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ABSTRACT 
Global astrometry is the measurement of stellar positions and motions. These are typically characterized by 
five parameters, including two position parameters, two proper motion parameters, and parallax. The Space 
Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering the 
celestial sphere to an accuracy of approximately 4uas, representing a two orders of magnitude improvement 
over the most precise current star catalogues. Narrow angle astrometry will be performed to'a luas accuracy. 
A wealth of scientific information will be obtained from these accurate measurements encompassing many 
aspects of both galactic (and extragalactic science. SIM will be subject to a number of instrument errors 
that can potentially degrade performance. Many of these errors are systematic in that they are relatively 
static and repeatable with respect to the time frame and direction of the observation. This paper and its 
companion define the modeling of the,contributing factors to these errors and the analysis of how they impact 
SIM's ability to  perform astrometric science. 

1. INTRODUCTION 
Global astrometry is the measurement of stellar positions and motions. These are typically characterized by 
five parameters, including two position parameters, two proper motion parameters, and parallax. The Space 
Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering 
the celestial sphere to an accuracy of approximately 4uas [3]. This represents a two orders of magnitude 
improvement over the most precise current star catalogues. A wealth of scientific information is obtained 
by these accurate measurements, including the formation and dynamics of our galaxy, calibration of the 
cosmic distance scale, and a host of fundamental astrophysics. In addition to  global ktrometry, SIM will 
perform narrow angle astrometric measurements to luas accuracy. This will enable a deep survey of our 
local neighborhood of about 250 stars for planets of just a few ( 3x) Earth masses, and a more extensive 
survey of about 2000 stars for the detection of larger planets ( 15x Earth mass). 

Classical ground based global astrometry is performed by piecing together stellar images of a field of view 
of a few degrees. This stitching together is possible because objects belong to multiple fields of view, and 
from these a consistent set of position equations may be obtained. A number of auxiliary parameters are 
typically estimated in this stitching process to correct for field aberrations. Second and third order polynomial 
corrections are commonly used [4], [7]. The Hubble telescope also performs astrometric measurements and 
the coefficients of a fifth order polynomial in two variables are used for correction [l]. In contrast SIM enjoys 
a large field of regard (15deg) and makes one dimensional measurements. Within the process of solving 
for the astrometric parameters from the basic observable ( the so-called regularized delay measurement) an 
analogous polynomial is corrected. This polynomial is of the form p ( x ,  y) = po + p,x  + p,y + p,(x2 + y2). 
In this sense SIM is a very pristine astrometric instrument that simultaneously enjoys a very large field of 
regard with very little aberration when compared with classical astrometry. However, SIM is not a perfect 
instrument, and it is subject to  a number of errors that compromise its performance. Many of these errors 
are very repeatable and are a function of how the instrument is pointing with respect to the center of the 



field of regard. Errors of this class are termed “field dependent”. A representative sample of these include 
imperfect corner cubes, diffraction effects associated with moving delay lines, reflection phase shift changes 
as interrogating metrology beams change their angle of incidence, noncoincident vertices on multiple corner 
cubes, and others. ‘This paper and its companion address the modeling and analysis issues of many errors 
of this type and how they affect SIM astrometric performance. 

2. THE SIM REGULARIZED DELAY MEASUREMENT 
A complete description of the process of the fundamental delay measurement made by the SIM instrument 
can be found in [5]. Here will give a very brief overview of this process to keep the paper relatively self- 
contained. The astrometric observations made by SIM require three white light Michelson interferometer 
measurements coupled with various metrology measurements to monitor changes in the distances between 
a set of fiducials that define the interferometer baseline vectors. The fiducial points correspond to the 
vertices of high precision corner cubes. Two of the interferometers lock onto bright guide stars to make 
precise measurements of changes in the attitude of the instrument. The third interferometer is the science 
interferometer that makes the delay measurement which is the projection of its baseline vector onto the unit 
direction vector of the science target. The external metrology system (there is also an internal metrology 
system) tracks changes in the three interferometer baseline vectors relative to each other as well as changes 
in the baseline lengths. 

The delay measurement equation for the science interferometer is (see figure) 

d = (s, B )  + C + r ] ,  

where d is the measured “external” delay (accomplished by white light fringe measurements and an internal 
metrology measurements), s is the star direction unit vector, B is the interferometer baseline vector, C is 
the interferometer constant term, and r] is the noise in the measurement (encompassing both the white light 
noise and internal metrology measurement noise). The astrometric objective is to determine the unknown 
star direction vector. However, all of the other quantities on the right side of this equation are also unknown. 
Thus SIM cannot directly measure even the 1-D projection of a star vector. SIM circumvents this difficulty 
by observing multiple stars with the same baseline vector and constant term within its 15” field of regard: 

(2) di  = ( s ~ , B )  +C+q ,  i = 1 ,..., N.  

