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ABSTRACT 

 

    The ADC model is a charge-collection model derived for simple p-n junction silicon 

diodes having a single reverse-biased p-n junction at one end and an ideal substrate 

contact at the other end. A steady-state ionization source liberates charge carriers in the 

device and the model estimates the terminal current produced by this carrier liberation. A 

recent paper confirmed that model predictions of collected charge are also correct for the 

transient problem in which carrier liberation is impulsive instead of steady-state. The 

present paper extends the model to include multiple junctions, and the goal is to estimate 

how collected charge is shared by the different junctions. Much of the theory is derived 

for an arbitrary number of junctions but a complete solution is given only for devices 

containing two junctions in a horizontal arrangement and exposed to a vertical line-

source (or “track”) of carrier generation. For each of three possibilities, the model 

identifies the conditions needed to produce that possibility. One possibility is that charge 

is shared by both junctions, and the total collected charge from the two junctions is less 

than the total amount of liberated charge. A second possibility is that collected charge is 

shared by both junctions, and the total collected charge from the two junctions is equal to 

the total amount of liberated charge. The third possibility is that all liberated charge is 

collected by one junction, and no charge is collected by the other. An example n
+
-p 

device exhibited all three possibilities by varying the location of the track. The same 

example but with doping types interchanged to produce a p
+
-n device exhibited only the 

first possibility regardless of track location. All examples show excellent quantitative 

agreement with TCAD simulations. 

 

Key words: ADC model, ambipolar diffusion, ambipolar diffusion with a cutoff, charge 

collection, drift-diffusion. 
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I. INTRODUCTION 

 

    A charge-collection model, called “ambipolar diffusion with a cutoff ” (ADC) was 

reviewed in [1] (a more rigorous derivation is in an appendix in [2]) for a reverse-biased 

p-n junction silicon diode exposed to an ionization source that liberates carriers (electron-

hole pairs) in the device. An important application of a charge-collection model is in the 

investigation of single-event effects (SEE) in which the ionization source is a single 

particle, such as a galactic cosmic ray heavy ion. The ADC model has some known 

limitations for this application. The first limitation is in the category of physical 

approximations. Carrier transport is described by the drift-diffusion equations with 

constant mobilities in the quasi-neutral region, carrier recombination in the device 

interior is neglected, and ideal boundary conditions are assumed. In contrast, real devices 

are more complex, e.g., mobilities depend on a variety of physical parameters. A second 

limitation is in the category of intended applications. The model is intended for high-

injection conditions, i.e., the model is intended to become accurate when the ionization 

source is sufficiently intense. While SEE is a high-injection phenomenon, carrier 

liberation is still finite. The model is a mathematical limit that is an inexact 

approximation for the finite case. The last limitation also belongs to the category of 

intended applications. The model was derived from a steady-state analysis in which 

carriers are liberated at a quasi-constant rate (e.g., by photon irradiation). In contrast, SEE 

is a highly transient problem. In spite of these limitations, model predictions for example 

transient problems, in which the ionization source represents an ion track and the quantity 

of interest is total collected charge (terminal current integrated over all times), agreed 

well with predictions made by TCAD simulations [3]. However, the original model was 

derived for a simple silicon diode having only one charge-collecting junction. Motivated 

by the success of this model for a single-junction device, this paper presents a multi-

junction version of the ADC model. A silicon device now contains a collection of 

reverse-biased p-n junctions and the goal is to determine how collected charge is shared 

between different junctions. To keep the model simple, the same limitations (physical 

approximations, high-injection, and steady-state) still apply. The contention here is that 

there is little hope of understanding charge-collection in a more complex problem if we 

have not yet understood charge-collection for this simpler problem, so an understanding 

of the simpler problem is a prerequisite to understanding a more difficult problem. 

 

    A silicon device having three (for example) junctions is illustrated in Fig. 1, which is 

explained as follows. All p-n junctions are formed with a common substrate. If the 

substrate is p-type, all junctions are n
+
-p. If the substrate is n-type, all junctions are p

+
-n. 

Each junction produces a depletion region (DR) and each DR has a boundary (DRB) in 

the substrate. The three DRBs are denoted S1, S2, and S3 in the figure. The electrical 

contact to the substrate is treated as an ideal ohmic contact and is denoted S0 in the figure. 

The quasi-neutral region (QNR) is that portion of the substrate that is outside the DRs. 

Hence, boundaries that enclose the QNR include S0, S1, S2, and S3. The remainder of the 

QNR boundary is regarded as reflective (the gradients of the potential and carrier density 

have zero normal components). Voltages applied to the terminals produce a reverse-

biasing condition across each DR. A steady-state ionization source having an arbitrary 

spatial distribution (not shown in the figure) liberates carriers in the substrate, and some 
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of the liberated minority carriers move to and through a junction to produce a steady-state 

terminal current at that junction. The goal is to estimate the terminal current for each 

junction. 

DR DR DR

S1 S2 S3

S0

QNRreflective

 
Fig. 1. Illustration of a device with three junctions. All three junctions are either n+-p (for a p-type substrate) 
or p+-n (for an n-type substrate). Each junction produces a DR, and the DR boundaries (DRBs) are denoted 
S1, S2, and S3. The electrical contact to the substrate (a.k.a., electrode) is denoted S0. The QNR is the 
portion of the substrate outside the DRs. Voltages applied to the terminals reverse bias each DR. An 
ionization source (not shown) produces an arbitrary spatial distribution of liberated carriers in the substrate 
and the goal is to calculate the terminal currents. 
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II. REVIEW OF THE DRIFT-DIFFUSION EQUATIONS 

    The well-known drift-diffusion equations can be found in any textbook on 

semiconductors. Under steady-state conditions with negligible recombination in the 

device interior, the equations reduce to 

ϕµ ∇−∇=
rrr
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where Je and Jh are the electron and hole current densities (functions of spatial 

coordinates), q is the elementary charge, De and Dh are the electron and hole diffusion 

coefficients (approximated as constants in this analysis), µe and µh are the electron and 

hole mobilities (also approximated as constants in this analysis), ϕ is the electrostatic 

potential (a function of spatial coordinates), n and p are the electron and hole densities 

(functions of spatial coordinates), n0 and p0 are the equilibrium electron and hole 

densities (constants for the uniformly-doped case considered), g is the carrier-generation 

rate density (a function of spatial coordinates), and ε is the permittivity constant of the 

medium. The same generation rate is used for both carriers because we consider the case 

in which electrons and holes are generated in pairs. 

    Junctions will be described by boundary conditions at the DRBs, so analysis of the 

drift-diffusion equations is needed only in the QNR. A region is quasi-neutral when the 

solution to the above equations can be approximated by the solution to the equations 

obtained from the limiting case as ε approaches zero. In this limit, (3) is replaced with 

00 , nPnpPp +=+= ,                  (4) 

where P is the excess carrier density that is the same for electrons and holes. We also use 

the Einstein relations De = VTµe and Dh = VTµh, where VT is the thermal voltage 

(sometimes written as kT/q and is about 0.026 V at room temperature). This allows us to 

write (1) as 

ϕ∇
+

−∇=
rrr

T
e

e V

nP
PJ

qD

01
                   (5a) 

ϕ∇
+

+∇=−
rrr

T
h

h V

pP
PJ

qD

01
                  (5b) 

    Note that (5) was obtained by replacing (3) with (4), but (4) cannot be used to solve for 

the electric field (the negative gradient of ϕ). However, (2) together with (5) is a 
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complete (when given boundary conditions) system of equations that will solve for both 

P and ϕ. It is important to note that (4) is a replacement for (3), not an equation that 

supplements (3). The system of equations consisting of (1) through (4) is over-

determined and inconsistent, so (3) is discarded when (4) is used. However, Poisson’s 

equation (3) would have a role in an iteration method if an improved estimate of the 

charge density is desired. Starting with an initial estimate of zero charge density, i.e., (4), 

we use this with (1) and (2) to obtain (2) and (5), then solve (2) and (5) for ϕ, and then 

substitute this into the left side of (3) and interpret the calculated value of the left side as 

an improved estimate of the charge density. This is analogous to the analysis of an ohmic 

medium with a specified inhomogeneous conductivity. For the ohmic problem, we would 

use Ohm’s law, not Poisson’s equation, to solve for the electric field. Having done that, 

we can then use Poisson’s equation to calculate the charge density if desired. Similarly, 

for the semiconductor problem considered here, we use (2) and (5), not Poisson’s 

equation, to solve for the electric field. Having done that, we can then use Poisson’s 

equation to calculate the charge density if desired. 

    For an n-type material, we can neglect p0 and set n0 equal to the doping density. For a 

p-type material, we can neglect n0 and set p0 equal to the doping density. We can shorten 

the notation by including only one equilibrium density, and still represent both doping 

types with the same set of equations, by letting Dm denote the diffusion coefficient for 

minority carriers, DM is the diffusion coefficient for majority carriers, and N denotes the 

doping density. We also define 
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Note that the subscript m to the J denotes minority-carrier current, while the subscript M 

denotes majority-carrier current. The sign convention was selected so that both doping 

types will be described by the same equations. With this sign convention, the direction of 

Jm is opposite to the direction of minority-carrier motion, while JM has the same direction 

as the majority-carrier motion. Substituting (6) into (2) and (5) gives 
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    A combination of the equations in (7) that is particularly useful is obtained by adding 

the two equations to get 
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and combining this with (8) gives 
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where D* is defined by 
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    The square bracket in (10) can be expressed in terms of several functions that will each 

be regarded as known quantities in this analysis. The number of DRBs will be denoted K, 

and the DRBs will be labeled as the surfaces S1, …, SK. The electrode surface will be 

denoted S0. Corresponding to the i
th

 DRB is the function denoted Ω(i)
 defined by  
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with reflective boundary conditions (the normal component of the gradient is zero) tacitly 

assumed on the reflective boundaries. The last function that is treated as a known is what 

the carrier density would be if carrier transport were a pure diffusion process. This 

function is denoted P* and is defined by 

 

interiorQNRin** 2 gPD −=∇                 (13a) 
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with reflective boundary conditions tacitly assumed on the reflective boundaries. We will 

call D* defined by (11) the “ambipolar diffusion coefficient,” and we will call (13a) the 

“ambipolar diffusion equation.” In order to express the square bracket in (10) in terms of 

the functions just defined, it is necessary to introduce notation for the boundary values of 

P and U. The excess carrier density P is zero on the electrode surface S0. This surface 

will also be selected as the reference for the potential, i.e., the potential is the potential 

relative to this surface, so we also have U = 0 on S0. Notations used for the other 

boundary values are given by 
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with reflective boundary conditions for P and U tacitly assumed on the reflective 

boundaries. The solution to (10) for the square bracket that satisfies the same boundary 

conditions as the square bracket is given by 
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Substituting (15) into (9) gives 
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III. THE HIGH-INJECTION LIMIT 

 

    The analysis given here is intended to produce an approximation that becomes accurate 

under high-injection conditions, i.e., when carrier liberation is sufficiently intense. The 

DRs are assumed to be reverse-biased so high injection is produced by a large generation 

rate. Therefore, a high-injection condition can be mathematically represented as a large-g 

condition. The derivation given here is theoretical because it uses simplifying physical 

approximations (drift-diffusion equations with constant mobilities) and applies to a 

hypothetical device structure that is defined by these assumed governing equations. One 

distinction between this hypothetical structure and a real device structure is that, for the 

hypothetical case, it is possible to take the mathematical limit of an infinite carrier 

generation rate. In contrast, a real device would be destroyed before this limit is reached. 

However, it is assumed that the real device structure with a large but finite generation rate 

can be approximated by the hypothetical case with the same finite generation, so an 

approximation for this hypothetical case is also an approximation for the real case. The 

mathematical limit is an approximation for the hypothetical case having a sufficiently 

large but finite generation. Therefore, the limiting case is relevant to this investigation in 

spite of the fact that a real device structure could not survive this limit. 

    

    The task now is to give the “large-g limit” a precise definition. This is done by first 

selecting a non-negative (but otherwise arbitrary) reference function gref(x). A large g is 

obtained by multiplying this reference function by a constant and positive scale factor γ 
that becomes large. In other words, if we define a generation rate with an adjustable scale 

factor by 

 

)();( xgxg ref

rr
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then the large-g limit is the limit as γ → ∞. 

