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Increasing demands on the fidelity of simulations for real-time and high-fidelity simu­
lations are stressing the capacity of modern processors. New integration techniques are 
required that provide maximum efficiency for systems that are parallelizable. However 
many current techniques make assumptions that are at odds with non-cascadable systems. 
A new serial multi-step I multi-rate integration algorithm for dual-timescale continuous­
state systems is presented which applies to these systems, and is extended to a parallel 
multi-step I multi-rate algorithm. The superior performance of both algorithms is demon­
strated through a representative example. 

I. Introduction 

As simulation has become an accepted tool for supporting development and validation of control systems, 
software, and devices, the demands placed on it have grown ever higher. High-fidelity and real-time simu­
lation is becoming a requirement for performance validation, and the required fidelity of supported models 
is high. This has placed ever-increasing loads on simulation assets, and new approaches to increasing the 
aggregate computation capability of simulators is an active area of research. For continuous state-based 
simulations, there are three ways in which this can be done: increase the efficiency of state computations, 
parallelize the computations (either at the integrator or state computation level), and increase the efficiency 
of the integrator. 

Most parallel/multirate integration techniques (ref. list goes here) make use of the assumption that a 
system is cascaded (see Figure 1). That is, they contain fast subsystems that can be reasonably assumed to 
not depend on the slower 'parent' systems, nor upon each other to first order. This assumption has proven 
to be quite valuable, in that it significantly simplifies the problem and produces useful solutions for those 
systems that conform. Examples of systems that can be classified as cascadable include those that are open 
loop in the fast subsystems, which is the case when these subsystems are treated as disturbances. Other 
examples are systems for which the fast subsystems are closed loop but independent of each other, and 
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therefore their inputs to the slow subsystem can be treated as disturbances and have no significant effect on 
one another. 

Figure 1. A typical cascaded system 

IT, however, the overall system contains either physical or control-based dependencies between the fast 
subsystems, the cascaded assumption is no longer valid. One example of this can be found in multi-spacecraft 
observations that require closed-loop control between spacecraft, typically found in formation-based interfer­
ometry missions. Figure 2 shows the block diagram of such a system. The dynamics of -each spacecraft are 
clearly independent, even in the presence of closed-loop attitude control. At first glance this might indicate 
that the system state can be advanced independently for each spacecraft, exchanging states at occasional 
synchronization points. However, the fast subsystems work to combine light from a common observation onto 
a single sensor on one spacecraft. The control system that regulates the location of light on the final sensor 
ties the otherwise independent slow and fast dynamics of both systems tightly together, and normally forces 
computationally expensive small-timescale integration of the combined system dynamics for both spacecraft 
in order to yield accurate results. 

Figure 2. A system which is not cascadable 

A multi-step / multi-rate algorithm can greatly speed the simulation of such a system by separately 
computing the fast an slow systems close to their natural rates. This is efficient because slow subsystem states 
are often more expensive to compute on a per-step basis, due to increased complexity of the dynamics (flexible 
modes and other nonlinear affects are often not significant for the smaller, fast subsystems). Parallelizing 
the algorithm can produce significant additional gains. 

IT the time required to compute one step of the slow subsystem is T8 , and the time required to compute 
one step of the fast subsystem is TF, then the total time required to advance the entire system using a serial 
algorithm can be written as: 

T = NsTs + NFTF (1) 

where N. is the corresponding number of state computations for the* subsystem. For a parallel algorithm, 
the total time required is instead 

(2) 

where 8 is the co~munication cost incurred by parallelizing the algorithm. Assuming 8 is small, and 
that the subsystems are well matched (NsTs ~ NFTF), the parallel algorithm will be twice as efficient for 
a simple two-timescale system. In fact, for complex systems with more timescales or with more subsystems 
the speedup for a parallelized multi-rate algorithm can be much greater, limited only by the maximum 
computation cost of a single subsystem. 

In the following sections we outline such an algorithm, which yields significant performance improvements 
while providing excellent results for non-cascaded systems. 