The set of stars within the field of regard is referred to as a tile. SIM then revisits the tile with a new 
baseline vector and constant term: 



At t h s  point we now have M N  equations with 2N + 4M unknowns (each star vector has two unknown 
parameters while the baseline vector and constant term require at most four parameters). Eventuallly 
M N  2 2N + 4M so that a well (or over) determined system of equations results. 

These equations were formed under the assumption that the baseline vector B is inertially fixed while 
the measurements are being made. While this is true at the arcsec level, it is definitely not true at the 
uas level, which is what is required of SIM, i.e. B(t) is in fact time-varying. The role of the external 
metrology subsystem and the guide interferometers is to compensate for this timevarying behavior. In 
[5] it is shown that so long as the guide interferometers are locked onto their guide stars and the external 
metrology subsystem is operating continuously, then an estimate of the science baseline vector, B ,  can be 
constructed so that 

B(t) - B(t) = SB, (4) 
where 6B is an unknown, but constant vector. Introducing the a priori estimates of the star position vectors, 
s: and writing sz = s: + Ssi, with the Ssi the unknown correction, the astrometric equations more correctly 
have the form 

di - (s!, 8) = (B ,  6si) + (s:, 6B) + C + q. (5) 
This expression is very close to ( 2 ) ,  but the unknowns are now the correction terms SB and Ssi, and the 
measurement appearing on the left side above is the so-called “regularized delay” [2]. 

A number of different error sources enter into the right side of the equation above. Many of these are 
second order effects that are kept small by alignment and stability requirements. The focus of this paper is on 
the class of errors that are repeatable as a function of the position of the target star within the instrument’s 
field of regard. The mechanisms that produce these errors are all connected with the instrument components 
that must move to acquire a new target in the field. These include, most prominently, the linear motion 
of the optical delay line and the rotation of the siderostats. The maximum delay line motion results in a 
change on the order of a meter of the internal metrology pathlength. This introduces a deviation, due to 
diffraction effects, of several nanometers between the geometric change in distance and the distance that is 
measured by metrology. The rotation of the siderostats introduce a number of effects. Firstly, because the 
corner cubes are imperfect (they have dihedral error and are subject to reflection phase shifts produced by 
polarization), the metrology gauges measure these effects as well as the sought after changes in geometric 
pathlength between the fiducials. Another effect is the offset between the corner cubes and the surface of 
the siderostats. Ideally the pathlength measured by the metrology beam should coincide (or at least have 
a constant difference) with the pathlength observed by the starlight. However, when there is an offset, the 
distances traversed by the two signals changes as the siderostat rotates. 

To incorporate these field dependent errors into the basic astrometric system of equations we locally 
introduce a coordinate system (u,  v, z )  such that the science interferometer baseline vector is nominally 
aligned with the u coordinate and the center of the field corresponds to the unit vector (O,O,  1). In this 
coordinate system any star in the field of regard has coordinates (u ,  v ,  d1- u2 - v2) with d w  < - - 
sin(7.5~/180). The field dependent errors can then be introduced via a function C(u,v).  As a convenience 
the constant term contribution may also be absorbed into this function so that (5) takes the form 

di - (S:, B )  = (B ,  6 ~ i )  + (s:, 6B) + C(U, V) + q. ( 6 )  

A very important observation made in [6] is that since the unknown baseline compensation vector SB has 
the parameterization SB = 6B,u + vSB, + bB,dl- u2 - v 2  with the constant terms SBi unknown, these 
parameters are indistinguishable from the low order polynomial components 

C(U, V )  = co + C,U + C,V + c,.(u~ + v2)  + HOT. (7) 

(Here we have used the binomial expansion dl - u2 - w 2  x 1 - (u2 + w2)>/2 to make the identification.) 



3. FIELD DEPENDENT ERROR METRICS 
In this section we will outline a general strategy for characterizing the field dependent error. There are two 
keys to this development. The first is the the parameterization of the field dependent errors via Zernike 
polynomials and the recognition that the constant term, linear term, and radial quadratic term as discussed 
above are automatically compensated for in the grid solution, and thus do not contribute an astrometric error. 
This observation may be extended via a philosophy that the baseline vector is just an instrument parameter 
giving US license to introduce higher order Zernike terms as uriknown parameters that are also solved for 
in the grid. The second key is the recognition that many of the errors that we do know have a parametric 
form C(u ,v ,p )  where p is a parameter vector of errors (e.g., dihedral error, incorrect complex index, a 
misalignment term, etc.) This characterization is taken one step further via a linearization assumption 

with C(u, v ,  0) = 0 so that 

For now we will assume that the O ( l ~ 1 ~ )  is sufficiently small so that it has negligible impact on the astrometric 
equation solution. And in a slight abuse of notation we willwrite the linearization as C(u, v,p) M C(u, v)p. 

