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Abstract In addition, there is a growing trend toward multi- 

Interacting agents that interleave planning and exe- 
cution must reach consensus on their commitments 
to each other. In domains where agents have vary- 
ing degrees of interaction and different constraints 
on communication and computation, agents will re- 
quire different coordination protocols in order to ef- 
ficiently reach consensus in real time. We briefly 
describe ala rgely unexplored class of real-time, 
distributed planning problems (inspired by interact- 
ing spacecraft missions), new challenges they pose, 
and a general approach to solving the problems. 
These problems involve self-interested agents that 
have infrequent communication but collaborate on 
joint activities. We describe a Shared Activity Co- 
ordination (SHAC) framework that provides a de- 
centralized algorithm for negotiating the schedul- 
ing of shared activities in a dynamic environment, a 
soft, real-time approach to reaching consensus dur- 
ing execution with limited communication, and a 
foundation for customizing protocols for negotiat- 
ing planner interactions. We apply SHAC to a re- 
alistic simulation of interacting Mars missions and 
illustrate the simplicity of protocol development. 

1 Introduction 
When interleaving planning and execution, an agent ad- 

justs its planned activities as it gathers information about the 
environment and encounters unexpected events, and interact- 
ing agents coordinate these adjustments to manage commit- 
ments with each other. Demand for this kind of autonomous 
agent technology is growing for space applications. Au- 
tonomous spacecraft promise new capabilities and cost im- 
provements in exploring the solar system. Spacecraft (and 
rovers) that explore other planets have intermittent, delayed 
communication with Earth, requiring that they be able to 
manage their resources and operate in for long periods in iso- 
lation. The common approach to autonomous decision mak- 
ing is to place integrated image analysis, planning, and exe- 
cution systems on-board the spacecraft. 
The research described in this paper was carried out at the Jet Propul- 
sion Laboratory, California Institute of Technology, under a contract 
with the National Aeronautics and Space Administration. 

spacecraft missions. Over forty multi-spacecraft missions 
have been proposed, including formation flying teams and 
over 16 planned missions to Mars in the next decade. These 
spacecraft will coordinate measurements, share images, and 
route data to and form Earth. Separate missions, such as those 
to Mars have their own budgets, experiments, and operations 
teams. As such, the spacecraft represent self-interested enti- 
ties that benefit from collaborative interactions. 

But, even a single spacecraft has multiple science instru- 
ments representing different goals of different scientists, and 
different operations groups will have different areas of ex- 
pertise over different subsystems for control. These differ- 
ent groups negotiate over mission plans in the same way 
that different Mars missions must collaborate over spacecraft 
interactions. Whether this negotiation is done on-board or 
on Earth, there is a distributed operations planning problem 
that benefits from automation. Both also have real-time as- 
pects. Onboard systems must plan safely over near- and long- 
term horizons, and ground systems must also replan based on 
changing contexts in daily, weekly, and lifelong mission ex- 
ercises. Ground planning also suffers from communication 
constraints. Scientists from different universities or opposite 
sides of the globe will intermittently provide inputs and re- 
spond on an irregular basis. A collaboration/ne~otiation sys- 
tem must be built around communication constraints to meet 
hard deadlines for coming to consensus on consistent opera- 
tions plans. 

In this work, we will briefly characterize this general prob- 
lem in terms of activity interaction types and communica- 
tion constraints and discuss its challenges. The field of 
multiagent planning has largely focused on fully coopera- 
tive planning and execution [Decker, 1995; desJardins and 
Wolverton, 1999; Tambe, 1997; Grosz and Kraus, 1996; 
Clement and Durfee, 20001. Market-based agent systems 
address near-term resource negotiation but have rarely ad- 
dressed how near-term decisions affect longer-term goals. 
Multiagent systems built for Robocup soccer compet%ions 
mainly address collaborative multiagent execution in an ad- 
versarial environment and have limited planning capabilities. 
These approaches do not adequately address real-time plan- 
ning for self-interested agents. 