II. Previous Work 

Mathematical models of a wide variety of physical, biological, and economic processes take the form of 
initial value problems (IVP's) consisting of a system of ordinary differential equations with the initial state 
(i.e., initial conditions) prescribed at a given initial time. As a result, numerical methods tailored for the 
efficient and accurate solution of IVP's have been the focus of extensive study. The classic text5 provides a 
detailed treatment of both single-step and multi-step algorithms for IVP's. The more recent text17 provides 
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valuable insights into the structure ofiVP's and provides a comprehensive discussion of convergence, stability, 
and error estimation. The standard Adams family of predictor-corrector methods based on PECE (Predict­
Correct-Estimate-Correct) are discussed in16 andY A through treatment of variable order and variable 
step-size integration algorithms is also provided. The survey article 7 and the introductory texts, 8 ,13 and2 1 

also provide comprehensive treatments of solving IVP's numerically. 
The traditional approach toward integrating coupled, high-order (i.e. , systems with large state dimension), 

nonlinear IVP's has been to integrate the equations of motion of the system over a specified integration 
interval [t 0 , t1] using an integration step size based on the the highest frequency system mode of interesta. 
However, · if the required time horizon t 1 - to is large, and the system consists of many high frequency modes, 
numerical integration performed in this manner can be prohibitively slow and can diminish the utility of 
simulation in accessing the dynamic response of the system. 

To address these issues, researchers have focused on developing multi-rateb algorithms to enable fast, 
accurate, numerical integration of nonlinear IVP's containing multiple time scales (e.g., mechanical systems 
containing both rigid and elastic modes/5 molecular dynamics simulations,143 ). Specifically, multi-rate 
numerical integration algorithms are utilized to (1) decompose a given IVP into subsystems based on time­
scale separation, and {2) automatically tune/adapt the integration step-size for each individual subsystem<' to 
maintain solution accuracy. In this paper we will assume that the system of interest is a multi body mechanical 
systems (e.g., a spacecraft). As a result, the equations of motion admit a natural decomposition into elastic 
and rigid subsystems, and hence can be directly partitioned by the analyst into fast/slow subsystems. 

We now provide a brief overview of previous work in the area of multi-rate integration algorithms. For 
a more comprehensive survey of the multi-rate numerical integration literature, the reader should consult'1 

and.18 
Multi-rate integration methods can be naturally divided into single-step (e.g., Runge-Kutta type) or 

multi-step (e.g., Adams type) algorithms. In an early paper Andrus1 studied the integration of a system of 
ODE's partitioned into a slow and fast subsystem. Andrus assumed that a solution to the fast subsystem 
is available (e.g., closed-form solution) for use in integrating the slow states via a fourth order Runge­
Kutta algorithm. In a later paper,2 Andrus studies the stability of Runge-Kutta based multi-rate methods. 
In another early report,11 Orailoglu developed the multi-rate software package MRATE for integrating 
IVP's by modifying the DIFSUB software (based on an Adams-type algorithms) developed by Gear. Wells 
and Gear22 systematically studied the structure, stability, and convergence properties of multi-rate Adams 
predictor/corrector algorithms. The classification of multi-rate algorithms into slowest first vs. fastest first 
types was introduced in the doctoral thesis.:12 In the slowest first approach, the slow states are integrated 
first over a larger time-step, and then interpolated values of the slow components are used to integrate the 
fast states over a smaller time-step. 

In,6 Gear provides a general discussion on multi-rate integration algorithms and concludes that multi­
rate, multi-step integrators provide the most efficient algorithms for many practical situations. Palusinski12 

developed an explicit multi-rate Runge-Kutta algorithm for a system partitioned into two time scales. His 
algorithm, based on a slowest-first approach, is used to investigate the dynamic response of an autopilot 
design. 

The application of multi-rate numerical integration methods to the simulation of complex mechanical 
and multi body systems has been an area of increasing activity. As discussed above, most dynamic models of 
mechanical systems admit a natural decomposition into slow (rigid) and fast (elastic) dynamic subsystems<~. 