I f p  is an r-vector, then C(u, v) is an r-vector valued function with components Ci(u,v). Each compo- 
nent can be represented as a sum of Zernike polynomials over the field of regard. Thus we have 

Ci(.,.) = x c i j z i j ( u , v ) ,  
j 

where each Zjj is a Zernike polynomial with coefficient cij. Hence the total error becomes 

Now that we have a convenient form for the field dependent error in terms of orthogonal polynomials 
and the error parameter vector, there are many metrics that can be developed to capture various aspects 
of instrument performance. Below we will give a representation that focuses on the “highest” level of 
performance - the astrometric error. 

T h s  analysis is facilitated by the observation that the astrometric equations derived from the set of 
regularized delay measurements (6 )  are weakly nonlinear in the astrometric parameters of position, proper 
motion and parallax. (This follows because the a priori values are quite good so that the linearized equation 
is in general an excellent approximation.) Thus as an analysis tool to characterize the effects of various 
field dependent instrument errors the linear model is more than adequate. Hence, each polynomial field 
dependent error Zij(u, v), yields an astrometric error vector Xij containing all of the astrometric parameter 
errors (position, proper motion, and parallax) for each star in the grid. By linearity we can form a basis set 
for the particular class of parameter error via 

And the total error for a given parameter vector is just a linear combination of these basis errors, i.e. the 
total error vector E resulting from a given parameter vector p is simply 



A very reasonable metric is then IE12 which is computed as 

where X is the T x T matrix Xij = ( X i , X j ) .  Thus the error for any parameter vector p is given by the 
quadratic form in (14). And because X is symmetric it follows that 

- 
This formula needs a slight modification, however, since the components of p need to be scaled when 

they represent different physical phenomena, e.g. dihedral error versus complex index error. TO allow for 
this we introduce a scaling matrix D and compute 

= max (XD-lp’, D-’p‘) 
IP’ I =1 

= I D - ~ x D - ~ ~ .  (16) 

This bound is sharp in that there is a parameter value p* that attains the maximum value. (This vector 
is the eigenvector associated with the largest eigenvalue of D-TXD-l.) The spread of the eigenvalues of 
D-TXD-l  indicates how conservative (likely) this bound is. The stochastic version of the metric treats p 
as a random vector. In this case the variance is the sum of the eigenvalues, or more simply the trace of 

The metric just defined is very high level since it reaches to the top of the error budget. A metric that 
is perhaps more amenable to the design phase of the instrument (and not dependent on mission scenarios) 
is the mean square error within the field of regard. This error is 

D - ~ x D - ~ .  

(17) 

where the integration i s  performed over the field of regard (a circle of radius 7 . 5 ~ / 1 8 0 ) ,  and A is the area. 
This metric is investigated fully in Part 2 of the paper. 

4. AN EXAMPLE - MAPPING SINGLE GAUGE EXTERNAL METROLOGY 
ERRORS TO DELAY ERROR 

We have previously described several mechanisms that introduce field dependent delay errors. Many of these 
involved single gauge external metrology errors (e.g., non-common vertex error, dihedral error, reflection 
phase shift errors). In this section we will derive the mapping that takes a single gauge error into a delay 
error. This mapping is the departure point for the more detailed,investigations in Part 2 of the paper. 

Given a set of N fiducials in 3-space with nominal positions Xi” E R3, i=l ,  ..., N, we define the 3N vector 
X by X = (X,’, ..., X:)”. The relative metrology measurement between fiducial i and fiducial j is denoted 
by lij where j > i. We associate with each measurement lij the function fij : R3N + R: 

fi3 ( X )  = IXj - xi1 - IXj” - Xi”1, (18) 



and the concatenated function F : R3N + RM formed from stacking the f i j’s .  The rows of the differential 
of F ,  denoted F‘(Xo)  are formed from the gradients V f i j ( X o ) :  

where 0,t is the zero matrix with s rows and t columns. Thus F‘(Xo)  is an M x 3N matrix. In general 
F ’ ( X o )  will have a nontrivial null space that is spanned by the six rigid body modes of the system. Hence, 
a necessary condition for F‘(Xo)  to have full rank once these rigid body modes have been removed is that 
M 2 3N - 6. The SIM optical truss is redundant so that M > 3N - 6. Now let U denote a matrix with 
orthonormal columns, each of which is orthogonal to the rigid body modes. We seek the solution to the least 
squares problem 

min I F ‘ ( X ’ ) U C E  - zI’, (20) 
CY 

to form the fiducial displacement vector V E U a .  The linearized solution is given simply as V = [F‘(Xo)]tZ 
where [F’(Xo)]t  denotes the pseudoinverse of F’(Xo) .  For small displacements (ill < lOW7m is easily good 
enough) the linearized solution yields subpicometer accuracy in determining the displacement vector. 