This paper presents a framework for Shared Activity Co- 
ordination (SHAC). SHAC consists of an algorithm for con- 



tinually coordinating agents and a foundation for rapidly de- 
signing and implementing coordination protocols based on a 
model of shared activities. In the same fashion that a real- 
time planning system must commit to actions to pass to an 
execution system, a real-time coordination system must addi- 
tionally establish consensus on shared activities before they 
are executed based on communication constraints. Our ul- 
timate goal is to create interacting agents that autonomously 
adjust their coordination protocols with respect to unexpected 
events and changes in coinmunication or computation con- 
straints so that the agents can most efficiently achieve their 
goals. 

First we characterize a class real-time, self-interested mul- 
tiagent planning problem that exists for space Then we de- 
scribe the shared activity model, the SHAC algorithm, and its 
interface to the planner. Then we specify some generic roles 
and protocols using the SHAC framework that build on prior 
coordination mechanisms. Then we describe how our current 
implementation of SHAC is used to coordinate the communi- 
cation of two rovers and an orbiter in a simulated Mars sce- 
nario. We follow with future research needs revealed in this 
scenario and comparisons to related work. 

2 Continual Coordination Problem 
As mentioned before, agents that interleave planning and exe- 
cution must commit near-term activities to the execution sys- 
tem while receiving feedback in the form of state updates 
and activity performance. One such continual planning sys- 
tem, CASPER (Continuous Activity Scheduling Planning Ex- 
ecution and Replanning) identifies the period when the plan- 
ner commits activities to the execution as a commit window 
[Chien et al., 20001. Distributed planning agents must addi- 
tionally reach consensus on team interactions before execu- 
tion. As explored in the team plan model given by TEAM- 
CORE [Tambe, 1997; Pynadath et al., 19991 formalizations 
of Shared Plans [Grosz and Kraus, 19961, and coordination 
interactions of TAEMS [Decker, 19951, these interactions 
could include 

use and replenishment of shared resources, 

joint actions for achieving a mutually beneficial subgoal, 

choice of methods for achieving a team subgoal, 

participation and role assignments in a joint plan, and 

proposals and commitments of the above. 

3 SHAC 
However, reaching consensus on these interactions is compli- 
cated when the agents can only communicate intermittently. 
Depending on the number of agents involved in a particular 
interaction, consensus may need to be established far in ad- 
vance so that negotiations can be propagated far in advance 
of execution. Thus, for any particular set of interactions, a 
consensus window,within which the agents must limit nego- 
tiation and establish agreement, should be defined. For exam- 
ple, if three agents must negotiate a joint action in advance of 
execution but can only communicate pairwise in disjoint time 
windows, a consensus window must extend at least to cover 

windows connecting all three agents. Inside the consensus 
window, a simple protocol eliminating negotiation (such as 
all agree or reject) must be employed to guarantee consensus. 
Interactions beyond the consensus window can be negotiated. 

It is an open problem how consensus windows should be 
defined based on interaction types and communication op- 
portunities. While this paper does not solve this problem, it 
describes an implemented infrastructure and testbed for de- 
veloping and evaluating alternative consensus windows and 
protocols. 

Our approach, called Shared Activity Coordination 
(SHAC), provides a general algorithm for interleaving plan- 
ning and the exchange of plan information based on shared 
activities. Agents coordinate their plans by establishing con- 
sensus on the parameters of shared activities. Figure 1 illus- 
trates this approach where three agents share one activity and 
two share another. The constraints denote equality require- 
ments between shared activity parameters in different agents. 
The left vertical box over each planner's schedule represents 
a commit window that moves along with the current time. A 
consensus window is shown to the right of the commit win- 
dow, within which consensus must be quickly established be- 
fore committing. Since consensus is hard to maintain when 
all agents can modify a shared activity'spar ameters at the 
same time, agents must participate in different coordination 
roles that specify which agent has control of the activity. As 
shown in the figure, SHAC interacts with the planning and 
execution by propagating changes to the activities, including 
their parameters and constraints on the values of those param- 
eters. 