"Typically, ten samples per period of the highest frequency mode is sufficient. 
bThe term multi-rate should not be confused with the term multi-step. Multi-rate algorithms are designed to numerically 

integrate IVP's containing both fast and slow time scales, while multi-step algorithm refer to any algorithm (multi-rate or not) 
that use estimates of the solution (and its derivative) at several previous time-steps to construct an approximate solution at 
the current time-step. 

cHere small integration time-steps are used to integrate fast dynamic modes, while larger time-steps are used to integrate 
slower dynamic modes. 

d Although in many applications, the rigid modes influence the elastic modes and not vise-versa, flexible mechanical systems 
that spin at high rate are an exception due to spin-stiffening effects and should be treated with care. 
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Controller/sensor dynamics can also introduce wide time-scale separations in the simulation of closed-loop 
system behavior. 

In,19 multi-rate integration techniques for large order linear models with a wide dynamic bandwidth 
(defined as the ratio between the real parts of the largest and smallest system eigenvalues) are developed 
directly by partitioning the system state transition matrix. Latiffe10 developed frequency domain techniques 
for interfacing fast/slow subsystems with applications to closed-loop control. 

In the area of multibody dynamics, Buzdugan4 and Kim9 developed multi-rate integration algorithms 
based on the Nordsieck form of the Adams-Bashforth predictorfcorrector.5 Srinivasan,20 developed a suite 
of multi-step, multi-rate integration algorithms for simulating flexible multibody systems. Solis18 develops 
multi-rate integration techniques for DAE's (differential algebraic equations) describing multibody systems 
with dependent coordinates and/or closed-loops. 

III. Serial Multi-Step Integration Algorithm 

In this section we review the basic Adams predictor/ corrector method for numerical integration of the 
IVP 

: = x = j(t,x), x(to) = xo (3) 

where X E Rnx1, and f : ~ x Rnxl t-+ Rnxl. 
The predictor part of the algorithm is formed by the Adams-Bashforth explicit multistep formula 

x(tm) = x(tm-d +haT X (4) 

where x(tm) E ~nxl denotes the approximate solution of the IVP at tm = t0 + mh (m = 1, 2, ... , N), 
h E ~denotes the integration step-s~ze, a = [0 a 1 / a2I · · · akl]T E Rn(k+l)xn are the coefficients of the 
Adams-Bashforth algorithm where I and 0 denote then x n identity and zero matrices respectively, and 

X= [i:(tm) x(tm-d x(tm-2) ... i:(tm-k)f E Rn(k+l)xl 

The coefficients a; of various order Adams-Bashforth formulas are tabularized in.21 

The corrector part of the algorithm is formed by the Adams-Moulton implicit multistep formula 

x(tm) = x(tm-1) + hbT X (5) 

where b = [I b1I b2 I · · · bkl]T E Rn(k+l)xl are the coefficients of the Adams-Moulton algorithm and I 
denotes the nxn identity matrix. Note that Xm appears implicitly in equation (5) since the term br X contains 
i:m and Xm = f(tm, Xm)· The coefficients b; of various order Adams-Moulton formulas are tabularized in.21 

Note that both the Adams-Bashforth and Adams-Moulton formulas are multi-step algorithms in that values 
of the solution and its derivative from multiple previous time-steps are used to construct the solution at the 
current time-step. 

The idea behind the predictor/corrector algorithm is to use the explicit predictor formula (4) to provide 
an initial guess for developing an iterative solution of the implicit corrector formula (5). The iteration is 
continued until two successive outputs of the corrector agree to a specified tolerance. The stages in the 
predictor/corrector algorithm are commonly called PECE (Predict-Correct-Evaluate-Correct); See16 or21 

for further information. 