The SIM truss consists of six fiducial positions so that N = 6 in the analysis above. The active science 
baseline vector B, is defined by the difference x6 - X 1  and the guide baseline vector Bg is the difference 
X5 - Xz.  Thus we may pick off the science and guide baseline vectors from the concatenated vector X via 
the mappings 2, and Zg defined 

and 

where again 0,t denotes the s x t zeros matrix and I s X s  is the s x s identity matrix. 
So for example, the effect of an external metrology error vector 51 on the computed primary science 

baseline vector is 
SB, = z,[F’(x)]+sZ. (23) 

Next recall that the instantaneous delay of the science interferometer is given by the basic astrometric 
equation (sans the constant term which does not contribute to the first order error analysis) 

d = ( s ,  B,). (24) 

We will compute the error in d due to an error in the external metrology measurement. To compute this we 
must recapitulate some of the analysis in [5]. 
~ The purpose of the guide interferometers and external metrology are to provide the observables from 
which an estimate of B, can be constructed. Call this estimate B,. The delay error b is defined as the 
difference 

To compute 6 we must determine B, - B,, which in turn requires developing the estimate B,. To do this 
we assume that the spacecraft local frame is closely aligned with the inertial frame so that we may express 
the science baseline vector as 

6 = (s, B, - B,). (25) 

B , = B ~ + ~ X B ~ “ ,  (26) 
where the super “loc” refers to a vector written in the s/c local frame, and vectors without this superscript 
have their coordinates given in the inertial frame. The vector w has small magnitude (several prad), and 
effects the transformation between the coordinate frames. The general scheme is that external metrology 
is used to develop an estimate of B f C ,  while the guide interferometers are used to estimate w. Thus the 
estimate of B, has the form 

B, = Bpc + & x Bp“, (27) 



where Lj is the estimate of w .  Then to first order 

B, - is = BpC - B?" + (w - L j )  x BF". 

Next let 61 denote the vector of external metrology errors. In the previous section we saw how to compute 
B:" - Bp, viz 

BFC - 6:" = Z,[F'(Xo)]t6Z. (29) 

We will similarly need the error in computing BP": 

To compute w - L j ,  first observe that since (24) and (27) also apply to the guide interferometers [5], the basic 
astrometric equations for these are 

dgi = ( sg i ,  B:" + w x B:"), i = 1,2,  (31) 

where sgl, sgz are t,he direction vectors to the two guide stars, and B P  is the common baseline vector for 
the two guide interferometers. The fact that the same w vector works for the guide baseline vector and 
science baseline vector is an important consequence of the inversion of the external metrology measurements 
[5]. NOW define the pair of 2 x 3 matrices S and T by 

where B, I gf"(0) is a fixed vector. (How B, is fixed is not critical to the linear analysis.) It follows from 
(31) and (32) that w is given by 

where Tt  denotes the pseudoinverse of T.  The estimate of w is 

Lj = T t [ d g  - SBfpc]. 

Thus, 

Putting (25), (28-2!3), and (36) together, we obtain 

which may be written more compactly as 
6 = (s,  M6E) 

(34) 

where 
M = [Z, + BTtSZ,][F'(Xo)t]T, (39) 

and B the skew symmetric matrix associated with B, via Bx = B, x x for any 3-vector x.  

single gauge external metrology error. 
Thus (38) is the sought after relationship between science interferometer regularized delay error and 



5.  CONCLUDING REMARKS 
The machinery is now in place to  insert physics based component errors and propagate these to higher level 
error metrics such as rms delay error or astrometric parameter error. The completion of this task is the 
subject of Part 2 of‘ the paper. Specifically, single gauge errors will be derived for the components of the 
external metrology error vector 61 as a function of the error parameter values (e.g., dihedral error) and the 
position of the target star in the field of regard. The error vector will then be propagated to a delay error 
via (38-39) as a function of these variables. Zernike decomposition, eigenanalysis and other techniques will 
then be applied to analyzing how parameter error affects the metric. 
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