SHAC continually coordinates by interfacing to a corn- 
bined planning/execution system that responds to failures 
and state updates from the execution system. Our imple- 
mentation interfaces with one such continual planning sys- 
tem, CASPER, mentioned in the previous section. Instead of 
batch-planning in episodes, CASPER continually adapts near 
and long-term activities while re-projecting state and resource 
profiles based on updates from sensors. 

3.1 Shared Activities 
The model of a shared activity is meant to capture the in- 
formation that agents must share, including control mecha- 
nisms for changing that information. A shared activity is a tu- 
ple (parameters, agen t  roles, protocols, deempos i t ion ,  
constraints) .  The parameters are the shared variables and 
current values over which agents must reach consensus by 
the time the activity executes. The agent roles determine the 
local activity of each agent corresponding to the joint action. 
To provide flexible coordination relationships, the role activ- 
ities of the shared activity can have different conditions and 
effects as specified by the local planning model. The shared 
parameters map to local parameters in the role activity. 

For example, a shared data communication activity can 
map to a receive role activity for one agent and a send 
role activity for another. Shared parameters could specify the 
start time, duration, transfer rate, and data size of the activity. 
The data size is depleted from the sender's memory resource 
but added to the receiver's memory. The agents could have 
separate power usages for transmitting and receiving. In this 



Figure 1 : Activities shared among continual planners 
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case the resources are not shared. Another shared activity 
could be the use of a common transport resource. Although 
one agent in an active transit role actually changes position, 
other agents in passive roles have local activities that only re- 
serve the transport resource. Figure 2 shows an instance of 
this shared activity where an orbiter receives communication 
from a rover. 

Protocols are the mechanisms assigned to each agent (or 
role) that allow the agents to change constraints on the shared 
activity, the set of agents assigned to the activity, and their 
roles. In Figure 2, both the orbiter and rover use an argu- 
mentation protocol to negotiate the scheduling and attributes 
of the communication. Constraints will be described in the 
next section, and a variety of protocols will be defined in the 
Protocols section. 

The shared decomposition enables agents to select differ- 
ent team methods for accomplishing a higher level shared 
goal. Specifically, the decomposition is a set of shared 
subactivities. The agents can choose the decomposition 
from a pre-specified set of subactivity lists. For example, a 
joint observation among orbiters could decompose into either 
( m e a s u r e ,  p r o c e s s - i m a g e ,  d o w n l i n k )  or ( m e a s u r e ,  
d o w n l i n k ) .  

3.2 Constraints 

activity & 
constraint 
updates 

Constraints are created by agents' protocols to restrict sets 
of values for parameters (parameter constraints) and permis- 
sions for manipulating the parameters, changing constraints 
on the parameters, and scheduling shared activities (permis- 
sion constraints). These constraints restrict the ~rivileges (or 

v 

so that lower-priority agents only conform to higher-priority 
agent constraints [Yokoo and Hirayama, 19981. Agents can 
add to their constraints on a parameter, replace constraints, or 
cancel them. A string parameter constraint, for example, can 
restrict a parameter to a specific set of strings. An integer or 
floating point variable constraint is a set of disjoint ranges of 
numbers. Scheduling constraints can be represented as con- 
straints on a start time integer parameter. This is shown in 
Figure 2 where the rover restricts the start time of the com- 
munication between two eight minute intervals. 