IV. Serial Multi-Step/Multi-Rate Integration Algorithm 

A dynamic system such as the planar spacecraft model described in the previous section is characterized 
by an initial value problem of the form given in equation (3). Here we assume the class of systems under 
study consists of multibody systems with both high frequency (e.g., elastic modes) and low frequency (e.g., 
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rigid body modes) components. As a result, the state vector in equation (a) is partitioned into two parts; 
one consisting of slowly changing variables Xr, and the other consisting of rapidly changing variables Xei i.e., 

X= [ :: ] 
(6) 

We assume that the partitioning of the system is based on a priori knowledge of the system dynamics; e.g., 
the system is a spacecraft consisting of a rigid central body with flexible appendages. Thus, the IVP (3) can 
be expressed in terms of slow and fast subsystems as follows: 

Xe(to) = Xeo 

(7) 

(8) 

Here the subscript r denotes the rigid body modes (slow) and the subscript e denotes the elastic modes (fast). 
To integrate the slow and fast subsystems using different integration step-sizes, we have modified the classical 
predictor-corrector method discussed in a previous section. Specifically, fourth-order Adams-Bashforth and 
Adams-Moulton formulas were utilized.21 As discussed earlier, multi-rate integration algorithms can be 
classified into several types depending on the order in which the integration is performed. The integration 
algorithm discussed here is based on a variation of the fastest first approach.2° Coupling of the slow and 
the fast systems is done by interpolation. For each subsystem, the integration procedure based on Adams 
methods consists of prediction, evaluation, correction, and evaluation (PECE) stages. For a given slow 
integration step size Hand a fast integration step size h, we first predict the value Xr(t) at t = tk +H. We 
then iterate through a number of smaller steps h on the fast system where H = rh. The same PECE stages 
are repeated for each time-step of the fast system. The values of the slow system xr(t) are determined at 
intermediate times t where tk < t < tk + H by interpolation and used in the correction stage for the fast 
system. The output from the fast system after r steps where H = rh is then utilized in the correction stage 
of the slow system. The complete multi-step, multi-rate integration algorithm based on the fourth-order 
Adams methods is presented below: 

• Step 1: Adam-Bashforth (predictor) formula for the slow system. 

This step produces an approximation of Xr(t) at t = tk +H. The value of this approximation will be 
used by the fast system. 

• Step 2: Adam-Bashforth (predictor) formula for the fast system. 

The next few steps are the standard PECE stages of the fourth-order Adams-Bashforth and Adams­
Moulton formulas applied to the fast system. The value of the slow state is coupled by interpolation 
in Step 3 below. 

• Step 3: Interpolate the slow system to obtain x~NT(t~c +h). 

There are many ways to interpolate the the slow system. For example, linear interpolation or more 
complicated methods based on curve fitting techniques can be used. 
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• Step 4: Evaluate. 

X~VAL(tk +h)= fe(tk + h,x~NT(tk + h),x~RED(tk +h)) 

• Step 5: Adams-Moulton (corrector) formula for the fast system. 

• Step 6: Evaluate. 

• Step 6a: Iterate the Corrector. 

(11) 

(13) 

Set Xe (tk +h) = xfOR(l) (tk +h), Xe(tk +h) = x~VAL(l) (tk +h) and goto Step 7. Alternatively, perform 
another iteration to produce xfOR(2

) based on x~v AL(l), and x~VAL(2) based on xfOR(2
), and then 

set Xe(tk +h)= xfOR(2 )(tk +h), Xe(tk +h)= x~VAL(2)(tk +h), and then goto Step 7. 

• Step 7: Increment the fast states. 

Repeat Steps 2 -t 6 for t~c + 2h, tk + 3h, . .. , tk + rh, where rh =H. 

• Step 8: Adan1s-Bashforth evaluation step for the slow system. 

• Step 9: Adams-Moulton (corrector) formula for the slow system. 

• Step 10: Evaluate. 

Xr(tk +H) = f r (tk + H,x~0R(tk +H), Xe(tk + rh)) 

Set Xr(tk +H) = x~0R(tk +H). 

• Step 11: Increment slow states and repeat. 

Repeat step 1 for tk + 2H, t~c + 3H, ... , tk + NH. 