 

    Because g depends on γ, the carrier density, electric field, and the currents satisfying 

the equations in the previous section will also depend on γ. We will be taking the limit as 

γ → ∞, so we want the notation to show this dependence. Using more descriptive 

notation in (7) and (8) gives 
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There is no need to change notation in (12), because Ω(i)
 does not depend on γ, but using 

more descriptive notation with (13) gives 
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The boundary values of the carrier density at the DRBs will be discussed at a later time, 

but are allowed to depend on γ. The potential at each DRB relative to the potential at the 

electrode will also depend on γ, so (14) is written in more descriptive notation as 

 

NiSPxPSxP ii ,...1for     on  )();(    , on  0);( 0 === γγγ
rr

            (21a) 

 

NiSUxUSxU ii ,...1for     on  )();(    , on  0);( 0 === γγγ
rr

.           (21b) 

 

Finally, (15) and (16) are written in more descriptive notation as 
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    Note that (19) implies that the currents become singular as γ → ∞. This fact together 

with (18) implies that at any point x in the QNR, at least one of the two quantities, P or 

U∇
r

, becomes infinite as γ → ∞. Similarly, P* becomes singular. It is also possible that 

one or more boundary values of P or U might become infinite as γ → ∞. However, (19) 

implies that these singularities are first order in γ , meaning that they can be removed by a 

normalization that divides by γ. To obtain quantities that remain finite in this limit, we 

define normalized quantities, indicated by script notation, by  
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The normalized quantities have finite limits so we can define 
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with analogous definitions for the other normalized quantities. Also, because the 

normalized quantities remain finite, a second division by γ produces quantities that go to 

zero in the limit, i.e., 
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Using (24) to express (18) through (23) in terms of normalized quantities gives 
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Taking the limit as γ → ∞ of either equation in (27) while using (26) gives 
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where the notation was shortened by writing P(x) in place of P(x;∞) and writing U(x) in 

place of U(x;∞). This notation denotes normalized quantities in the high-injection limit. 

Using similar notation (e.g., writing Pi in place of Pi(∞)) when taking the limits of (28) 

through (32) gives 
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where we further shortened the notation by defining 
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Note that ψ is the solution to Laplace’s equation having a boundary value equal to the 

square bracket in (39) on Si (for i = 1, …, K), and having a boundary value of zero on the 

electrode surface S0. 

 

 



11 

IV. REGIONAL PARTITIONING: DEFINITIONS AND EQUATIONS 

 

    Note that (33) can be used to define a partitioning of the QNR. At any given point x in 

the QNR, either the normalized carrier density is zero or the normalized electric field is 

zero in the high-injection limit. The ambipolar region (AR) (the motivation for this name 

will be clear later) is defined to be the set of points in the QNR interior for which the 

normalized carrier density is positive in the high-injection limit. It will be argued later 

that the AR is never an empty set, i.e., there will always be some points in the QNR such 

that P > 0. The high-resistance region (HRR) (the motivation for this name will be clear 

later), when it exists, is defined to be the set of points in the QNR interior for which the 

normalized carrier density is zero in the high-injection limit. If there are no such points in 

the QNR interior, then the HRR is an empty set, i.e., there is no HRR. It will be seen later 

that there may or may not be an HRR, depending on the example.  

 

    Let us now consider the AR in more detail. Recall that either the normalized carrier 

density is zero or the normalized electric field is zero in the high-injection limit, but the 

normalized carrier density is not zero in the AR, by definition of the AR. Hence, the 

normalized electric field is zero in the AR in the high-injection limit, so the AR is 

characterized by 

 

AR) (in0)( >x
r

P                      (40) 

 

AR) in(0)( =∇ x
rr

U .                    (41) 

 

Note that (41) suggests that U is constant in the AR. However, the AR is not necessarily 

(or at least has not yet been shown to be) a connected region. It is possible that the AR 

might consists of several disjoint sub-regions, with U equal to a constant in each sub-

region, but a different constant in different sub-regions. It is possible to define sub-

regions (that may or may not be disjoint, and may or may not be distinct) that make up 

the AR, but it is necessary to first discuss carrier-density boundary conditions assumed at 

the DRBs. This analysis does not solve carrier transport equations within the DR, so 

boundary conditions at the DRB must be given in order to have a complete set of 

equations. A boundary condition assumed here is motivated by computer simulations of 

charge-collection in p-n junction silicon devices. These simulations show that, while the 

excess carrier density is much smaller at the DRB than at other locations in the QNR 

interior, the excess density at the DRB can still be much greater than the doping density 

when carrier generation is sufficiently intense, and the excess density on at least one of 

the DRBs increases with an increasing carrier-generation rate. We interpret this to mean 

that the normalized carrier density is greater than zero on at least one of the DRBs. It is 

small compared to the normalized carrier density at some interior points in the QNR, and 

the boundary value will be approximated as being zero in some selected equations that 

will be given later in Section V, but it is not exactly zero. Any DRB at which the 

normalized carrier density is greater than zero in the high-injection limit (there will be at 

least one such DRB) is surrounded by some region in which P > 0. Hence, there will 

always be an AR in contact with at least one DRB (i.e., the AR is not an empty set). 

However, it is not clear that the un-normalized carrier density must increase without 
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bound with increasing γ on all DRBs (e.g., perhaps some DRBs are in contact with the 

HRR), i.e., P might be exactly zero on some DRBs. At any DRB (if there is one) such 

that P is exactly zero, there are two possibilities. One possibility is that P increases as the 

observation point moves from the DRB into the QNR interior, in which case the DRB is 

in contact with the AR. The other possibility is that P is zero throughout some region 

surrounding the DRB, in which case the DRB is not in contact with the AR (it is in 

contact with the HRR). 

 

    For each i = 1, …, K, a subset of the AR is denoted ARi and is defined to be the set of 

all points in the AR that can be connected to Si by a path that lies entirely within the AR.  

If Si is a DRB that is not in contact with the AR, then ARi is an empty set. This implies 

that every pair of points within a nonempty ARi can be connected to each other by a path 

that lies within ARi, i.e., ARi is a connected set. If two such sets, call them ARi and ARj , 

have any points in common, then they are the same set. In this case, we will say that “Si is 

connected to Sj.” In other words, if ARi and ARj have any points in common, then there is 

a connected portion of the AR that covers both Si and Sj. 

 

    The fact that a nonempty ARi is a connected set together with (41) implies that U is a 

constant in ARi. The boundary of this set includes Si, where U = Ui, so 

 

)()( iARinx iUU =
r

.                   (42a) 

 

 Substituting this result into (37) gives 
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ψ .            (42b) 

 

    The AR is characterized by (40) through (42), with (42) describing sub-regions within 

the AR. Note that (41) not only implies that the normalized potential is constant in each 

connected region within the AR, it also states that the normalized electric field is zero in 

the AR, suggesting that the un-normalized electric field is finite. To be technically 

correct, the mere fact that the limit of the un-normalized field divided by γ (i.e., the 

normalized field) is zero does not imply that the un-normalized field must have a finite 

limit, but it does have a finite limit at each interior point in the AR, as can be seen by 

deriving an equation for the un-normalized field. For this purpose, we write (27) as 
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To obtain quantities that remain finite when taking the γ → ∞ limit in the AR, where P > 

0, it is necessary to pair the γ  on the far right of each equation in (43) with the 
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normalized potential, because pairing γ with P produces a singular quantity. This converts 

the normalized potential into the un-normalized potential, i.e., the equations are written as 
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When taking the  γ → ∞ limit, the un-normalized potential U(x;γ) will sometimes become 

singular in the AR because the reference potential was taken to be at S0 and the un-

normalized potential drop across a region outside the AR can become singular (as seen 

later). However, this singularity is contained in an additive constant from the point of 

view of the AR because (44) implies that the gradient of the un-normalized potential has 

a finite limit in the AR. One way to interpret the limit of );( γxU
rr

∇  is to interpret it as the 

limit of the gradient, which is defined in the AR. Another way to interpret the limit of 

);( γxU
rr

∇  is to interpret it as the gradient of a limit, but with the reference potential 

changed as needed so that U(x;γ) has a finite limit in the AR. Using either interpretation, 

taking the limit of (44) gives 
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and substituting (42) into these results gives 
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Combining either equation in (46) with the corresponding equation in (28), while using 

(35) and the fact that ψ satisfies Laplace’s equation, produces the same equation 

governing U(x), which is 
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    In summary, the AR is characterized by (40), (41), (42), (46), and (47). The name 

“ambipolar region” was chosen because (42), together with the fact that ψ satisfies 

Laplace’s equation, implies that the normalized carrier density satisfies the same 

ambipolar diffusion equation that is satisfied by P* and given by (35a). 

 

    We now consider the HRR in more detail. Recall that the HRR (when it exists) is 

defined to be the set of points in the QNR interior for which the normalized carrier 

density is zero in the high-injection limit. Depending on the specific example, there might 

not be any points in the QNR interior satisfying this condition, in which case there is no 

HRR and the entire QNR is the AR. That the points be interior points in the QNR is an 

essential part of the definition of the HRR, because there would otherwise always be an 

HRR containing (at least) the substrate electrode boundary. Combining P = 0 with (37), 

we conclude that the HRR (when it exists) is characterized by 
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Note that defining the HRR to consist of interior points when it exists insures that the 

HRR has a nonzero width when it exists. This implies that (48) and (49) apply to an 

interval (as opposed to just a boundary), which implies that it is valid to take the 

gradients of these equations within the HRR when the HRR exists. 

 

    The fact that the normalized carrier density is zero in the HRR suggests that the un-

normalized carrier density is finite. That this quantity is finite is seen by returning to (43). 

To obtain quantities that remain finite when taking the γ → ∞ limit in the HRR, where 

)(x
rr

U∇ ≠ 0 as seen by (49), it is necessary to pair the γ  on the far right of each equation in 

(43) with the normalized carrier density, because pairing γ  with the )(x
rr

U∇  produces a 

singular quantity. This converts the normalized carrier density into the un-normalized 

carrier density. Taking the γ → ∞ limit gives 
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As previously stated, it is valid to take the gradient of (48) and (49) within the HRR when 

the HRR exists, so we conclude that the gradient of P is zero in the HRR. Using this fact 

with the above equations, and also substituting (49) into the above equations, gives 
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Combining either equation in (50) with the corresponding equation in (28), while using 

(35) and the fact that ψ satisfies Laplace’s equation, produces the same equation 

governing P(x), which is 
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    In summary, the HRR is characterized by (48) through (51). The name “high-resistance 

region” was chosen because the carrier density remains finite (hence the electrical 

conductivity remains finite) in the HRR, compared to the infinite (in theγ → ∞ limit) un-

normalized carrier density (hence an infinite conductivity) in the AR. All of the electrical 

resistance associated with the QNR is in the HRR in theγ → ∞ limit. This is consistent 

with another property, which is that the normalized electric field is nonzero (the un-

normalized electric field is infinite in theγ → ∞ limit) in the HRR, compared to a zero 

normalized field (a finite un-normalized field) in the AR. 

 

    If there is an HRR, then part of the boundary of the HRR will be the demarcation 

between the HRR and ARi. This boundary will be denoted ARBi and its location is 

determined by setting P(x) equal to zero in (42) to get 
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If there is no HRR, we will define ARBi to be the electrode boundary S0. With this 

definition, (52) will also apply when there is no HRR because the normalized electric 

field will be zero throughout the QNR, implying that Ui = 0. We also have ψ = 0 and P* 

= 0 on S0, so (52) correctly gives S0 as the boundary.  

 

    The un-normalized electric field is finite at any point in the AR interior, but this does 

mean that this field is bounded in the AR. It is not bounded, which can be seen by 

selecting some point, call it x0, on the ARB. If there is no HRR, the ARB is S0. If there is 

an HRR, the ARB is the demarcation between the AR and HRR. For either case, the 

normalized carrier density is zero at x0. Now select a point x in the AR interior so that 

(45) applies and implies 
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Now take the limit as the point x approaches the point x0 along a path in the AR interior. 

Excluding special cases, the limit of the left side will not be zero, but the P(x) on the right 

does approach zero, implying that the gradient of U increases without bound, i.e., the un-

normalized electric field is not bounded in the AR. In contrast, the relevant electric field 
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in the HRR is the normalized electric field, which is not only finite at each point in the 

HRR interior, but also bounded in the HRR as implied by (49). 
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V. RELATING TERMINAL CURRENTS TO POTENTIAL BOUNDARY 

VALUES UNDER IDEAL BOUNDARY CONDITIONS 

 

    The goal is to derive equations expressing terminal currents in terms of other 

quantities, where the normalized terminal currents are defined by 

 

iMimiT
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MiM
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r

o
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         (53) 

 

which applies to any of the surfaces S0, S1, …, SK. The normal unit vector in the surface 

integrals is directed outward from the QNR because this is the customary convention 

when using Green’s theorem. The signs in front of the integrals were selected to produce 

positive currents at each reverse-biased DR. For example, minority carriers will be 

flowing towards the DRB from the QNR interior, which is the direction of the outer-

normal unit vector in the surface integral, but the direction of JJJJm is opposite to the 

direction of minority-carrier flow, so it is opposite to the direction of the normal unit 

vector; hence, a negative sign in front of the integral produces a positive current. 

 

    If the drift-diffusion equations had been completely solved, there would be enough 

information in that solution to calculate the minority and majority currents (and total 

currents) at each boundary when the carrier density and potential boundary values are 

given at all boundaries. Alternatively, if we are given the carrier density at each boundary 

and majority current (instead of potential) at each boundary, a complete solution would 

be able to calculate the total current and potential at each boundary from this given 

information. We have not yet obtained a complete solution. In terms of the original (un-

normalized) quantities, the particular combination of carrier density and potential 

appearing on the left side of (22) has been solved (when all quantities on the right are 

regarded as known), but we have not yet solved for each quantity individually because 

we have not yet solved all of the differential equations that have been listed. Because the 

solution is not yet complete, we do not expect to be able to calculate (using only the 

analysis given so far) the total currents and potential boundary values, even after 

numerical values have been assigned to the majority currents and carrier density 

boundary values. Additional analysis in later sections is needed for that. However, the 

analysis given so far is at least enough to determine constraints between total currents and 

potential boundary values after numerical values have been assigned to the majority 

currents and carrier density boundary values. These constraints are equations relating the 

total currents to the potential boundary values, and some useful information can be 

extracted from these equations in spite of the fact that these constraints, by themselves, 

are not enough to uniquely solve for the total currents and potential boundary values 

individually. 