Permission constraints determine how an agent's planner 
is allowed to manipulate shared activities. The following per- 
missions are currently defined for SHAC: 

A 
activity 
updates 

...... 

parameters - change parameter values 
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move - set start time 

v 

activity & 
constraint 
updates 

duration - change duration of task 

delete - remove from plan 

A 

activity 
updates 

- ..... * 

choose decomposition -sele ct shared subactivity of an 
or activity 

add - add to plan' 

activity & 
constraint 
updates 

a constrain - send constraints to other agents 

In the communication example in Figure 2, the receiver is 
allowed to reschedule (move) the activity, delete it, or change 
the transmission rate. The sender cannot move the activity, 
but can delete it and change the requested size and priority of 
the data. 

- .  
responsibilities) of agents in making coordinated planning de- 3.3 Coordination Algorithm 
cisions. By communicating constraints, protocols can come 
to agreement on the scheduling of an activity without sharing The purpose of the SHAC algorithm is to negotiate the 

all details of their local plans. scheduling and parameters of shared activities until consen- 

A parameter constraint is a tuple (agent, parameter, sus is reached. Figure 3 gives a general specification of the 
value set) ,  The agent denotes who created the constraint, algorithm' is separate the planner, 
Some protocols differentiate their treatment of constraints  his permission applies to a class of shared activities (i.e. an 
based on the agent that created them. For example, the agent may be permitted to instantiate a shared activity of a particular 
asynchronous weak commitment algorithm prioritizes agents class). 



shared-activity communicate comm-id-12 { 
time start-time =2004-302:09:3 0:OO; / /  date 
int duration = 200;// seconds 
int data-size = 25600; / /  25.6 Mbits 
real xmit-rate = 128.0; / /  5.0 Kbps 
int priority =1; / /  critical 
roles = 

receive by orbiter, 
send by rover; 

protocols = 
receive argumentation, 
send argumentation ; 

permissions = 
receive (move, delete, xmit-rate), 
send (delete, data-size, priority) ; 

parameter-constraints = 
rover start-time =([2004-302:09 :30:00, 2004-302:09:38:00], 

[2004-302:18: 30:00, 2004-302:18:3 8:OOl ) ; 

Figure 2: An instance of a shared communication activity between a rover and orbiter 

so steps 1 through 3 are handled by the planner through an in- defined by how it implements the following procedures to be 
terface to SHAC. Step 4 invokes the protocols that potentially called during step 4 of the SHAC coordination algorithm for 
make changes to refocus coordination on resolving shared ac- the shared activity to which it is assigned: 
tivity conflicts and improving plan utility. SHAC sends modi- modify permissions of the sharing agents 
fications of shared activities and constraints to sharing agents 
in step 5. In step 6, shared activities and constraints are up- 2. modify locally generated parameter constraints 
dated based on changes received from other agents. 3. add/delete agents sharing the activity 

Ignoring coordination, a continuous planner must deter- 
mine when it is appropriate to release activities to the exe- 
cution system. In some cases, an activity involved in a con- 
flict may either be released (requiring the planner to recover 
from potential failures) or postponed (to allow the planner to 
recover before a failure occurs). CASPER keeps a commit 
window (an interval between the current time and some point 
in the near future) within which activities cannot be modified 
and passes these activities to the execution system. 

This interaction with the execution system becomes more 
complicated when agents share tasks. SHAC must make sure 
that when a shared activity is released, all agents release it 
while in consensus on the start time and other parameters of 
the task. Ideally the agents should establish consensus before 
the commit window. SHAC avoids changes in the commit 
window by keeping a consensus window that extends from 
the commit window forward by some period specific for the 
activity. As time moves forward, the windows extend for- 
ward. When a shared activity moves into the consensus win- 
dow, the agents switch to the simple consensus protocol to try 
and reach consensus before the activity moves into the com- 
mit window. 

