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ABSTRACT

The ADC model is a charge-collection model derived for simple p-n junction silicon
diodes having a single reverse-biased p-n junction at one end and an ideal substrate
contact at the other end. A steady-state ionization source liberates charge carriers in the
device and the model estimates the terminal current produced by this carrier liberation. A
recent paper confirmed that model predictions of collected charge are also correct for the
transient problem in which carrier liberation is impulsive instead of steady-state. The
present paper extends the model to include multiple junctions, and the goal is to estimate
how collected charge is shared by the different junctions. Much of the theory is derived
for an arbitrary number of junctions but a complete solution is given only for devices
containing two junctions in a horizontal arrangement and exposed to a vertical line-
source (or “track”) of carrier generation. For each of three possibilities, the model
identifies the conditions needed to produce that possibility. One possibility is that charge
is shared by both junctions, and the total collected charge from the two junctions is less
than the total amount of liberated charge. A second possibility is that collected charge is
shared by both junctions, and the total collected charge from the two junctions is equal to
the total amount of liberated charge. The third possibility is that all liberated charge is
collected by one junction, and no charge is collected by the other. An example n'-p
device exhibited all three possibilities by varying the location of the track. The same
example but with doping types interchanged to produce a p'-n device exhibited only the
first possibility regardless of track location. All examples show excellent quantitative
agreement with TCAD simulations.

Key words: ADC model, ambipolar diffusion, ambipolar diffusion with a cutoff, charge
collection, drift-diffusion.



I. INTRODUCTION

A charge-collection model, called “ambipolar diffusion with a cutoff ” (ADC) was
reviewed in [1] (a more rigorous derivation is in an appendix in [2]) for a reverse-biased
p-n junction silicon diode exposed to an ionization source that liberates carriers (electron-
hole pairs) in the device. An important application of a charge-collection model is in the
investigation of single-event effects (SEE) in which the ionization source is a single
particle, such as a galactic cosmic ray heavy ion. The ADC model has some known
limitations for this application. The first limitation is in the category of physical
approximations. Carrier transport is described by the drift-diffusion equations with
constant mobilities in the quasi-neutral region, carrier recombination in the device
interior is neglected, and ideal boundary conditions are assumed. In contrast, real devices
are more complex, e.g., mobilities depend on a variety of physical parameters. A second
limitation is in the category of intended applications. The model is intended for high-
injection conditions, i.e., the model is intended to become accurate when the ionization
source is sufficiently intense. While SEE is a high-injection phenomenon, carrier
liberation is still finite. The model is a mathematical limit that is an inexact
approximation for the finite case. The last limitation also belongs to the category of
intended applications. The model was derived from a steady-state analysis in which
carriers are liberated at a quasi-constant rate (e.g., by photon irradiation). In contrast, SEE
is a highly transient problem. In spite of these limitations, model predictions for example
transient problems, in which the ionization source represents an ion track and the quantity
of interest is total collected charge (terminal current integrated over all times), agreed
well with predictions made by TCAD simulations [3]. However, the original model was
derived for a simple silicon diode having only one charge-collecting junction. Motivated
by the success of this model for a single-junction device, this paper presents a multi-
junction version of the ADC model. A silicon device now contains a collection of
reverse-biased p-n junctions and the goal is to determine how collected charge is shared
between different junctions. To keep the model simple, the same limitations (physical
approximations, high-injection, and steady-state) still apply. The contention here is that
there is little hope of understanding charge-collection in a more complex problem if we
have not yet understood charge-collection for this simpler problem, so an understanding
of the simpler problem is a prerequisite to understanding a more difficult problem.

A silicon device having three (for example) junctions is illustrated in Fig. 1, which is
explained as follows. All p-n junctions are formed with a common substrate. If the
substrate is p-type, all junctions are n"-p. If the substrate is n-type, all junctions are p'-n.
Each junction produces a depletion region (DR) and each DR has a boundary (DRB) in
the substrate. The three DRBs are denoted S, S», and S5 in the figure. The electrical
contact to the substrate is treated as an ideal ohmic contact and is denoted S in the figure.
The quasi-neutral region (QNR) is that portion of the substrate that is outside the DRs.
Hence, boundaries that enclose the QNR include Sy, Si, S>, and S;. The remainder of the
QNR boundary is regarded as reflective (the gradients of the potential and carrier density
have zero normal components). Voltages applied to the terminals produce a reverse-
biasing condition across each DR. A steady-state ionization source having an arbitrary
spatial distribution (not shown in the figure) liberates carriers in the substrate, and some



of the liberated minority carriers move to and through a junction to produce a steady-state
terminal current at that junction. The goal is to estimate the terminal current for each
junction.
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Fig. 1. lllustration of a device with three junctions. All three junctions are either n*-p (for a p-type substrate)
or p*-n (for an n-type substrate). Each junction produces a DR, and the DR boundaries (DRBs) are denoted
S1, S, and Ss. The electrical contact to the substrate (a.k.a., electrode) is denoted So. The QNR is the
portion of the substrate outside the DRs. Voltages applied to the terminals reverse bias each DR. An
ionization source (not shown) produces an arbitrary spatial distribution of liberated carriers in the substrate
and the goal is to calculate the terminal currents.