 

    A complete solution to the drift-diffusion equations would uniquely solve for all 

quantities after values have been assigned to each majority current and carrier density 

boundary value, so specifying any additional boundary conditions would be an over-

specification of boundary conditions, but we are at liberty to assign a value to each 

majority current and carrier density boundary value. We will do this and then derive a 

partial solution, which is a set of equations relating the total currents to the potential 
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boundary values. The boundary values used as inputs are simplified approximations that 

are intended to have adequate accuracy when each DR is one-sided (n
+
-p when the 

substrate is p-type, or p
+
-n when the substrate is n-type) and is reverse biased. Such a 

junction blocks the majority current, so we use IM,i = 0 when i = 1, …, K. An 

approximation for the carrier density boundary values is motivated by computer 

simulations which show that, while the excess density at the DRB can be much greater 

than the doping density when carrier generation is sufficiently intense, the excess carrier 

density is still much smaller at the DRB (when the DR is reverse biased) than at the 

location in the QNR at which the density is maximum. This is interpreted to mean that Pi 

can be neglected compared to the other term in the square bracket on the right side of 

(39). In summary, the assumed boundary conditions for the DRBs, which will be called 

“ideal boundary conditions” (IBC) are 

 

)IBC(,...,1eachfor 0and0, KiiiM === PI .           (54) 

 

It should be noted that (54) is only a partial listing of the conditions that define IBC. A 

complete listing is given in Section VI. It should also be noted that ideal boundary 

conditions are not approximations that become exact in the high-injection limit. They are 

in the category of physical approximations, the same category as approximating 

mobilities as constants in the QNR. They describe an ideal reverse-biased DRB that is 

defined by these boundary conditions. The ideal DRB is not an exact representation of a 

real DRB even in the high-injection limit, but it is taken for granted that the ideal DRB 

resembles a real DRB close enough so that some useful physical insight can be obtained 

from an analysis of the ideal case. 

 

    IBC will be assumed throughout the remainder of this paper, so from this point on (39) 

reduces to 
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Because (38) applies throughout the entire QNR, it can be used to relate surface integrals 

on any of the surfaces S0, S1, …, SK. Taking surface integrals while using (53) and (55) 

gives 
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If we now restrict Si to be any of the DRBs, i.e., i = 1, …, K, we can use IM,i = 0, which 

implies that IT,i = Im,i, to write (56) as 
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where we shortened the notation by defining 
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    Regarding Ii* defined by (58) as a known quantity describing the spatial distribution of 

the normalized carrier generation rate density, and Ci,j defined by (59) as a known set of 

constants describing the QNR geometry, (57) becomes a set of constraints relating the 

normalized terminal currents to the normalized potential boundary values on the DRBs, 

which is the set of equations that was promised earlier in this section. 

 

    An alternate expression can be obtained for Ii* defined by (58) by first using (12b), 

then (29b), then Green’s theorem, and then (12a) and (29a) to get 
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Combining this result with (58) while using (11) gives 
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    Except for material constants that determine units of measure, the Ci,j defined by (59) 

is the same as the coefficient of induction defined in electrostatic treatments of capacitors 

consisting of K+1 conductors [4]. One conductor (S0 in our notation) defines the 

reference potential and has a charge that balances the sum of the charges on the 

remaining K conductors consisting of S1, …, SK. It is intentional that the i and j subscripts 

in Ci,j range from 1 to K (not zero to K) so that Ci,j will be an invertible matrix 

(invertibility is proven in Appendix A). 

 

    The elements of the inverse of Ci,j are denoted here as Φi,j. These elements are the 

same (except for material constants that determine units of measure) as the coefficients of 

potential defined in electrostatic treatments of capacitors consisting of multiple 

conductors [4]. Important properties of Ci,j and Φi,j are that they are symmetric. This is  

established in (A3) in Appendix A for Ci,j. Starting with the fact that the inverse of a 

transpose is the transpose of the inverse, it is easy to show that the inverse of a symmetric 

matrix is symmetric, implying that Φi,j is also symmetric. The conclusions are 
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KjandKiforijji ,...1,...,1,, ==Φ=Φ .              (61b) 
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The statement that these matrices are inverses can be written as 
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This can be used to invert (57) so that it solves for the potential boundary values in terms 

of the terminal currents instead of vice-versa. Changing the i subscript in (57) to k, 

multiplying the resulting equation by Φi,k, summing in k, and then using (62) gives 
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VI. SEVERAL INEQUALITIES 

 

    Several inequalities derived here will be used in later sections to derive necessary and 

sufficient conditions for the existence of an HRR, and to derive some topological 

properties of the AR and HRR. The focus here is on the inequalities themselves, with 

applications postponed to later sections. However, some preliminary discussion is needed 

first before the derivation of the inequalities can proceed because (54) is a partial list but 

not a complete list of all of the properties that define IBC. It is necessary to list one more 

property, so we start the discussion by revisiting the ideal reverse-biased DR. Section IV 

mentioned the possibility that one or more (but not all) DRBs might be in contact with 

the HRR, at least as predicted by ideal boundary conditions. There are two possible ways 

in which a DRB can contact an HRR as predicted by ideal boundary conditions. The first 

possibility occurs when the condition Pi = 0 is an inexact approximation while the exact 

condition is Pi > 0, but P decreases as the observation point moves away from the DRB. 

The DRB is in contact with the AR, but the AR width is very narrow. In the IBC limit we 

would predict a zero AR width for such an example, but this is an approximation because 

the actual AR width is small but not zero. The exact description of a small but nonzero 

AR width allows us to substitute (45c) into the right side of 
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to get 
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If we now take the IBC limit by letting Pi → 0, while noting that P ≥ 0 throughout the 

QNR, we conclude the direction of increasing P is opposite to the outer normal vector in 

the surface integral, which gives 
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The second possibility is more subtle and occurs if the γ → ∞ limit leads to the exact 

limiting condition Pi = 0, and with P not increasing as the observation point moves away 

from the DRB. The final property used to define IBC states that this case is equivalent to 

a limit. The limit is obtained by starting with a DRB that is surrounded by an AR layer 

separating the DRB from the HRR, and taking the limit as the thickness of the AR layer 

shrinks to zero. In other words, the above inequality still applies. It also applies to any 

DRB in contact with the AR, so the last property used to define IBC states that the above 

inequality applies to every DRB. Combining this with the properties already listed in (54) 

gives the complete list of properties that define IBC, which are 

 

)IBC(,...,1eachfor 0and0and0 ,,, KiiiTimiM ==≥== PIII .     (65) 

 

     One inequality is part of the definition of IBC and is Im,i = IT,i ≥ 0. To obtain another 

inequality, go back to (64) and use IM,i = 0, implying that Im,i = IT,i, to write (64) as 
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Now combine (45c) with (34) to get 
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Under IBC we have 

),...,0(   on0)( KjSx j ==
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P .                 (67b) 

 

If there is no HRR then the ARB is S0. If there is an HRR, then the ARB includes points 

in the QNR interior, with these points being the union of ARBi for each i such that ARi is 

not empty. For all cases we have 

 

ARBon0)( =x
r

P .                    (67c) 

 

Now compare (67) to (35). If there is no HRR, so that the AR is all of the QNR, we 

conclude that P and P* satisfy identical boundary value problems, so 

 

 HRRno is  thereif QNR throughout)()( xx
rr

*PP = .           (68) 

 

Now suppose there is an HRR. First consider a DRB, call it Si, that is in contact with the 

AR. This DRB is surrounded by a connected portion of the AR denoted ARi. From (67b) 

and (67c) we conclude that all portions of the boundary of ARi that are not reflective 

boundaries are sink boundaries. Part of the sink boundary is ARBi. Note that P* satisfies 

the same field equation as P in ARi. Also, P* satisfies the same boundary conditions as P 

on all portions of the boundary of ARi consisting of DRBs (if any portion of the boundary 

consists of DRBs) or the electrode (if the boundary includes the electrode) or reflective 

boundaries (if the boundary includes reflective boundaries). However, if ARBi is in the 

QNR interior, then this is a sink boundary for P but not for P*. The presents of this sink 

boundary can only reduce the surface integral on the right side of (66) compared to what 

the integral would be without the sink boundary, i.e.,  
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and using (66) and (58) gives 

*, iiT II ≤ . 

 

This result was derived for a DRB that is in contact with the AR when the case 

considered is one in which there is an HRR. Interpreting a DRB in contact with the HRR 

as the limiting case of a DRB in contact with the AR, in the limit as the width of ARi goes 

to zero, we not only obtain the above inequality, we obtain the stronger statement that IT,i 

= 0, because the sink boundary is adjacent to the DRB. Therefore the above inequality 

applies to any DRB when there is an HRR. If there is no HRR, we conclude from (68) 



23 

that we not only have the above inequality (hence the above inequality applies to all 

DRBs with or without an HRR), we have the stronger statement that IT,i = Ii*. The 

conclusions are 

KiiiT ,...,1eachfor *0 , =≤≤ II                 (69) 

 

KiiiT ,...,1eachfor *   then HRRno is  thereIf , == II           (70) 

 

0   then,,...,1 somefor   HRR thecontacts  If , == iTi KiS I .          (71) 

 

    The next inequality involves the normalized potential boundary values. It is shown in 

Appendix C that the coefficients Φi,j are nonnegative (and the diagonal elements are 

positive). Using this fact together with (69), we conclude from (63) that 

 

Kifori ,...,10 =≥U .                    (72) 

 

    The last topic in this section discusses the minority-carrier current at the electrode S0. 

If all of S0 is in contact with the HRR, we conclude from (50a) that the minority-carrier 

current through S0 is zero because P = 0 on S0. However, if some or all of S0 is in contact 

with the AR, an analysis of the minority-carrier current using either (45a) or (46a) must 

deal with the fact that the electric field is unbounded, as pointed out at the end of Section 

IV. This inconvenience can be avoided by going back to the finite γ to evaluate the 

minority-carrier current at the electrode and then take the limit of the result as γ → ∞. For 

a finite γ we can write (43a) as 
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The ideal electrode is a perfect sink not only for the normalized carrier density P, but also 

for the un-normalized carrier density P. Therefore the current at the electrode is given by 

 

∫∫ ∇−=−≡
00

0, );();()(
S

m
S

mm SdxqDSdx
r

o
rrr

o
r

γγγ PJI .           (73) 

 

If the electrode is in contact with the HRR in the γ → ∞ limit, the gradient on the right 

will be zero. This produces a zero current in the γ → ∞ limit which is consistent with 

(50a). If the electrode is in contact with the AR in the γ → ∞ limit, the result (73) is 

consistent with (45a) when taking the limit of (45a) as the observation point x moves to 

the electrode. In this limit, the electric field increases without bound as x moves to the 

electrode, but the normalized carrier density goes to zero faster than the electric field 

increases because the electrode is a sink for the un-normalized carrier density. (This 

property is not shared by an ARB separating the AR from the HRR because this ARB is a 

sink for the normalized carrier density but not for the un-normalized carrier density.  

Hence, the product of a normalized carrier density that goes to zero multiplied by an un-

normalized electric field that increases without bound is more difficult to evaluate on any 

ARB that is not the electrode). Note that P is zero on the electrode and nonnegative in the 
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QNR interior, so the direction of increasing P is opposite to the direction of the outer 

normal vector in the surface integral in (73). This gives  

 
0)(0, ≥γmI  

 

for all γ, and taking the limit as γ → ∞ gives 

 

00, ≥mI .                         (74) 

 

Another result implied by (74) is obtained by using the divergence theorem together with 

(53) and (34) to get the second equality in 
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and combining this with (74) gives 
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To shorten the notation, define 
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so that R is the normalized total rate of carrier generation in the QNR, and qR is the 

normalized charge generation rate in the QNR. This allows us to write (75) and (76) as 
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VII. SOME TOPOLOGICAL PROPERTIES 

 

    This section begins with a review of some of the discussion that was given in Section 

IV, which is repeated here for easy reference. For each i = 1, …, K, a subset of the AR is 

denoted ARi and is defined to be the set of all points in the AR that can be connected to Si 

by a path that lies entirely within the AR. If Si is a DRB that is in contact with the HRR 

instead of the AR, then ARi is an empty set. This definition implies that every pair of 

points within a nonempty ARi can be connected to each other by a path that lies within 

ARi, i.e., ARi is a connected set, and this in turn implies that U(x) is a constant in ARi. If 

two such sets, call them ARi and ARj , have any points in common, then they are the same 

set. In this case, we will say that “Si is connected to Sj.” An equivalent definition of the 

statement that a DRB Si is connected to another DRB Sj is that there is a path within the 

AR interior that connects some point on Si to some point on Sj. Because U(x) is constant 

on this path, and U(x) = Ui on Si while U(x) = Uj on Sj, we conclude that if a DRB Si is 

connected to another DRB Sj, then Ui  = Uj. Furthermore, if a DRB Si is connected to 

another DRB Sj, then ARi  = ARj. 