4 Protocols 
In general, protocols determine when to communicate, what 
to communicate, and how to process received communica- 
tion. During each iteration of the loop of the coordination 
algorithm (Figure 3), the protocol determines what to com- 
municate and how to process communication. A protocol is 

- - 
4. change roles of sharing agents 

The default protocol, representing a base class from which 
other protocols inherit, does nothing for these methods. How- 
ever, even with this passive protocol, the SHAC algorithm 
still provides several capabilities: 

joint intention A shared activity by itself represents a joint 
intention among the agents that share it. 

mutual belief Parameters or state assertions of shared activ- 
ities can be updated by sharing agents to establish con- 
sensus over shared information. 

resource sharing Sharing agents can have identical con- 
straints on shared states or resources. 

activelpassive roles Some sharing agents can have active 
roles with execution primitives while others have pas- 
sive roles without execution primitives. 

master/slave roles A master agent can have permission to 
schedule/modify an activity that a slave (which has no 
permissions) must plan around. 

The following sections describe some subclasses of this ab- 
stract protocol, demonstrating capabilities that each protocol 
method can provide. 

4.1 Argumentation 
Argumentation is a technique for negotiating joint beliefs or 
intentions [Kraus et al., 19981. Commonly,on e agent makes 
a proposal to others with justifications. The others evalu- 
ate the argument and either accept it or counter-propose with 



Given: a plan with multiple activities including a set of sharedactivities with constraints and a projection of 
plan into the future. 

1 1. Revise projection using the currently perceived state and any newly added goal activities. I 
( 2. Alter plan and projection while honoring constraints. 1 
I 3. Release relevant near-term activities of plan to the real-time execution system. I 
( 4. For each shared activity in sharedactivities, I 

if outside consensus window, 
-app ly each associated protocol to modify the shared activity; 
else 
-app ly simple consensus protocol. 

5. Communicate changes in shared-activities. 

6. Update shared-activities based on received communications. 

7. G o t 0  1 .  

Figure 3: Shared activity coordination algorithm 

added justifications. This technique has been applied to team- 
work negotiation research to form teams, reorganize teams, 
and resolve conflicts over members' beliefs [Tambe and Jung, 
19991. It can also be used to establish consensus on shared 
activities. 

A shared activity and associated parameter values are the 
proposal or counterproposal. Justifications are given as pa- 
rameter constraints. A proposal is a change to a shared activ- 
ity that does not violate any parameter constraints. A coun- 
terproposal may violate constraints. Protocol method 2 must 
be implemented to provide the parameter constraint justifica- 
tions for proposals and counter-proposals. In order to avoid 
race conditions, protocol method 1 regulates permissions. 

Argumentation method 1 

. i f  this agent sent the most recent pro- 
posal1counterproposa1 

are slaves or do not have constraint permissions to counter- 
propose. 

4.2 Delegation 
Delegation is a mechanism where an agent in a passive dele- 
gator role assigns and reassigns activities to different subsets 
of agents in active subordinate roles. The delegator and sub- 
ordinate protocols only need 

Delegator method 3 

if agent roles empty 

-cho ose an agent to whom to delegate the activity 
-add (agent, subordinate) to agent roles 

Subordinate method 3 

if cannot resolve conflictslthreats involving activity 

-if planner modified shared activity -remo ve self from agent roles 
* remove self's modification permissions 

else 5 Application to Mars Scenario 

-gi ve self modification 
delete) 

permissions (e.g. move and 

Argumentation method 2 

if planner modified shared activity 

-gen erate parameter constraints describing locally 
consistent values 

As an example, one agent can propose an activity with 
a particular start time and add justifications in the form of 
all intervals within which the shared activity can be locally 
scheduled. Other agents can replan to accommodate the pro- 
posal and counter-propose with their own interval restrictions 
if replanning cannot accommodate others' constraints. If the 
agents cannot establish consensus before the consensus win- 
dow, a higher ranking agent can mandate a time that ben- 
efits most of the agents. Of course, there are many varia- 
tions on this example. Agents may be restricted because they 