(14) 

(16) 

Note that the multi-step Adams-Bashforth predictor for the slow and the fast systems in Steps 1 and 2 
requires data from multiple previous time-steps. A one-step method, such as a fourth order Runge-Kutta 
algorithm, is utilized to compute the initial data required by the multi-step algorithm. Here the initial data 
was generated by using the step-size of the fast system h. 
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~ Predictor- Adams-Bashforth ffiEj Fast System Evaluation 

ftHj Corrector -Adams-Moulton ~ Slow System Evaluation 

Slow System 

Fast System 

Execution Time (wall clock time) 

Figure S. Execution order of the serial multi-stepfmulti-rate integration algorithm 

V. Parallel Multi-Step/Multi-Rate Integration Algorithm 

Although we can observe significant benefit of partitioning the system into slow and fast components, 
we are limited to serial computations nevertheless. During the PECE stages, the slow system waits for the 
fast system to finish before coupling, and the fast system waits for the slow system to finish before moving 
onto the next integration step. The summary of this execution order is illustrated in Figure 3. The timing 
diagram shows the execution order of different PECE stages for one slow integration step H. The horizontal 
axis represents the execution time. The top line shows the PECE stages of the slow system, and the bottom 
line shows the PECE stages of the fast system. The system evaluation stages typically involve complicated 
derivative evaluations; therefore, they take significantly longer time to execute than the predictor and the 
corrector stages, which consist of only simple algebraic calculations. Note that there is a gap after the 
predictor stage of the slow system. No slow system computation is done in that gap since the fast system 
has to be integrated before moving onto the slow system. The situation is similar for the gap in the fast 
system case. 

We realized a potential advantage for computing the slow and the fast system in parallel. Recent advances 
in multi-processor technology have made symmetric multi-processor systems widely available. We could 
easily compute the slow system and the fast system in parallel; one processor computes the slow system 
and the other computes the fast system. However, the execution order of the PECE stages have to be 
preserved nevertheless. In the parallel case, the gaps in the timing diagram of figure 3 would result in idle 
processing time. After observing the timing diagram more closely, we realize that the idle processing time 
can be utilized to perform additional computation, resulting in a more accurate integration that would not 
be possible with the serial version for the same given amount of time. The modified execution order diagram 
is shown in figure 4. The idle processing time in the slow system track can be used to perform one additional 
slow system evaluation. The outcome of this evaluation becomes the new predictor value for the later stages 
of the integration. The original Adam-Bashforth predictor is now only used by the first round of the fast 
system PECE stages. Since this additional evaluation is performed in parallel while the fast system value at 
integration step t = t~e + rh is been computed, the fast system value is not available at that time. In order to 
evaluate the slow system at t = t~e + H, we assume that the slow value at t = tk + H stays constant, namely 
we use the slow value at t = t~e to evaluate ±r(tk +H). We apply the Adams-Moulton corrector formula 
using this value to get x;_'RED' (tk +H). We called this the preferred predictor value and will be used in the 
subsequent stages, since it involves derivative computation and is deemed to be a better prediction than the 
algebraic prediction of the Adam-Bashforth predictor formula. 

In order to fill in the idle processing time of the fast system track, we compute another round of PECE 
stages for the fast system using the better predictor value x;_'RED' (t~e +H). The outcome of this computation 
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~ Predictor- Adams-Bashforth ~ Fast System Evaluation 

~ Corrector- Adams-Moulton ~ Slow System Evaluation 

Slow System 

Fast System 

rt, rt,. 

Time to Compute (CPU Time) 

Figure 4. Execution order of the parallel multi-step/multi-rate integration algorithm 

produces better result for the fast system, since it uses the improved predictor value xfRED' (tk +H). The 
result is fed back into the slow system at the next integration step. 

To summarize our new parallel multi-step/multi-rate integration algorithm, we outline the steps as fol­
lows: 

For the slow system track: 

• Step 1: Adam-Bashforth {predictor) formula for the slow system. This step makes a quick approxi­
mation of the values for the next step. The values from this approximation will be used by the fast 
system. 