 

    The remainder of this section derives new theorems regarding the topology of the AR 

and HRR. To simplify the analyses, the remainder of this paper considers “irreducible 

device geometries.” These are geometries that are not “reducible geometries,” where a 

reducible geometry is one in which S0 is composed of multiple sections formed in such a 

way so that the DRBs can be divided into groups with one group completely surrounded 

by one section of S0 and another group completely surrounded by another section. An 

example of a reducible geometry, which is excluded from consideration, is shown in Fig. 

2. An example of an irreducible geometry, which is analyzed here, was already shown in 

Fig. 1. Note that there is no loss of generality by excluding reducible geometries because 

they decouple into separate and independent irreducible geometries. For example, the 

configuration consisting of S3 and S0 in Fig. 2 is separate and independent of the 

configuration consisting of S1, S2, and S0, and each configuration can be treated using an 

analysis of irreducible geometries. An irreducible geometry has the property that there is 

some coupling between every pair of DRBs in the sense that all off-diagonal elements of 

Ci,j are negative (not zero) and all of the elements Φi,j are positive (no elements are zero). 

These strict inequalities simplify the analysis and this is the motivation for confining our 

attention to irreducible geometries. The strict inequalities allow us to replace (B5b) in 

Appendix B and (C9b) in Appendix C with the stronger conditions 

 

jiwithKjandKiforC ji ≠==< ,...,1,...,10,          (79a) 

 

KjandKiforjjji ,...,1,...,10 ,, ==Φ≤Φ< .           (79b) 

 

    Implications from the condition that two DRBs are connected were already discussed, 

but now we derive implications from the condition that a DRB is connected to the 

electrode. We will say that a DRB is connected to the electrode if there is a path lying 

entirely within the AR that connects some point on the DRB to some point on the 

electrode. A topology theorem that will be proven below states that if there is any DRB 
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that is connected to the electrode, then there is no HRR anywhere. This implies that Ui = 

0 for each i = 1, …, K, and that IT,i = Ii* for each i = 1, …, K. However, the proof will 

actually establish these conclusions in a different order. Starting with the given 

information that some DRB is connected to the electrode, we will first show that IT,i = Ii* 

for each i = 1, …, K, then show that Ui = 0 for each i = 1, …, K, and finally show that 

there is no HRR. 

 

    To prove the above conclusions, we start with the given information that there is some 

DRB, call it Sj for some j = 1, …, K, with the property that there is some path in the AR 

that connects some point on Sj to some point on S0. This path is a connected set of points 

so (41) implies that Uj is constant along this path. Note that U(x) equals zero on S0 and it 

equals Uj on Sj, so the first conclusion is that Uj = 0, and that U(x) = 0 along the path. 

Using Uj = 0 with (63) gives 
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From (79b) and (69), we see that the right side of the above equation is a sum of 

nonnegative terms, so each term in the sum must be zero. But the Φi,j coefficients are all 

positive, so each parenthesis on the right must be zero, i.e., 

 

KiiiT ,...,1eachfor *, == II . 

 

Substituting this result back into (63) gives 

 
Kii ,...,1eachfor 0 ==U  

 

and (55) gives ψ(x) = 0 throughout the QNR. Therefore, (42b) reduces to 

 

 
Fig. 2. Illustration of a device having a reducible geometry. This is excluded from consideration in the theory 
derived here. However, this problem decouples into two independent problems that can be treated by the 
theory derived here. 
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We next show that there is no HRR by contradiction. Assume that there is an HRR. Then 

there will also be a boundary, denoted ARBj, that is in the QNR interior and separates ARj 

from the HRR, and satisfies (52). Using ψ(x) = 0 and Uj = 0, (52) reduces to 

iARBx on0)(* =
r

P . 

 

However, there is no boundary in the QNR interior satisfying this condition, because 

P*(x) > 0 in the QNR interior. Therefore there is no HRR. 

 

    The conclusions from the above paragraph are: 

 

.,...,1 eachfor   *  and  0 (b)

.electrode)  the toconnected are  DRBsall (hence,  HRRno is There (a)

 thenelectrode,  the toconnected is any DRB If

, KiiiTi === IIU

        (80) 

 

    An important implication of (80) is that there are only two possibilities. Either there is 

no HRR or the electrode is entirely covered by the HRR. We cannot have a situation in 

which part of the electrode contacts the HRR while another part does not, because the 

uncovered part establishes a connection with a DRB, which implies that there is no HRR. 

However, this conclusion was derived for an irreducible geometry in the γ → ∞ limit. 

This limit may or may not be a good approximation for a large but finite γ because, 

depending on the geometry, there might be a problem with competing limits. For 

example, consider Fig. 2 and suppose that the point where S0 contacts the upper plane is 

displaced slightly downward to produce a small gap between S0 and the upper plane. The 

geometry now becomes irreducible. However, if the gap is small enough, we can expect 

almost no communication between the two sides of the device. In particular, if carrier 

liberation is confined to the left side, we might expect an HRR to cover the left side of S0 

without covering the right side, contradicting the claim that S0 is completely covered if it 

is covered at all. This is a problem of competing limits. If the gap shrinks to zero first and 

then γ → ∞ (a reducible geometry) we obtain a different result then we obtain if γ → ∞ 

first (an irreducible geometry) and then the gap shrinks to zero. Stated another way, the 

smaller the gap is, the larger γ must be in order to be well approximated by the γ → ∞ 

limit. From a practical point of view, it is recommended that the small-gap case, i.e., an 

irreducible geometry that is “almost reducible,” be approximated as a reducible 

geometry. This will result in the γ → ∞ limit being a better approximation of the finite γ 
case. 

 

    Note that there will always be an AR covering at least one DRB. Also, it was 

concluded in this section that if any DRB is connected to the electrode then there is no 

HRR. Furthermore, either there is no HRR or the electrode is entirely covered by the 

HRR. These conclusions limit the possible topologies of the AR and HRR. For 

illustration, consider a device containing two DRBs. There are five possible topologies 

for the AR and HRR, which are shown in Fig. 3. For the first possibility (Fig. 3a), there is 

no HRR, so the AR1, the AR2, the AR, and the QNR are identical sets. For the second 
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possibility (Fig. 3b), there is an HRR that covers S2 as 

well as S0, so AR1 is all of the AR while AR2 is an 

empty set. The third possibility (Fig. 3c) is the same as 

the second but with S1 and S2 interchanged. For the 

fourth possibility (Fig. 3d) there is an HRR but S1 and 

S2 are connected so the AR1, the AR2, and the AR are 

identical sets. For the fifth and last possibility (Fig. 

3e), there is an HRR, and the AR1 is disconnected from 

the AR2, with neither set being empty. 

 

    The conclusion that an HRR covers the entire 

electrode when an HRR exists has an important 

implication regarding the minority-carrier current at 

the electrode. If there is an HRR, then it covers the 

entire electrode, so (50a) applies everywhere on the 

electrode. Because P = 0 on the electrode, there is no 

minority-carrier current through any part of the 

electrode. The conclusion is: 

 

               .0  then HRR,an is  thereIf 0, =mI         (81a) 

 

Using (78a), this can also be written as 
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Fig. 3. The five possible topologies 
for an irreducible geometry with two 
junctions. See text for explanation. 
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VIII. NECESSARY AND SUFFICIENT CONDITIONS FOR  

THE EXISTENCE OF AN HRR 

 

    A necessary condition for the existence of an HRR can be derived by assuming that 

there is an HRR. From (81b) we conclude that 
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while (69) gives 
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Combining these results, we conclude that if there is an HRR then 
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Inverting this implication gives 
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Now assume that there is no HRR. Using (70) gives 
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Combining this with (78b), we conclude that if there is no HRR then 
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Inverting this implication gives 
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IX. THE TWO-TERMINAL PROBLEM 

 

    The two-terminal problem is a K =1 problem with the DRB being one terminal and the 

electrode the other. With only one DRB, we will omit subscripts and write IT and I* 

instead of IT,1 and I1*. Regarding I* and the volume integral of gref(x) as known 

quantities (note that I* can be solved from (60)), enough information has been listed to 

solve for IT. There are two cases to consider. The first is defined by 

 

1) Case (defines  * RI q>                    (83a) 

 

which implies an HRR via (82b), so (81b) gives 

 

1) Case(for    RI qT = .                    (83b) 

The second case is defined by 

 

2) Case (defines  * RI q<                    (84a) 

 

which implies no HRR via (82a), so (70) gives 

 

2) Case(for    *T II = .                    (84b) 

 

    In view of the discussion in the second paragraph in Section V, it might be surprising 

that the current can be solved for the two-terminal problem. In terms of the original (un-

normalized) quantities, the only equation that has been solved is the equation 

corresponding to one combination of the two currents, with that combination being the 

left side of (23), and the solution solves for only one combination of P and U, with that 

combination being the left side of (22). The two quantities P and U were not individually 

solved because in order to do so it would be necessary to solve the equation 

corresponding to another, independent, combination of the currents, and that was not 

done (equations were listed but not solved). The complete solution to the boundary-value 

problem has not yet been obtained. When taking the limit as γ → ∞ while recognizing a 

regional partitioning, the fact that the solution is not yet complete is reflected by the fact 

that the un-normalized electric field in the AR, and the un-normalized carrier density in 

the HRR, have not yet been solved (equations were listed for these quantities but the 

equations were not yet solved). As previously stated, it is necessary to solve the equation 

corresponding to some other combination of the currents, a combination that is 

independent of the combination on the left side of (23), to have a complete solution. Until 

that is done, there is one equation missing. This leads to the question of how it was 

possible to completely solve the two-terminal problem when there is an equation missing. 

The answer under Case-1 conditions is that we actually did supply an additional equation. 

The equation associated with the minority-carrier current, which is obtained by 

combining (18a) with the left equation in (19), was not completely solved, but we did 

extract enough information from these equations to conclude that Im,0 = 0. When this 

supplementary equation is included, we have a complete set of equations that were able 

to completely solve the two-terminal problem under Case-1 conditions. Unfortunately, 
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this approach does not generalize to multiple DRBs if the goal is to solve for each 

individual current IT,i (but the sum of these currents can be solved using the two-terminal 

analysis). For K DRBs, we would need K supplementary equations, and we only have 

one. The problem of multiple DRBs is going to require further analysis. 

 

    However, under Case-2 conditions, the approach used for the two-terminal problem 

does generalize to multiple DRBs. For the two-terminal problem we have (84b) under 

Case-2 conditions, and for multiple DRBs we have (70). The reason that it was possible 

to completely solve the problem under Case-2 conditions when there is an equation 

missing is that, while the equation associated with the minority-carrier current was not 

completely solved, we did extract enough information from it to conclude that Im,0 ≥ 0. 

Case 2 is unique in that this small amount of supplementary information, when combined 

with the equations that were solved, is enough to conclude that Ui = 0 and IT,i = I* for 

each i =1, …, K.  
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X. THE THREE-TERMINAL PROBLEM 

 

    The three-terminal problem is a K =2 problem, i.e., there are two DRBs and an 

electrode. For this case, (57) can be written as 

 

2,121,111,1* CCT UUII ++=                   (85a) 

 

2,221,212,2* CCT UUII ++= .                 (85b) 

 

A particular combination of these equations will be useful later in the analysis. This is 

obtained by multiplying the first equation by C2,1 + C2,2, multiplying the second equation 

by C1,1 + C1,2, and subtracting. The result is 

 
[ ] [ ] [ ] [ ] ++−+=+−+ 1,2,2122,2,11112,21222,111 ** T,T,,, CCCCCCCC IIII  

 

[ ][ ] [ ][ ]2,121,112,2122,221,212,111 CCCCCCCC ,, UUUU ++−++ . 

 

Combining terms containing U1 and U2 gives 

 
[ ] [ ] [ ] [ ] ++−+=+−+ 1,2,2122,2,11112,21222,111 ** T,T,,, CCCCCCCC IIII  

 

[ ]( )122,11,22,21,1 UU −− CCCC .    (86) 

 

    It was already shown, and stated in (82a), that there is no HRR if I1* + I2* < qR. 

Furthermore, if this condition is satisfied, we conclude from (70) that  IT,1 = I1* and IT,2 = 

I2*. A more difficult case occurs when there is an HRR. This is more difficult because 

there are different possible topologies (S1 might be connected to S2, or it might not be) 

and the currents are calculated differently for different topologies. Instead of deducing 

the topology from a given set of conditions, we will work in the other direction. We will 

assume a topology and then determine the conditions that are implied by this assumption. 

If these conditions are not satisfied in a given example, the assumed topology is not the 

topology that is present in that example. Several assumed topologies are discussed 

separately below. An HRR is present in all cases below, so for all of these cases (81b) 

gives 

 HRR)(if2,1, RII qTT =+ .                  (87) 

 

 

A. Case 1A: S2 Contacts the HRR 

 

    The first case considered, illustrated in Fig. 3b, is one in which there is an HRR and S2 

contacts the HRR while S1 contacts the AR. Inverting (82a), the presence of an HRR 

implies that I1* + I2* ≥ qR. The conditions that define Case 1A are 

 

1A) Case (definesHRRthecontactsand** 221 SqRII ≥+ .        (88) 
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Note that (71) and (87) together imply 

 

1A) Case(for and0 1,2, RII qTT ==                (89) 

 

so (86) becomes 

 
[ ] [ ] [ ] ++=+−+ RII qCCCCCC ,,, 2,21222,11112,212 **  

 

[ ]( ) 1A) Case(for 212,11,22,21,1 UU −− CCCC .    (90) 

 

Recall from the discussion at the end of Section IX that the analysis in the main text is 

incomplete for the multi-junction problem, and another piece of information must be 

supplied in order to have a complete set of equations. The missing piece of information is 

extracted from (51), which is discussed in detail in Appendix D. Fortunately, it is not 

necessary to solve (51) for the un-normalized carrier density in the HRR. A simple 

conclusion from (51) provides enough information to complete the analysis for Case 1A. 

