1.997e-3 
1.891e-3 
1.795e-3 
1.706e-3 
1.624e-3 
1.549e-3 
1.480e-3 
1.415e-3 
1.355e-3 
1.299e-3 
1.247e-3 
1.198e-3 
1.153e-3 
1.110e-3 
1.070e-3 
1.032e-3 
9.961e-4 
9.624e-4 
9.306e-4 
9.005e-4 
8.720e-4 
8.44 9e-4 
8.193e-4 
7.949e-4 
6.051e-4 
4.332e-4 
3.089e-4 
2.143e-4 
1.534e-4 
1.076e-4 
7.581e-5 
5.426e-5 
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Fig. 1. Original distribution of dark signal across the FPA for two readouts of 
virgin devices. 
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Fig. 2. Image subtraction, or shift spectra, showing the noise distribution. 
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Fig. 3a. Histograms showing the damage distributions after each of several 
proton irradiations. Image subtraction removed the original distribution so 
each of the above are convolutions of the radiation response distributions 
with the noise distribution. 
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Fig. 3b. Histograms showing the damage distributions between each of 
several proton irradiations. Image subtraction is used to compare the damage 
for each dosing. 
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Fig. 5b. The model is compared to data obtained after the third irradiation 
(7.5E10 protons/cm2). 
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Fig. 4. A renormalization applied to the histograms in Figs. 2 and 3a produces 
the probability densities shown. The adjusted dark signal compensates for the 
offset noise in the ADC. 
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Fig. 5c. The model is compared to data obtained after the fourth irradiation 
(12.5E10 protons/cm2). 
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