Now we describe how SHAC is applied to a simulated 
three-day scenario involving two Mars Exploration Rovers 
(MERs), the Mars Odyssey orbiter, Mars Global Surveyor, 
and the Mars Express orbiter. The delegation protocol de- 
scribed previously was subclassed for the rovers to assign 
and reassign the routing of images to the orbiters based on 
how quickly they can deliver the data to Earth. Different 
masterlslave and active/passive roles are defined using per- 
mission constraints for the shared activities to implement a 
basic protocol for coordinating communication to and from 
Earth. Interactions over communication (once delegated) are 
between two agents, so the consensus window is defined to 
cover communication activities spanning two communication 
opportunities into the future. Once in the consensus window, 
the rover cannot redelegate activities unless the orbiter cannot 
resolve conflicts and must decommit. We intend to experi- 
ment with other protocols and consensus window definitions 
in this domain in our future work. 



The MERs (MER A and MER B) and the orbiters can 
communicate with Earth directly, but the MERs can option- 
ally route data through the orbiters, which communicate with 
Earth at a higher bandwidth. The rovers need daily commu- 
nication with ground operations to receive new goals. The 
rovers will often fail to traverse to a new target location and 
cannot proceed until new instructions come from ground op- 
erations. In this scenario both MERs must negotiate with the 
assigned orbiter to determine how to most quickly get a re- 
sponse from ground after sending an image of the surround- 
ing area. 

Each MER has a communication state shared with each or- 
biter that tracks when the image is generated, when it gets 
to Earth, and when the response from ground operations ar- 
rives to the rover. Shared activities for changing the state are 
shown for different routing options in Figure 4. The rover's 
activity for generating an image from its panoramic camera 
changes the state to request to communicate its need to 
downlink and receive an uplink. Activities for sending the im- 
age to Earth (either directly or through Odyssey), change the 
state to a wait for uplink state to indicate that the rover 
will then be waiting for the uplink. Ground operations needs 
a period of time to generate new commands for the uplink, 
so if the uplink is received by Odyssey, the state changes to 
received to indicate that now the rover can get the uplink 
from Odyssey. Once the rover receives the uplink, the state 
changes back to the normal no pending request state. 
Rover tasks (such as a traverse) need the uplinked data be- 
fore executing, so it places a local constraint that shared state 
be no pending request during its scheduled interval. 
There are no shared resources although communication re- 
quests from a MER have effects on many local resources of 
both the MER and the orbiter. All of the shared activities have 
active master and passive slave roles. The MERs and obiters 
both take the master role for activities labeled for them in 
Figure 4. 

CASPER planners for each of the MERs and orbiters first 
build their three-day plans separately to optimize the timely 
delivery of priority weighted science data, resolving any lo- 
cal constraints on memory, power, battery energy, etc. The 
three-day schedules constitute over 900 tasks for each MER 
and over 1300 for each of the orbiters with 30 statelresource 
variables for each MER and 22 for the orbiters. Planning is 
slowed by a factor of 440 to account for differences between 
a desktop workstation and a radiation-hardened flight proces- 
sor. Communication for coordination is restricted to times 
when the orbiters Dass overhead. With the exceotion of Mars 
Express, the orbiters pass overhead once every eight hours. 
Because of its irregular orbit, Mars Express sees the rovers 
only once every 96 hours. Because of this, we actually used 
no consensus window for communication with Mars Express, 
putting pressure on the planners to resolve conflicts during 
image transmission. 

When coordination begins, the planners send their commu- 
nication requests to the other planners while optimizing their 
plans. Before these updates are received, the initial views of 
the shared uplink status are shown in Figure 5. The MERs be- 
gin with conflicts with their traverse tasks because the uplink 
has not yet been received from Earth. The coordination algo- 

rithm commands the planners to repetitively process shared 
task updates, replan to resolve conflicts by recomputing the 
shared state and modifying scientific measurement operations 
to adjust for the increased power and memory needs, and send 
task updates. After a minute and a half, MER A, B, and 
Odyssey agree on routing the downlink and uplink through 
Odyssey to get the uplinked commands in time for the traver- 
sal on different days. he resulting shared state is shown at the 
bottom of Figure 5. The planners reach consensus that coor- 
dination is complete and sleep while waiting for task updates. 