This conclusion, derived in Appendix D, is that floating terminals are at intermediate 

potentials. Using (72) and the fact that S2 is a floating terminal (i.e., IT,2 = 0) we conclude 

that 0 ≤ U2 ≤ U1 so 

1A) Case(for 021 ≥−UU .                   (91) 

 

Note that (B5c) in Appendix B gives C1,1 ≥ −C1,2 and C2,2 ≥ −C2,1 with at least one of 

these inequalities being a strict inequality. Each side of each inequality is nonnegative so 

the inequalities can be multiplied, and using the fact that at one inequality is a strict 

inequality gives 

 

02,11,22,21,1 >− CCCC .                    (92) 

 

Combining (91) and (92) with (90) gives 

 

[ ] [ ] [ ] 0** 2,21222,11112,212 ≥+−+−+ RII qCCCCCC ,,, . 

 

The conclusions for Case 1A are 
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B. Case 1B: S1 Contacts the HRR 

 

    The second case considered, illustrated in Fig. 3c, is one in which there is an HRR and 

S1 contacts the HRR while S2 contacts the AR. This is the same as Case 1A but with S1 

and S2 interchanged. The conditions that define Case 1B are 
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1B) Case (definesHRRthecontactsand** 121 SqRII ≥+ .       (94) 

 

The conclusion is the same as (93) but with S1 and S2 interchanged, i.e., 
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C. Case 2: S1 and S2 are Connected 

 

    The next case considered, illustrated in Fig. 3d, is one in which there is an HRR and 

the AR is a connected set so that AR1 = AR2. For this case we have U1 = U2, so Case 2 can 

be defined by 

 

2) Case (definesand** 2121 UURII =≥+ q .           (96) 

 

For this case, (86) reduces to 

 

[ ] [ ] [ ] [ ] 2) Case(for ** 1,1,2222,2,11111,22222,111 T,T,,, CCCCCCCC IIII +−+=+−+ .  (97) 

 

Note that IT,1 and IT,2 will each be strictly greater than zero for Case 2, and combining this 

fact with (87) gives 

 

2) Case(for 0and0 2,1, RIRI qq TT <<<< .            (98) 

 

Note that (B5c) states that each square bracket on the right side of (97) is nonnegative, 

and at least one of them is positive. Combining this fact with IT,1 > 0 and IT,2 < qR gives 

the two inequalities 

 
[ ] [ ] [ ] 0and 1,2,2122,1112,2,111 ≤+−+≤+ T,,T, CCqCCCC IRI  

 

with at least one of these inequalities being a strict inequality so adding inequalities gives 

the strict inequality 

 

[ ] [ ] [ ] RII qCCCCCC ,T,T, 2,1111,2,2122,2,111 +<+−+ . 

 

Similar steps using IT,2 > 0 and IT,1 < qR give a second inequality, and combining that 

result with the above inequality gives 

 

[ ] [ ] [ ] [ ] RIIR qCCCCCCqCC ,T,T,, 2,1111,2,2122,2,1112,212 +<+−+<+− . 

 

Using this with (97) gives 
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[ ] [ ] [ ] [ ] 2) Case(for ** 2,11112,21222,1112,212 RIIR qCCCCCCqCC ,,,, +<+−+<+− .  (99) 

 

To solve for the currents, note that (87) and (97) are two simultaneous equations 

containing IT,1 and IT,2. Solving these equations produces the bottom two entries in the 

conclusion below that summarizes Case 2 results. 
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The denominator in items (c) and (d) in (100) are positive according to (B5c). Note that 

item (a) insures that the right side of item (c) is positive and that the right side of item (d) 

is less than qR, while item (b) insures that the right side of item (d) is positive and that the 

right side of item (c) is less than qR. Also, by combining I1* + I2* ≥ qR with item (c), we 

verify consistency with IT,1 ≤ I1*. Similar steps used with item (d) verify that IT,2 ≤ I2*. 

Note that the conditions on I1* and I2* for the three cases (item (a) in (93) for Case 1A, 

item (a) in (95) for Case 1B, and items (a) and (b) together in (100) for Case 2) are 

mutually exclusive and all inclusive. 

 

D. The Unfinished Case 

 

    The only possible case that still remains when there is an HRR is the case, illustrated in 

Fig. 3e, in which S1 and S2 both contact the AR, but they contact nonempty and 

disconnected portions of the AR. We will call this the “disconnected case” but the title of 

this subsection calls it the “unfinished case” to emphasize the fact that conclusions are 

not given here for this case. Additional work is needed to derive conclusions for this case, 

and perhaps this will be done in the future. However, we can include a discussion of the 

conditions needed for this case to be encountered so that the relevancy (or lack of 

relevancy) of this case can be recognized. 

 

    The case considered is one in which AR1 and AR2 are both nonempty and are distinct. 

Note that the close boundary of AR1 can be divided into three sections. One section is a 

portion of the reflective QNR boundary adjacent to S1. Another section is S1, where P* + 

ψ = NU1/2VT (under IBC). The remaining section is ARB1, where, again, P* + ψ = 

NU1/2VT. Therefore, on all non-reflective portions of the boundary of AR1 we have P* + 

ψ = NU1/2VT, but in the interior of ARB1 we have P* + ψ > NU1/2VT. This implies that P* 

+ ψ has a relative maximum in the interior of AR1. Similarly, P* + ψ has a relative 

maximum in the interior of AR2. Note that ψ satisfies Laplace’s equation, so P* + ψ 

satisfies the same ambipolar diffusion equation (35a) that is satisfied by P*, and this is 

satisfied throughout the QNR. Therefore, in order for AR1 and AR2 to be nonempty and 
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distinct, it is necessary (but not sufficient) for a solution to the ambipolar diffusion 

equation, with the driving term gref, to have relative maximums at distinct locations 

within the QNR. This places restrictions on what gref can be. For example, suppose carrier 

liberation is produced by a point source. The function P* + ψ has a relative maximum 

only at the location of the source because in any region excluding this point the function 

P* + ψ satisfies Laplace’s equation which has no relative maximums. If AR1 and AR2 are 

both nonempty then they each contain a relative maximum, but a relative maximum 

occurs at only one point for this example, so AR1 and AR2 have a point in common, 

implying that they are connected, which implies that AR1 = AR2. Therefore, a point source 

cannot produce the disconnected case. Similarly, if the DRs are in a horizontal 

arrangement and carrier generation is confined to a vertical line segment, the 

disconnected case will not occur. However, if the DRs are in a horizontal arrangement 

and carrier generation is confined to a horizontal line segment, the disconnected case 

cannot be excluded based on these arguments because a horizontal arrangement of 

boundary values for P* + ψ can result in P* + ψ having relative maximums at distinct 

locations within the QNR. The arguments given here are inconclusive for a horizontal 

line source of carrier generation, and additional work is needed to reach conclusions for 

this kind of generation source. Fortunately, the analysis in this section is sufficiently 

complete to treat the specific examples discussed in Section XII. 
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XI. MINIMUM VOLTAGE NEEDED TO MAINTAIN  

A REVERSE-BIASING CONDITION 

 

    Previous sections considered the QNR alone. In an actual device, there are two sides to 

a p-n junction, and the power supply connections used to bias the junction are on the side 

opposite of the QNR. It was not necessary to analyze the interior of a DR because IBC, 

intended to represent boundary conditions at the DRB of a reverse-biased DR, supplied 

boundary conditions for the QNR so that a complete set of equations were obtained when 

investigating only the QNR interior. However, IBC implies voltages across the QNR 

when carriers are generated. Therefore, in order to maintain IBC, the power supply 

voltages connected to the device must be at least large enough to supply these QNR 

voltages. It is not enough for the power supply to have the correct polarity. To maintain a 

reverse-biasing condition, the biasing from the power supply must have a large enough 

magnitude to produce the QNR voltage drops plus a reverse-biasing voltage across the 

DR. Therefore, the power supply biasing voltage must exceed the voltage drop that 

occurs across the QNR. Stated another way, the QNR voltage drop implied by IBC is the 

minimum power supply voltage that can maintain a reverse-biasing condition. This 

minimum voltage is easily calculated for any example for which the currents have 

already been solved by using (63). 

 

    For a specific example, consider the two-terminal device. This is a K =1 device so 

there is only one Ci,j element, which is C1,1, and the inverse Φi,j has one element given by 

Φ1,1 = 1/C1,1. Omitting subscripts because there is only one DR, (63) reduces to 

 

( ) )1(/* =−= KCTIIU .                  (101) 

 

Recall from Section IX that if I* < qR, then there is no HRR and IT = I*, implying that U 

= 0. However, U is the normalized potential in the limit as γ → ∞, so a value of zero does 

not imply that the un-normalized potential with a finite γ is exactly zero. It does imply 

that the un-normalized potential is much smaller than it would be with the same finite γ 
but with a different spatial distribution of carrier generation as needed to produce an 

HRR, so let us consider that case. This occurs when I* > qR, which gives IT = qR, so 

(101) becomes 

 

( ) )*,1(/* RIRIU qKCq >=−= .              (102) 

 

Again, U is the normalized potential in the limit as γ → ∞, so the significance of (102) 

regarding the un-normalized potential produced by a finite generation rate requires some 

explanation. The definition of a limit implies that the approximation U(γ) ≈ U(∞) can be 

made as accurate as desired by letting γ be sufficiently large. If accuracy is measured in 

terms of a relative or fractional error (a.k.a., percent error) instead of absolute error, the 

fact that U(∞) ≠ 0 for the example considered (which was not true for the previous 

example in which there was no HRR) implies that the approximation γU(γ) ≈ γU(∞) is 

accurate when γ is sufficiently large. Replacing the left side with U(γ) and using (102) to 

substitute for U(∞) on the right side, the approximation is written as 
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( ) CqU /*)( RI γγγ −≈ .                   (103) 

 

If we define I*(γ) and R(γ) by 
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then (103) becomes 

 

( ) CqRIU /)()(*)( γγγ −≈ . 

 

The parameter γ has no further use here if we denote the actual (un-normalized) finite 

generation rate density as g(x) instead of g(x; γ), so the above equations become 

 

( ) )*,1(/* qRIKCqRIU >=−≈                (104) 
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The end result is equivalent to a simple substitution. If we replace the normalized 

generation rate density gref(x) in both (60) and (77) with the actual (un-normalized) finite 

generation rate density g(x), then U in (102) is replaced by an approximation for the 

actual (un-normalized) potential U. 

 

    To make the example more specific so that a numerical estimate can be obtained, 

suppose the diode is a cylinder (not necessarily circular), with the DRB at one end, the 

electrode at the other end, and the cylinder wall is reflective. Regardless of the spatial 

distribution of carrier generation, the device is one-dimensional from the point of view of 

Ω defined by (12), and the solution for Ω is Ω(x) = 1 − x/L, where L is the distance 

between the DRB and electrode, and x is the distance between the DRB and the point of 

evaluation of Ω. The parameter C calculated from (59) for this Ω is given by 
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where A is the cross sectional area of the cylinder. To make the example still more 

specific, suppose the carrier generation rate is uniform within the cylinder. For a uniform 

g together with Ω(x) = 1 − x/L, the parameters I* and R calculated from (105) become 
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A uniform g makes the example simple, but the example is interesting only if this 

produces an HRR, i.e., if I* > qR. Comparing the above expressions, we conclude that a 

uniform g will produce an HRR if Dm/DM > 1. This condition is satisfied in a p-type 

substrate (the minority carriers are electrons which have a larger diffusion coefficient 

than holes) which is the case considered, so (104) applies. Substituting the above 

expressions for C, I*, and R into (104) gives 
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An equivalent equation that expresses U in terms of qR/A instead of g for this example is 
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    To obtain a numerical estimate that can be compared to a TCAD simulation result that 

was previously reported, let the substrate depth L be 4µm and let the substrate doping 

density N be 8×10
14

/cm
3
. The mobilities for this doping density in silicon, used by the 

TCAD software that a prediction will be compared to, are µe = 1310cm
2
/V-s and µh = 

495cm
2
/V-s. We also select the carrier generation rate density to satisfy qR/A = 

1000A/cm
2
. This number was selected because it was concluded in [1] that this will 

produce the high-injection level condition that is needed for the above approximation for 

U to be accurate. Using these numbers in the above equation gives U ≈ 1.96V. This is the 

minimum voltage that the power supply must have, according to the model, in order to 

force a reverse-biasing condition across the DR when the device is subject to this carrier 

generation rate. A 1V (for example) power supply voltage is not enough and will result in 

the DR becoming forward biased. This conclusion was confirmed by a TCAD simulation 

result reported in [1]. In fact, it was reported in [1] that the voltage across the QNR, at a 

power supply voltage of 1V, was 1.62V. This is roughly (but not exactly) the same as the 

1.96V that the model predicts would occur if the power supply voltage was increased by 

the amount needed to produce a reverse-biasing condition. A QNR voltage of 1.62V in 

the simulated device when the power supply provides only 1V implies that the applied 

voltage across the DR is −0.62V (stated another way, the total voltage across the DR is 

the equilibrium voltage, a.k.a., built-in voltage, minus 0.62V, which agrees with TCAD 

results for the total voltage reported in [1]), implying that the DR was forward biased at 

0.62V. However, in spite of this forward bias condition, terminal currents calculated by 

the model for this two-terminal example agreed with TCAD results reported in [1], even 

though the derivation of the model assumes a reverse-biasing condition. An explanation 
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as to why the model should give a correct prediction for such an example is outside the 

scope of the theoretical analysis given in this report, but an empirical observation from 

[1] is that a reverse-biasing condition is not always essential for the model to give a 

correct prediction of terminal current.  
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XII. A NUMERICAL EXAMPLE COMPARED TO TCAD 

 

    This section considers a specific example of the three-terminal (K =2) problem. Model 

predictions for this problem will be compared to predictions made by TCAD simulations 

performed by the ATLAS code, which is a device simulator developed by Silvaco [5]. 