• Step 2: Evaluate using x.(tk) 

x~v AL' (tk +H) = fr (tk + H, xfRED (tk +H), x.(tk)) 

• Step 3: Adam-Moulton (corrector) formula for the slow system 

This becomes the new predictor for the later stages. 

• Step 4: Sync up with the fast system track to get x.(tk + rh), and evaluate 

x~VAL(tk +H) = fr (tk + H, x;'RED' (tk +H), x.(tk + rh)) 

• Step 5: Adam-Moulton (corrector) formula for the slow system 
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• Step 6: Evaluate 

Xr(tlc +H)= fr(tlc +H,x~0R(tk + H),xe(tk + rh)) 

Set Xr(tlc +H) = x~0R(t~c +H). 

Repeat step 1 for t1c + 2H, t~c + 3H, ... , t~c + N H. 

For the fast system track: 

(22) 

• . Step 1: Adam-Bashforth (predictor) formula for the fast system. The next few steps are the standard 
PECE stages of the fourth order Adams-Bashforth and Adams-Moulton formulas applied to the fast 
systems. The slow system values are coupled by interpolation in step 2. 

• Step 2: Interpolate the slow system xfRED(t~o +H) to obtain x~NT(tk +h). There are many ways to 
interpolate the in between values of the slow system. Intuitively, one can linearly interpolate the slow 
state. More complicated methods can be peformed by using curve fitting techniques. 

• Step 3: Evaluate 
(24) 

• Step 4: Adam-Moulton (corrector) formula for the fast system 

xf0R(tl(t~c +h)= x.(t~c) + ;
4 
[9x~VAL(t~o +h)+ 19±e(t~c)- 5x.(t~o- h)+ x.(t~c- 2h)] (25) 

• Step 5: Evaluate 

(26) 

• Step 5a: Set Xe(tk +h) = xfOR(t) (tk +h), Xe(tk +h) = i;~VAL(l) (tk +h), then move on to step 6. 

• Step 5b: or perform another iteration to produce 

xfOR(2) based on x;:v AL(l), 

. EV AL(2) b ed GOR(2) Xe as on Xe , 

then set Xe(t~c +h)= xfOR(2)(t~c + h),xe(tk +h)= i;~VAL(2)(t~c +h), then move on to step 6. 

• Step 6: Repeat step 1 -+ 6a or step 6b for t~c + 2h, t~c + 3h, ... , t~c + rh, where rh =H. 

The second around of PECE stages will utilize the improved predictor value x;'RED' (t~o +H). 

• Step 7: Sync up with the slow system track to get x;'RED' (t~c +H). 

• Step 8: Adam-Bashforth (predictor) formula for the fast system. The next few steps are the standard 
PECE stages of the fourth order Adams-Bashforth and Adams-Moulton formulas applied to the fast 
systems. The slow system values are coupled by interpolation in step 9. 

9 of 15 

American Institute of Aeronautics and Astronautics 



• Step 9: Interpolate the slow system x;.'RED' (tk +H) to obtain x~NT (tk +h). There are many ways to 
interpolate the in between values of the slow system. Intuitively, one can linearly interpolate the slow 
state. More complicated methods can be performed by using curve fitting techniques. 

• Step 10: Evaluate 

(28) 

q 

• Step 11: Adam-Moulton (corrector) formula for the fast system 

xfOR(l)(tk +h)= Xe(t~o) + ~ [9x::VAL(tk +h)+ 

19:i:e(t~e)- 5:i:e(h- h)+ Xe(h- 2h)] (29) 

• Step 12: Evaluate 

(30) 

• Step 12a: Set x.(tk +h)= xfOR(t)(tk + h),x.(tk +h)= x:vAL(t)(tk +h), then move on to step 6. 

• Step 12b: or perform another iteration to produce 
COR(2) b d EV AL(l) 

Xe ase On Xe , 

. EV AL(2) b d OOR{2) 
Xe ase on Xe , 

then set x.(tk +h)= xfOR(2)(tk + h) , x.(t~o +h)= x:vAL(2)(tk +h), then move on to step 6. 