Among other failed communication attempts, we triggered 
an anomaly in MER A's plan causing it to cancel its first day's 
tasks and shift the entire schedule forward a day. Before send- 
ing the updated shared tasks, replanning was issued to resolve 
local constraints to avoid propagating inconsistent state infor- 
mation to Odyssey. All conflicts were resolved in a few sec- 
onds except the traverse conflicts with a wait state. Then 
MER A sends a task update to restart coordination. Coordi- 
nation completes in less than a minute with data again being 
routed through Odyssey. 

While we have only experimented with simple protocols, 
this application of SHAC to the Mars scenario shows how 
planners can coordinate during execution while making min- 
imal concessions to ideal plans and responding to unexpected 
events. In the next section, we discuss how SHAC builds on 
related work and discuss new research challenges for decen- 
tralized, coordinated planning. 

6 Discussion and Related Work 
Conflicts among a group of agents can be avoided by reduc- 
ing or eliminating interactions by localizing plan effects to 
particular agents [Lansky, 19901, and by merging the indi- 
vidual plans of agents by introducing synchronization actions 
[Georgeff, 19831. In fact, planning and merging can be inter- 
leaved [Ephrati and Rosenschein, 19941. Earlier work stud- 
ied interleaved planning and merging and decomposition in 
a distributed version of the NOAH planner [Corkill, 19791 
that focused on distributed problem solving. More recent re- 
search builds on these techniques by formalizing and reason- 
ing about the plans of multiple agents at multiple levels of ab- 
straction to localize interactions and prune unfruitful spaces 
during the search for coordinated global plans [Clement and 
Durfee, 20001. 

DSIPE [desJardins and Wolverton, 19991 employs a cen- 
tralized plan merging strategy for distributed planners for 
collaborative problem solving using human decision support. 
Like our approach, local and global views of planning prob- 
lem help the planners coordinate the elaboration and repair of 
their plans. DSIPE provides insight into human involvement 
in the planning process as well as automatic information fil- 
tering for isolating necessary information to share. While our 
approach relies on the domain modeler to specify up front 
what information will be shared, SHAC supports a fully de- 
centralized framework and focuses on interleaved coordina- 
tion and execution. 

In many ways this work is following the Generalized Par- 
tial Global Planning approach to using a mix of coordination 
protocols tailored for the domain [Decker, 19951. SHAC of- 
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Figure 5: Downlinkluplink shared state for MER A. From top to bottom, Odyssey's initial view, MER A's initial view, and the 
common view after coordination. 

fers an alternative framework for separating implementation 
of these mechanisms from the planning algorithms employed 
by specific agents. Unlike GPGP, SHAC provides a modular 
framework for combining lower-level mechanisms to create 
higher-level roles and protocols. Our future work will build 
on GPGP's evaluations of mechanism variations to better un- 
derstand how agents should coordinate for domains varying 
in agent interaction, communication constraints, and compu- 
tation limitations. 

Finally, TEAMCORE provides a robust framework for de- 

!. ' 
. . comm earth , ?. .. ,...... : ,.... ,....., !..: . . '  . . ! -: 

no pending 
request 

veloping and executing team plans [Tambe, 1997; Pynadath 
et al., 19991. This work also offers a decision-theoretic 
approach to reducing communication within a collaborative 
framework. Research is needed to investigate the integration 
of coordinated planning with robust coordinated execution. 

An assumption commonly made in multiagent research is 
that agents will be able to communicate at all times reliably. 
In the Mars scenario, the spacecraft communicate with each 
other in varying time windows and frequencies, and the two 
MERs can never directly talk to each other. Establishing con- 
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