The code solves the drift-diffusion equations governing carrier transport in a 

semiconductor device. Physical models include bandgap narrowing, Shockley-Read-Hall 

(SRH) recombination, Auger recombination, and the mobilities depend on doping density 

and on the electric field. The code accepts a user-specified low-concentration SRH 

lifetime (which was arbitrarily selected to be 1µs in the examples below) and 

automatically modifies this to account for doping density. Our version of the code is two-

dimensional, and the example silicon device is two-dimensional in rectangular 

coordinates denoted x and y. An equivalent three-dimensional problem extends the 

device, as well as the spatial distribution of carrier generation, uniformly in the z 

direction. Therefore, if carrier generation is confined to a line section in the two-

dimensional problem, this will be seen as a section of a plane in the equivalent three-

dimensional problem. It is not possible, using our version of the code, to confine carrier 

generation to a line section in three-dimensions (i.e., a steady-state version of an ion 

track, which is relevant to studies of SEE) when using rectangular coordinates. However, 

numerical estimates of terminal currents are not the final products that are regarded as 

important here. What is considered important here is whether model predictions do or do 

not agree with TCAD predictions. A two-dimensional problem should be adequate for 

this comparison. 

 

A. Device Description 

 

    TCAD inputs describe the device differently than model inputs, so both descriptions 

are given here. We begin with the description used for TCAD inputs. The two-

dimensional n
+
-p silicon device is shown in Fig. 4. The vertical walls at x = 0 and x = 

24µm are reflective boundaries needed to produce finite dimensions (a net width of 

24µm) that can be represented by a finite number of grid points. The depth of the device 

from top to bottom (not including the aluminum contacts) was arbitrarily taken to be 

4µm. Each n
+
 region has a Gaussian doping profile with a peak concentration (at the top 

of the device) of 10
20

/cm
3
, and the metallurgical (MJ) that separates the n-region from the 

p-region is at a depth of 0.1µm. The MJ on the left side extends horizontally from x = 

4.4µm to x = 7.6µm (a uniform in x doping between x = 4.5µm to x = 7.5µm but a 

Gaussian roll-off extends the width another 0.1µm on each side). The MJ on the right 

side extends horizontally from x = 16.4µm to x = 19.6µm. The doping of the p-region 

was uniform with a concentration of 10
15

/cm
3
. Excluding locations near an MJ, the 

horizontal spacing between grid lines was about 0.25µm, and the vertical spacing was 

about 0.125µm. The grid was finer near either MJ, with a minimum spacing of 0.02µm. 

A 3V reverse-biasing voltage was applied to each upper contact. Carrier generation is 

along a vertical line as seen in the two-dimensional plot (which is a section of a plane in 

the equivalent three-dimensional geometry), and is vertically uniform. The horizontal 

location of this line, or “track,” is a variable denoted X. Details regarding carrier 

generation are given later in Section XII-C. Another example considered, the p
+
-n device, 
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is the same as Fig. 4 except that n-type and p-type are interchanged, and the polarity of 

the biasing voltage is reversed. 

 

    We now describe the device in the context of model inputs. This is a specification of 

the QNR geometry, which requires a specification of the DRB location. The lateral 

dimension of each DR produced by the doping profile in Fig. 4 will be about 4µm, but 

the DR thickness in the vertical direction requires some consideration. In the absence of 

carrier generation, a 3V biasing voltage with the doping densities shown in Fig. 4 would 

produce a DR thickness of about 2.25µm. However, intense carrier liberation results in 

the DR being sufficiently flooded with carriers so that the DR thickness is reduced even 

if the voltage across the DR is held fixed. The fact that some of the applied voltage 

appears across the QNR, which reduces the voltage across the DR, further reduces the 

DR thickness. The end result is that the DR thickness will be considerably less than the 

nominal value of 2.25µm. Furthermore, the actual DR thickness will depend on the 

location of carrier generation relative to the DR, and the thickness will not be uniform 

over the lateral dimensions of the DR. To keep the model simple, the DR thickness used 

in the model will be uniform over the DR lateral dimensions, and the same DR thickness 

will be used regardless of the location of carrier generation. The task now is to select a 

uniform thickness having the property that the calculated currents have adequate 

accuracy when the same thickness is used in all examples. The model does not calculate 

this thickness, so the selection was made by comparing model predictions to TCAD 

simulation results. Two trial values were considered for the DR thickness. One was 1µm 

and the other was 2µm. For each trial value, model predictions for the terminal currents 

were compared to TCAD simulation predictions of the terminal currents, and the 

agreement was found to be better for the first trial value (comparisons using the first trial 

value are discussed in detail later). Therefore, the DR thickness that will be used by the 

model is 1µm. The QNR geometry used for model predictions is shown in Fig. 5.  

 

 
Fig. 4. The simulated two-dimensional n+-p device. The p+-n device is the same except that doping types 
are interchanged and the polarity of the applied voltage is reversed. Carrier generation is on a vertical line, 
or “track,” and is uniform in the vertical (y) coordinate. The horizontal (x) location of the track is denoted X 

and is a variable.  Dimensions denoted x or y are in µm. 
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B. Model Predictions 

 

    The device in Fig. 5 has geometric symmetry. The spatial distribution of carrier 

liberation need not conform to this symmetry, but symmetry in the device construction 

implies that 

 

[ ] [ ] symmetry)(02,11,11,22,2 >+=+ CCCC .               (106) 

 

    Recall from Section X-D that the “disconnected case” will not be encountered when 

carrier liberation in this example device is confined to a vertical line. Therefore, Cases 

1A, 1B, and 2 (see Section X) are the only possible cases when there is an HRR. Using 

this fact in a proof by contradiction, we can invert some of the implications in (93), (95), 

and (100) to obtain 
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where (106) was used to simplify expressions appearing in (93), (95), and (100). 

Combining (107) with other implications in (93), (95), and (100), and again using (106) 

to simplify expressions, gives 
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Fig. 5. The model two-dimensional device. S1 and S2 are DRBs while S0 is the substrate contact. A 
simplified geometry was selected to represent the DRBs and is the same for both the n+-p device and the 

p+-n device. Dimensions denoted x or y are in µm. 
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To complete the list, we include a reminder from (82a) and (70), which is 

 

*and*(b)

 HRRno is There(a)

 then,** If

22,11,

21

IIII

RII

==

<+

TT

q

.                (108d) 

 

    In order to use (108) to calculate the currents, it is necessary to calculate I1* and I2*. 

Using the coordinates shown in Fig. 5, and with carrier generation being confined to a 

vertical line at x = X and having a uniform intensity in the vertical direction, (60) reduces 

to  
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where Ytop is the y coordinate of the top of the substrate at x = X. If carrier generation is 

under a DRB, i.e., if either 4µm < X < 8µm or 16µm < X < 20µm, then Ytop = 1µm. 

Otherwise, Ytop = 0. Recall that Ω(1)
(x,y) satisfies Laplace’s equation in the QNR, has a 

zero boundary value on S0 and on S2 (Fig. 5) and has a unit boundary value on S1. Hence, 

Ω(1)
(x,y) is defined only in the QNR. Similarly for Ω(2)

(x,y), but with S1 and S2 

interchanged. However, the above equation for Ii*(X) includes the contribution to 

collected charge only from carriers liberated in the QNR. It does not include carriers 

liberated in the DR. We can include carriers liberated in the DR, and also make Ii*(X) a 

continuous function of X, from the following considerations. First consider carrier 

liberation under S1, i.e., 4µm < X < 8µm. Carriers liberated in the left DR will contribute 

to IT,1 and can be included by extending the domain of Ω(1)
(x,y) to include the left DR by 

defining it to be 1 in the left DR. Now consider carrier liberation under S2, i.e., 16µm < X 

< 20µm. Carriers liberated in the right DR will not contribute to IT,1 so we can use Ytop = 

1µm for this case. This is equivalent to extending the domain of Ω(1)
(x,y) to include the 

right DR by defining it to be 0 in the right DR. The result is 
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Note that I1*(X) as given by this equation is continuous in X at X = 4, 8, 16, and 20µm. 

To shorten the notation, note that the total carrier generation rate, that includes carriers 

liberated in a DR, is given by 
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We also define 
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A similarly defined W
(2)

(X) can be calculated from symmetry by 
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Using this notation, the above equation for I1*(X) can be written as 
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Similarly, for I2*(X) we have 
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    In order to calculate W
(1)

(X) and W
(2)

(X) given by (110), it is necessary to solve 

Laplace’s equation subject to the boundary conditions previously stated for Ω(1)
(x,y). 

Approximate solutions to Laplace’s equation can be found in the literature, especially for 

two-dimensional problems, but the method of solution is not the focus here because any 

available method that successfully produces the solution for Ω(1)
(x,y) can be used. Here 

we will use a numerical method. The same TCAD software previously discussed can be 

used to solve for Ω(1)
(x,y) by entering the geometry shown in Fig. 5. The source of carrier 

generation is removed and physical models affecting carrier mobilities are de-activated so 
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that the mobilities are spatially uniform in the code calculations. Also, the substrate is 

uniformly doped and (in this calculation) there are no p-n junctions. Instead, S0, S1, and S2 

are treated as ideal ohmic contacts. This will produce a uniform carrier density, and the 

potential will satisfy Laplace’s equation. The boundary conditions are imposed by 

assigning a common terminal voltage to S0 and S2, and assigning a terminal voltage that is 

1V larger to S1. Finally, a suitably selected constant added to all three terminal voltages 

will compensate for the contact potentials between electrodes and semiconductor, with 

the result being a unit potential on S1 and a zero potential on S0 and S2. The potential 

produced this way is Ω(1)
(x,y). The software has a provision for integrating the potential 

along a user-specified line, which is a convenient way to evaluate the integrals on the 

right side of (110a). Using this method to evaluate W
(1)

(X) and W
(2)

(X) given by (110) 

produces the values shown in Table 1. 

 

    We now estimate the terminal currents for the n
+
-p device shown in Fig. 5. This is 

done in three steps. The first step calculates I1*(X) and I2*(X) from (111). The substrate is 

p-type, so the minority carriers are electrons. This gives Dm/DM = De/Dh. Using the 

Einstein relation, this ratio is the electron mobility divided by the hole mobility. An 

accurate estimate of this ratio is needed only in the AR, which is the weak-field region, so 

low-field mobilities are used. We will use the same low-field mobilities that are used by 

the TCAD software, and these are given by µe = 1300cm
2
/V-s and µh = 480cm

2
/V-s. This 

gives Dm/DM = 2.7, so (111) becomes 
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Using Table 1 for W
(1)

(X) and W
(2)

(X), values calculated from (112) for I1*(X)/qR and 

I2*(X)/qR are shown in the second and third columns of Table 2. The second step uses 

these column entries with the tests in (108) to determine which case applies. The 

identified case is shown in the Comments column in Table 2. The last step uses the 

Table 1. W(1)(X) and W(2)(X) Calculated from (110) 

X 

(µµµµm) 

W(1)(X) 

(µµµµm) 

W(2)(X) 

(µµµµm) 

 X 

(µµµµm) 

W(1)(X) 

(µµµµm) 

W(2)(X) 

(µµµµm) 

2 1.251 0.000  12.5 0.371 0.572 

3 1.659 0.000  13 0.294 0.704 

3.99 2.285 0.000  13.5 0.229 0.863 

6 2.443 0.000  14 0.174 1.054 

8.01 2.263 0.002  14.5 0.125 1.283 

9 1.558 0.083  15 0.083 1.558 

9.5 1.283 0.125  15.99 0.002 2.263 

10 1.054 0.174  18 0.000 2.443 

10.5 0.863 0.229  20.01 0.000 2.285 

11 0.704 0.294  21 0.000 1.659 

11.5 0.572 0.371  22 0.000 1.251 

12 0.463 0.463     

 



47 

identified case to determine which calculations listed in (108) are to be used to obtain the 

terminal currents, and then performs the calculations. The results are listed in the fourth 

and fifth columns in Table 2. Similar steps are used for the p
+
-n version of the Fig. 5 

device, except that we flip the ratio Dm/DM to obtain Dm/DM = 1/2.7 so that (112a) is 

replaced with 
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Results for the p
+
-n version are shown in Table 3. Note from Table 3 that an HRR is not 

created in the p
+
-n version of this example regardless of the location of carrier generation. 