• Step 13: Repeat step 7 -+ 12a or step 12b for tk + 2h, tk + 3h, ... , tk + rh, where rh =H. 

VI. Implementation 

In order to study the behavior of our numerical multi-rate integration algorithms, we devise a sample 
dynamic system with high and low frequency components. Our sample model is a 5 DOF planar spacecraft 
with two solar panels attached to the spacecraft body using 1 DOF joints. The spacecraft is limited to move 
in the planar x and y directions and only allowed to rotate on the xy plane. See figure 5. We can, therefore, 
characterize the system with 5 variables: 

(31) 

BR is the angle of the right solar panel with respect to its resting position, and BL is the angle for the 
left solar panel. OB is the rotation of the spacecraft. The solar panel joints have angular springs exerting 
torque proportional to OR and OL respectively. The equations of motion can be derived using the Lagrangian 
method. (Should I elaborate more here?) 

The dynamics of the spacecraft is implemented using HYDRA, an architecture for building heterogeneous, 
distributed real-time simulations.23 We assume a prior knowledge of the system and break the system into 
slow and fast subsystems. The slow system consists of the spacecraft body, and the fast system consists of 
the two solar panels. For the parallel case, HYDRA distributes the computation of the slow and the fast 
system dynamics onto two processors. HYDRA provides the communication mechanisms to synchronize the 
slow and the fast system. 
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X 

t • y 

Figure 5. Planar Spacecraft Model 

VII. Results 

We set the integration step size for the slow system to H = 0.01, and the fast system integration step size 
to h = 0.001. The right solar panel has an initial tilt degree of 0.05 Rad. The initial values for x, y, On, and 
OL are all zero. We use the serial multi-step Adams predictor/corrector integration method as the basis of 
our comparisons. The single rate integration step size is set to 0.001. This is used as the reference to evaluate 
against the accuracy of our serial and parallel multi-rate/multi-step integration algorithms. Note that our 
serial or parallel multi-rate/multi-step integration algorithm is iterative; at the end of each integration step, 
the integration process can be iterated again to improve the accuracy. For the purpose of our comparison, we 
only choose to perform one iteration for each integration step. This allows us to see the relative performance 
of our serial and parallel multi-rate/multi-step integration method with respect to the single-rate method. 
In figure 6, we can clearly see the benefit of parallel multi-rate/multi-step integration method over the serial 
multi-rate/multi-step integration method. With only one iteration for each integration step, the result from 
the serial multi-rate/multi-step method gradually diverges with respect to the reference. In contrast, the 
parallel multi-rate/multi-step method tracks the reference fairly well. Although the accuracy of the serial 
multi-rate/multi-step integration method can be improved by increasing the number of iterations, the timing 
requirements for real-time simulation might limit the number of iterations can be performed. In that case, 
the parallel method produces more accurate result in the same number of iterations. The plots for y, On, On, 
and OL are shown in figure 7, 8, 9, and 10. 

VIII. Conclusion 

We have extended the Adams predictor and corrector integration algorithm to incorporate multi-rate 
integration. We assume that the partitioning of the slow and the fast components can be performed based 
on a prior knowledge of the system. We extended the concept further and developed a novel parallel 
integration technique that utilizes two processors in a shared memory parallel computer. We conducted 
benchmarks on our sample spacecraft model under study and saw improvements in performance of our 
integration algorithms. 
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Figure 6. A comparison of the x position of the planar spacecraft with respect to time using different integration 
schemes. 

Figure 7. A comparison of they position of the planar spacecraft with respect to time using different integration 
schemes. 

12 of 15 

American Institute of Aeronautics and Astronautics 



Figure 8. A comparison of 9a of the planar spacecraft with respect to time using different integration schemes. 
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Figure 9. A comparison of() R of the planar spacecraft with respect to time using different integration schemes. 
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Figure 10. A comparison of fh of the planar spacecraft with respect to time using different integration schemes. 
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