In contrast, Table 2 shows that the n
+
-p version has an HRR for any carrier-generation 

location that is not very close to being midway between the DRs. 

 

 

Table 2. Model-predicted Currents for the N+-P Example 

X 

(µµµµm) I1*/qR I2*/qR IT,1/qR IT,2/qR Comments 

2 1.157 0.000 1 0 Case 1A 

3 1.535 0.000 1 0 Case 1A 

4 2.114 0.000 1 0 Case 1A 

6 2.260 0.000 1 0 Case 1A 

8 2.093 0.002 1 0 Case 1A 

9 1.441 0.077 1 0 Case 1A 

9.5 1.187 0.116 1 0 Case 1A 

10 0.975 0.161 0.907 0.093 Case 2 

10.5 0.798 0.212 0.793 0.207 Case 2 

11 0.651 0.272 0.651 0.272 No HRR 

11.5 0.529 0.343 0.529 0.343 No HRR 

12 0.428 0.428 0.428 0.428 No HRR 

12.5 0.343 0.529 0.343 0.529 No HRR 

13 0.272 0.651 0.272 0.651 No HRR 

13.5 0.212 0.798 0.207 0.793 Case 2 

14 0.161 0.975 0.093 0.907 Case 2 

14.5 0.116 1.187 0 1 Case 1B 

15 0.077 1.441 0 1 Case 1B 

16 0.002 2.093 0 1 Case 1B 

18 0.000 2.260 0 1 Case 1B 

20 0.000 2.114 0 1 Case 1B 

21 0.000 1.535 0 1 Case 1B 

22 0.000 1.157 0 1 Case 1B 
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Table 3. Model-Predicted Currents for the P+-N Example 

X 

(µµµµm) I1*/qR I2*/qR IT,1/qR IT,2/qR Comments 

2 0.429 0.000 0.429 0.000 No HRR 

3 0.569 0.000 0.569 0.000 No HRR 

4 0.784 0.000 0.784 0.000 No HRR 

6 0.838 0.000 0.838 0.000 No HRR 

8 0.776 0.001 0.776 0.001 No HRR 

9 0.534 0.028 0.534 0.028 No HRR 

9.5 0.440 0.043 0.440 0.043 No HRR 

10 0.362 0.060 0.362 0.060 No HRR 

10.5 0.296 0.079 0.296 0.079 No HRR 

11 0.241 0.101 0.241 0.101 No HRR 

11.5 0.196 0.127 0.196 0.127 No HRR 

12 0.159 0.159 0.159 0.159 No HRR 

12.5 0.127 0.196 0.127 0.196 No HRR 

13 0.101 0.241 0.101 0.241 No HRR 

13.5 0.079 0.296 0.079 0.296 No HRR 

14 0.060 0.362 0.060 0.362 No HRR 

14.5 0.043 0.440 0.043 0.440 No HRR 

15 0.028 0.534 0.028 0.534 No HRR 

16 0.001 0.776 0.001 0.776 No HRR 

18 0.000 0.838 0.000 0.838 No HRR 

20 0.000 0.784 0.000 0.784 No HRR 

21 0.000 0.569 0.000 0.569 No HRR 

22 0.000 0.429 0.000 0.429 No HRR 

 

C. Simulation Results and Comparisons 

 

    While the model is a mathematical limit (a γ → ∞ limit), which requires that certain 

quantities be normalized in order to remain finite, simulations treat the case of a finite 

generation rate. The relevant quantities for a simulated device are the actual (un-

normalized) terminal currents as calculated by the simulation, and the actual (un-

normalized) carrier generation rate R given by (105b). All simulated ionization sources 

were steady-state and selected to mimic the ideal case of a uniform line (a line as seen in 

the two-dimensional plot) source, but were actually given a Gaussian horizontal profile 

with a characteristic width of 0.5µm so that adequate resolution can be obtained without 

the need for excessively fine grid-line spacing. However, a finite grid-line spacing still 

produces some numerical error. During a simulation run, the code reports the generation 

rate as seen by the code with the finite grid spacing. To compensate for numerical error, 

the value assigned to qR is the generation rate reported by the code. Inputs given to the 

simulation were selected to make the code-reported value of the generation rate equal to 

10
−4

A/µm. The per-micron units appear because in the equivalent three-dimensional 

problem the current would be reported as amps per micron in the z dimension (terminal 

currents calculated by the code also have the units of A/µm). This generation rate was 
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selected because the model is a high-injection model and the intention is to produce high-

injection conditions in the simulated device. It was pointed out in [1] that high-injection 

conditions are produced when the generation rate divided by the area of the charge-

collecting junction is at least 1000A/cm
2
. For the equivalent three-dimensional problem 

that extends 1µm in the z dimension, the generation rate becomes 10
−4

A. With two DRBs 

that are each 4µm wide in the x dimension, the charge-collecting area in the equivalent 

three-dimensional problem is 8µm
2
. The generation rate divided by the area slightly 

exceeds 1000A/cm
2
, so we expect these simulation inputs to produce high-injection 

conditions. Plots of carrier density produced by simulation runs (not shown here) confirm 

this expectation, showing that the carrier density at locations of maximum density is 

between one and two orders of magnitude greater than the doping density. 

 

    Simulation predictions of terminal current divided by qR are obtained by dividing 

terminal current calculated by the code by 10
−4

A/µm. The results are shown in Fig. 6 for 

the n
+
-p device and in Fig. 7 for the p

+
-n device. These plots also include model 

predictions so that they can be compared to the simulation predictions. The model 

predictions were obtained by using arguments similar to those given in the discussion 

surrounding (104) to conclude that the ratio IT,i/qR of normalized quantities for the 

limiting case approximates the ratio IT,i/qR of actual (un-normalized) quantities for the 

finite case. Therefore, the model predictions in Figs. 6 and 7 are identical to the 

numerical entries in the fourth and fifth columns in Tables 2 and 3. 
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Fig. 6. Simulation predictions of terminal currents for the Fig. 4 device are compared to model predictions 
for the n+-p version of the Fig. 5 device. Individual currents are compared in (a) and (b). The current sum in 
(c) is the best indication of whether an HRR is present. 
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Fig. 7. Like Fig. 6 but for the p+-n device. 

 

    Looking at results for the n
+
-p device in Fig. 6, we see excellent agreement between 

model predictions and simulation results. The two terminal currents are shown 

individually in Figs. 6a and 6b. However, the sum of the two terminal currents in Fig. 6c 

is the best indication of whether an HRR is present. These plots combined show distinct 

charge-collection regimes, but the same conclusions can be seen with greater resolution 

by looking at the “Comments” column in Table 2. If the track is sufficiently close to one 

of the junctions (specifically, if X ≤ 9.5µm which produces Case1A, or X ≥ 14.5µm 

which produces Case1B), all of the liberated charge is collected by the closest junction. If 

the track is moderately close to one of the junctions (specifically, if either 9.5µm < X < 

11µm or 13µm < X < 14.5µm, which produces Case 2), liberated charge is shared 

between the two junctions and the two junctions together collect all of the liberated 

charge. However, if the track is sufficiently far from both junctions (specifically, if 11µm 

≤ X ≤ 13µm, which produces no HRR), liberated charge is shared between the two 

junctions and the two junctions together collect less than all of the liberated charge. In 

contrast, results for the p
+
-n device in Fig. 7 do not show distinct charge-collection 

regimes. Liberated charge is shared between the two junctions for any track location 

between the junctions, and the two junctions together collect less than all of the liberated 

charge for any track location. This is consistent with the “Comments” column in Table 3, 

showing that an HRR is not present for any track location. 
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XIII. CONCLUSIONS 

 

What is probably the most notable conclusion from this analysis is the theoretical 

prediction of distinct charge-collection regimes. This was demonstrated in an example 

representing a reverse-biased n
+
-p silicon device with two junctions arranged horizontally 

and with carrier liberation along a vertical line (or “track”) having a horizontal location 

that is different in different examples. Depending on where the ionizing track is relative 

to each of two junctions, either of three possibilities can occur in the example device 

according to the model. One possibility is that charge is shared by both junctions, and the 

total collected charge from the two junctions is less than the total amount of liberated 

charge. This occurs when the track is far enough from both junctions so that there is no 

strong-field blocking region (HRR) created anywhere in the substrate. The quantitative 

version of the last statement is that this occurs when I1* + I2* < qR. A second possibility 

is that collected charge is shared by both junctions, and the total collected charge from 

the two junctions is equal to the total amount of liberated charge. This occurs when the 

track is close enough to one of the junctions (but not too close to either junction) so that 

there is a strong-field blocking region (HRR) in the substrate and surrounding both 

junctions. The quantitative version of “the track is close enough to one of the junctions” 

is I1* + I2* > qR, while the quantitative version of “but not to close to either junction” is 

I1* < I2* + qR and I2* < I1* + qR. The third possibility is that all liberated charge is 

collected by one junction, and no charge is collected by the other. This occurs when the 

track is close enough to one junction so that there is a strong-field blocking region (HRR) 

in the substrate surrounding just that one junction, with the other junction inside the 

HRR. The quantitative version of “the track is close enough to one junction” is either I1* 

> I2* + qR or I2* > I1* + qR. The model correctly (according to TCAD simulations) 

predicted which track locations will produce each situation in the example n
+
-p device. In 

contrast, the same example but with n-type and p-type interchanged did not display 

distinct charge-collection regimes. An HRR was not created by any track location. 

Collected charge is shared by both junctions, and the total collected charge from the two 

junctions is less than the total amount of liberated charge for this example. Quantitative 

agreement between model predictions and TCAD simulations was excellent for all of 

these examples. 
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Appendix A: Invertibility of the Coefficient Matrix Ci,j 
 

    To show that Ci,j is an invertible matrix, select two arbitrary sets of numbers, with one 

set denoted X1, …, XK, and the other set denoted X1’, …, XK’, and then define another pair 

of number sets by 
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Invertibility of Ci,j will be established if it can be shown that the condition that Yi’ = Yi for 

each i = 1, …, K implies the condition that Xi’ = Xi for each i = 1, …, K. To prove this 

implication, first combine equations in (A1) to get 
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The next step starts with (59), then (12b), then the divergence theorem, and then (12a) to 

get 
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Substituting (A3) into (A2) gives 
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Note that (A4) applies to any set of numbers related by (A1) when Ci,j is given by (59). 

As previously stated, invertibility of Ci,j will be established if it can be shown that the 

condition that Yi’ = Yi for each i = 1, …, K implies the condition that Xi’ = Xi for each i = 

1, …, K, so we assume the former condition and the goal is to prove the latter condition. 

The assumed condition implies that the left side of (A4) is zero, which implies that the 

right side is zero. But the integrand on the right is the dot product of a gradient with itself, 

which is not negative anywhere, so the integrand must be zero everywhere, i.e.,  
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which implies 
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The constant in the above equation is determined by noting that each function Ω(1)
(x), …, 

Ω(K)
(x) is zero on S0, so evaluating the equation on this surface to determine the constant 

gives 
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Finally, we evaluate this equation on each surface S1, …, SK while using (12b) to 

conclude that Xi’ = Xi for each i = 1, …, K, which completes the proof that Ci,j is 

invertible. 
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Appendix B: Inequalities Involving the Coefficients Ci,j 
 

    We first derive inequalities for the Ci,j defined by (59). These coefficients were already 

shown to be symmetric in (61). We start with a property of Ω(i)
(x) defined by (12). It is 

well known that functions satisfying Laplace’s equation in a given region take on their 

minimum and maximum values on the boundary of that region. Using this fact together 

with (12) we conclude that 0 ≤ Ω(i)
(x) ≤ 1 at any point x that is either in the QNR interior 

or on the QNR boundary. Therefore, if we first select the observation point x to be on Si, 

where Ω(i)
(x) = 1, and then move the observation point into the QNR interior, Ω(i)

(x) 

cannot increase. It either remains constant or it decreases. Therefore, ∇∇∇∇Ω(i)
(x) is either 

zero or is directed outward from the QNR when evaluated at Si, implying that 
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Similarly, if we consider a surface Sj with j ≠i, so that Ω(i)
(x) is zero on this surface, it 

increases (or remains constant) as the observation point is moved into the QNR interior, 

and we conclude that 
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Now consider the sum function 
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This function is the solution to Laplace’s equation that is zero on the electrode S0, and 1 

on each DRB S1, …, SK. Therefore, if the observation point starts on any DRB, this 

function decreases (or remains constant) as the observation point is moved into the QNR 

interior, and we conclude that 
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    The above derivation of (B1) had the advantage that the same derivation could be used 

to obtain (B2a) and (B2b), but an alternate derivation of (B1) will produce a stronger 

statement that the strict inequality applies. This derivation starts with the equality 

between the second term and the far right term in (A3) and evaluates the result at i = j to 

get 
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with the right side easily seen to be strictly greater than zero. Similar steps will derive a 

stronger conclusion (a strict inequality) then can be obtained by summing (B2b) in i. The 

boundary-value property of the sum function implies that 
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and applying the divergence theorem to the right side while using the fact that the sum 

function satisfies Laplace’s equation gives 
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The right side is seen to be strictly positive so 
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Therefore, while (B2b) states that each j sum is nonnegative, (B2d) implies that at least 

one of these sums is positive. 

 

    Another inequality is obtained from (A4) by setting the primed quantities equal to zero 

so that the equation reduces to 
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This applies to any set of numbers X1, …, XK and Y1, …, YK that are related by the first 

equation in (A1). Note that if at least one of the numbers X1, …, XK differs from zero, 

each square bracket on the right will be a non-constant function having a gradient that 

differs from zero somewhere within the QNR, so the dot product of the gradient with 

itself, which is nonnegative everywhere, will be greater than zero somewhere. Therefore, 

the integral will be positive. With the understanding that the Y’s are related to the X’s by 

the first equation in (A1), the conclusion is 
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    Using (59) to express (B2) in terms of Ci,j, and using (A1) to express (B4) in terms of 

Ci,j,  and repeating (61a) so that all properties are included in a single list, a summary of 

the properties of Ci,j is given by 
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Note that the simple fact that Ci,j is symmetric implies a reciprocity theorem. For any set 

of primed and unprimed quantities related by (A1) we have 
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and changing dummy symbols on the right gives 
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    Note that (B5d) states that the diagonal elements of Ci,j are positive, while (B5b) states 

that the off-diagonal elements are negative (or zero), but (B5c) implies that each diagonal 

element is at least as large as the sum of absolute values of the off-diagonal elements that 

are in the same row (or column because of symmetry) as the selected diagonal element. 
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Appendix C: Inequalities Involving the Coefficients ΦΦΦΦi,j 
 

    Inequalities for the coefficients Φi,j can be derived from properties of the Ci,j 

coefficients listed in (B5). Recall that these are inverse matrices (invertibility of Ci,j was 

already established in Appendix A), so if any set of numbers X1, …, XK and Y1, …, YK are 

related by 
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then these numbers are also related by 
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Two conclusions are fairly obvious. The first is derived from the fact that the inverse of a 

transpose matrix is the transpose of the inverse, combined with the fact that Ci,j is 

symmetric, to conclude that Φi,j is symmetric, as already pointed out in Section V. The 

second obvious conclusion is obtained by using (C1) to substitute for the sum in j in 

(B5e), then use (C2) to substitute for the remaining Xi in (B5e), and finally use the fact 

that at least one of the numbers X1, …, XK differs from zero if and only if at least one of 

the numbers Y1, …, YK differs from zero (because Ci,j is invertible) to conclude that 
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for any set of numbers Y1, …, YK that are not all zero. A special choice for these numbers 

shows that the diagonal elements are positive, i.e., 

 

Kiforii ,...,10, =>Φ . 

 

    The remaining properties of Φi,j that are listed below are more difficult to derive. The 

analysis will be easier to follow if we use the same terminology that is used in a familiar 

physical problem so that visualization becomes easier. For this purpose, we will 

temporarily forget about the problem of charge collection in a semiconductor and think in 

terms of a simpler electrostatics problem that encounters the same equations as those 

discussed here. In the electrostatics problem, the surfaces S1, …, SK are conductors at 

potentials X1, …, XK, while Y1, …, YK are the charges induced on the conductors. The 

surface S0 is a grounded conductor that defines the reference potential and has a charge 

that balances the sum of the charges on the remaining conductors. The remainder of this 

discussion will use the terminology of this electrostatics problem. Properties of Φi,j will 

be derived in several steps, with the conclusion derived in one step being used by the next 

step to derive another conclusion. 
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    The first step shows that if at least one conductor has a positive potential, then the 

conductor at the highest potential has a positive charge. To show this, we consider the 

case where the maximum of the set { X1, …, XK} is positive, and let Xmax denote this 

maximum value. It is possible for more than one conductors to be at this maximum 

potential, so we define the index set IND, a subset of { 1, …, K}, by the property that i ∈ 

IND if and only if Xi = Xmax. Note that if i ∉ IND then Xi < Xmax. Summing (C1) in i over 

the index set, and breaking the j sum up into two parts gives 
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The goal is to show that the left side is positive. For this purpose, we first derive an 

inequality for the first term on the right. This is obtained by changing notation in (B5e) to 

get 
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where the strict inequality applies if the Z’s are not all zero. In particular, if we let Zi = 1 

when i ∈ IND and Zi = 0 when i ∉ IND we obtain 
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Combining this with Xmax > 0 gives 
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An inequality for the second term on the right side of (C3) is obtained from the fact that 

each Ci,j in that term is an off-diagonal element, so 

 

INDjandINDiwhenC ji ∉∈≤ 0, .               (C5) 

 

Combining this with Xi < Xmax when i ∉ IND gives 

 

INDjandINDiwhenXCXC jijji ∉∈≥ max,, .           (C6) 

 

At this point it is necessary to consider two possibilities. The first would occur (for 

example) if S0 were composed of multiple sections formed in such a way so the each 

conductor S1, …, SK is completely surrounded by a different section of S0, so there is no 

interaction between the conductors S1, …, SK. More specifically, the first possibility is the 

case in which the equality in (C5) applies to every i ∈ IND and every j ∉ IND. For this 

case, the right side of (C3) reduces to the first term, which is positive according to (C4), 

so the left side of (C3) is positive for this case. The only other possibility is that there is at 
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least one i, j pair, with i ∈ IND and j ∉ IND, for which the strict inequality in (C5) 

applies. This implies the strict inequality in (C6) for at least one pair of indices, 

producing a strict inequality between the sums given by 
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and substituting this into (C3) gives 
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The right side is positive or zero, because of (B5c) together with Xmax > 0, so for this 

second possibility we also reach the conclusion that the left side of (C3) is positive. The 

final conclusion is 
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A similar derivation will show that 

 

{ }














<∑
∈

.0

 thenpotential, minimum at the are that conductors

 thoseidentifiesset that index   theis IND if and

negative, is ,...,set   theof minimum  theIf 1

i

INDi

K

Y

XX

            (C7b) 

 

 

    The next step uses (C7) to conclude that uncharged conductors are at intermediate 

potentials. To be more specific, select one of the conductors and call it Sm for some m =1, 

…, K. Place a positive charge Ym on Sm. All remaining conductors are uncharged, i.e., Yi 

= 0 for each i = 1,…, K when i ≠ m. The potential of Sm is Xm, and this potential is seen to 

be positive via (C2) combined with Ym > 0 and Φm,m > 0. The conclusion to be proven is 

that each uncharged conductor is at a potential that is somewhere between 0 and the 

potential of the charged conductor. In other words, the conclusion to be proven is that 0 ≤ 

Xi ≤ Xm for each i = 1,…, K. The proof for each inequality is by contradiction. We first 

prove that Xi ≤ Xm for each i = 1,…, K by assuming that there is at least one conductor 

satisfying Xm < Xi and then look for a contradiction. This assumption implies that the 

conductor having the maximum potential is one of the uncharged conductors, or several 

of the uncharged conductors if they are at the same potential. Let IND be the index set 

that identifies all conductors at the maximum potential. The assumption implies that these 

are uncharged conductors, implying that  
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The promised contradiction is obtained from (C7a). The contradiction implies that Xi ≤ 

Xm for each i = 1,…, K. Similar steps that use (C7b) to obtain a contradiction conclude 

that 0 ≤ Xi for each i = 1,…, K. The conclusion is 
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    The last step uses (C8) to derive inequalities for Φi,j. This is done by letting Ym = 1 and 

letting Yi = 0 for each i = 1,…, K when i ≠ m. Substituting this into (C2) gives Xi = Φi,m 

for this choice of Y’s, and combining this with (C8) gives 0 ≤ Φi,m ≤ Φm,m. 

 

    In summary, properties of Φi,j are 
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Appendix D: Properties of Ohm’s Law 
 

    We consider the case in which there is an HRR. If we define the total current density JJJJT 

to be JJJJm + JJJJM, then (50) gives 
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The fact that the total current has a zero divergence was already stated in (51). To shorten 

the notation, define 
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so (D1) and (51) become 
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This is Ohm’s Law with a conductivity σ and a potential µ. Within the HRR, the 

potential µ is the same as the normalized potential U given by (49). Different symbols are 

used because (D2b) defines µ throughout the entire QNR (note that P* and ψ are defined 

throughout the entire QNR), including the AR where (49) does not apply and U is not 

equal to µ. Note that σ is bounded above zero because P ≥ 0. In the main text, P* was 

regarded as known, and ψ was regarded as known via (55), so the purpose of (51) was to 

solve for P. This is equivalent to solving (D3b) for σ when µ is regarded as the known 

via (D2b). However, the mere existence of a σ that is bounded above zero and satisfies 

(D3b) implies some properties of µ. Stated another way, the HRR is some subset of that 

portion of the QNR in which µ has certain properties. This places a restriction on how 

large the HRR can be. One property, which is a well-known property of potentials 

satisfying Ohm’s Law, is that µ has no relative maximums or minimums in the HRR 

interior. The defining equation (D2b) for µ together with (29a) and the fact that ψ 

satisfies Laplace’s equation can be used to show that µ has no relative minimums 

anywhere in the QNR, but it can have a relative maximum in the QNR. Any point in the 

QNR at which µ has a relative maximum, if there is such a point, is outside the HRR.  

 

    Other properties of µ in the HRR interior can be obtained in analogy with the analysis 

already given in the first three appendices. To establish this analogy, first consider the 

closed surface that is the boundary of the HRR. Part of this surface is S0, where the 
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boundary value of µ is zero. Another part is a portion of the reflective QNR boundary, 

which would be more appropriately be called “insulated” when discussing Ohm’s Law, 

where µ satisfies reflective boundary conditions. The remainder of the boundary is a set 

of surfaces that have the role of contacts or terminals and each of these surfaces can be 

placed in one of two groups. The first group consists of those DRBs that contact the 

HRR. For any i = 1, …, K such that Si contacts the HRR, Si is one of the terminals in the 

first group. On this surface, the value of µ given by (D2b), with ψ satisfying (55) and P* 

satisfying (35b), is Ui. The second group of terminals consists of portions of the ARB. 

For any i = 1, …, K such that Si contacts the AR, ARBi is one of the terminals in the 

second group. On this surface, where (52) applies, the value of µ given by (D2b) is Ui. 

Note that the number of distinct terminals in the second group might be less than the 

number of DRBs that contact the AR because if Si is connected to Sj then ARBi = ARBj 

and Uj = Ui. Let M (≤ K) denote the number of distinct terminals in the two groups 

combined, and let the terminals be denoted S
∼

1, … , S
∼
M. Let U∼

i denote the value of µ on 

S
∼
i. The set of numbers U∼

1, …, U∼
M is the same as the set of numbers U1, … ,UK, but 

they can differ in the way the subscripts were assigned because M can be less than K (in 

which case the latter set of numbers has repeated elements). The terminal currents are 

defined by 
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with the unit normal vector in the surface integral directed outward from the HRR. 

Corresponding to the conductivity σ is a set of functions µ(1)
, …, µ(M)

, defined by the 

boundary-value problems 
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with reflective boundary conditions tacitly assumed on the insulated boundaries. 

Comparing (D5) to (D3b) and to the boundary conditions previously stated for µ, we 

conclude that 
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Combining (D3a) with (D4) and (D6) gives 
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where 
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    Conclusions previously derived for Ci,j can also be applied to C
~
i,j after showing that 

the latter satisfies the inequalities that were used to derive those conclusions. For 

example, (B5d) in Appendix B was derived from (B2c). The same result can be derived 

for C
~
i,i by using (D8) with (D5) and the divergence theorem to get 
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Using the fact that σ is bounded above zero, we conclude from the above that C
~
i,i > 0. In 

fact, every statement listed in (B5) remains true when Ci,j is replaced by C
~
i,j and K is 

replaced by M. Therefore 
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The positive definite property (D9e) implies that C
~
i,j has an inverse. This inverse will be 

denoted Φ~
i,j. This inverse allows us to invert (D7) to get 
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Note that all properties listed in Appendix C for Φi,j were derived from the properties of 

Ci,j listed in (B5). Because C
~
i,j has the same properties listed in (B5) for Ci,j, we conclude 

that Φ~
i,j has the same properties listed in Appendix C for Φi,j. In particular, 

 

MjandMiforijji ,...,1,...,1,
~

,
~ ==Φ=Φ            (D11a) 

 

MjandMiforjjji ,...,1,...,10 ,
~

,
~ ==Φ≤Φ≤          (D11b) 

 

Miforii ,...,10,
~ =>Φ                  (D11c) 



65 

zerofromdiffers ,..., numberstheofoneleastatif0 1,
~

11

Kjiji

M

j

M

i

YYYY >Φ∑∑
==

.  (D11d) 

 

Also, an inequality stated in Appendix C in the context of the electrostatics problem was 

the statement that uncharged conductors are at intermediate potentials. The same 

mathematical inequality applies to the Ohm’s Law problem, but a more appropriate 

physical statement of this inequality is that floating terminals are at intermediate 

potentials. 