II. REVIEW OF THE DRIFT-DIFFUSION EQUATIONS

The well-known drift-diffusion equations can be found in any textbook on
semiconductors. Under steady-state conditions with negligible recombination in the
device interior, the equations reduce to

lje =D, Vn—-pu,nVeo (1a)
q
1 - - -

;Jh =-D,Vp—p;, pVo (1b)
“VeJ, =g (22)

q
LYo, =g (2b)

q
eV2p=ql(n—ny)—(p - po)] (3)

where J, and J), are the electron and hole current densities (functions of spatial
coordinates), ¢ is the elementary charge, D, and D), are the electron and hole diffusion
coefficients (approximated as constants in this analysis), £ and 24, are the electron and
hole mobilities (also approximated as constants in this analysis), ¢ is the electrostatic
potential (a function of spatial coordinates), » and p are the electron and hole densities
(functions of spatial coordinates), ng and py are the equilibrium electron and hole
densities (constants for the uniformly-doped case considered), g is the carrier-generation
rate density (a function of spatial coordinates), and ¢ is the permittivity constant of the
medium. The same generation rate is used for both carriers because we consider the case
in which electrons and holes are generated in pairs.

Junctions will be described by boundary conditions at the DRBs, so analysis of the
drift-diffusion equations is needed only in the QNR. A region is quasi-neutral when the
solution to the above equations can be approximated by the solution to the equations
obtained from the limiting case as ¢ approaches zero. In this limit, (3) is replaced with

p=P+pg, n=P+ng, 4)

where P is the excess carrier density that is the same for electrons and holes. We also use
the Einstein relations D, = Vyu, and Dy, = Vg, where Vr is the thermal voltage
(sometimes written as k7/q and is about 0.026 V at room temperature). This allows us to
write (1) as

1 P+I’lo

J,=VP- \% 5a
0. e Tl (5a)
N -
L, v L0y, (5b)
gDy, Vr

Note that (5) was obtained by replacing (3) with (4), but (4) cannot be used to solve for
the electric field (the negative gradient of ¢). However, (2) together with (5) is a



complete (when given boundary conditions) system of equations that will solve for both
P and ¢. It is important to note that (4) is a replacement for (3), not an equation that
supplements (3). The system of equations consisting of (1) through (4) is over-
determined and inconsistent, so (3) is discarded when (4) is used. However, Poisson’s
equation (3) would have a role in an iteration method if an improved estimate of the
charge density is desired. Starting with an initial estimate of zero charge density, i.e., (4),
we use this with (1) and (2) to obtain (2) and (5), then solve (2) and (5) for ¢, and then
substitute this into the left side of (3) and interpret the calculated value of the left side as
an improved estimate of the charge density. This is analogous to the analysis of an ohmic
medium with a specified inhomogeneous conductivity. For the ohmic problem, we would
use Ohm’s law, not Poisson’s equation, to solve for the electric field. Having done that,
we can then use Poisson’s equation to calculate the charge density if desired. Similarly,
for the semiconductor problem considered here, we use (2) and (5), not Poisson’s
equation, to solve for the electric field. Having done that, we can then use Poisson’s
equation to calculate the charge density if desired.

For an n-type material, we can neglect p and set ny equal to the doping density. For a
p-type material, we can neglect ny and set py equal to the doping density. We can shorten
the notation by including only one equilibrium density, and still represent both doping
types with the same set of equations, by letting D,, denote the diffusion coefficient for
minority carriers, D), is the diffusion coefficient for majority carriers, and N denotes the
doping density. We also define

- J, forp—type - J, for p—type
7, =17 p—typ ’ Juy = ha p—1typ (62)
—J;, forn—type -J, forn-—type
forp—t
UE{"’ PP (6b)
—¢ forn—type

Note that the subscript m to the J denotes minority-carrier current, while the subscript M
denotes majority-carrier current. The sign convention was selected so that both doping
types will be described by the same equations. With this sign convention, the direction of
J,, 1s opposite to the direction of minority-carrier motion, while Jj, has the same direction
as the majority-carrier motion. Substituting (6) into (2) and (5) gives

In__gp_L gy _Iu _gp PN Gy (7)
gDy, Vr gDy Vr
Vo, ==qg VeJy =qg. ®)

A combination of the equations in (7) that is particularly useful is obtained by adding
the two equations to get

Jm JM

_vp+Y vu 9)
2¢D, 29Dy 2V

and combining this with (8) gives



D*vz[mziy}:_g (10)

Vr
where D* is defined by

2D,D;, 2D, Dy

D* = .
D,+Dy, D, +Dy

(1)

The square bracket in (10) can be expressed in terms of several functions that will each
be regarded as known quantities in this analysis. The number of DRBs will be denoted K,
and the DRBs will be labeled as the surfaces Sy, ..., Sx. The electrode surface will be
denoted Sy. Corresponding to the i/ DRB is the function denoted Q® defined by

v2Q® =0 in QNR interior (i =1,...,K) (12a)
QY=1 onS; and Q¥ =0 onS;if j#i (i=l..K:j=0,...K) (12b)

with reflective boundary conditions (the normal component of the gradient is zero) tacitly
assumed on the reflective boundaries. The last function that is treated as a known is what
the carrier density would be if carrier transport were a pure diffusion process. This
function is denoted P* and is defined by

D*V2P*=—g in QNR interior (13a)
P¥=0 onS; (j=0,.K) (13b)

with reflective boundary conditions tacitly assumed on the reflective boundaries. We will
call D* defined by (11) the “ambipolar diffusion coefficient,” and we will call (13a) the
“ambipolar diffusion equation.” In order to express the square bracket in (10) in terms of
the functions just defined, it is necessary to introduce notation for the boundary values of
P and U. The excess carrier density P is zero on the electrode surface Sy. This surface
will also be selected as the reference for the potential, i.e., the potential is the potential
relative to this surface, so we also have U = 0 on Sy. Notations used for the other
boundary values are given by

P=0onS,, P=P onS; fori=1,.N (14a)
U=0onSy,, U=U,; on S; fori=1,..N (14b)

with reflective boundary conditions for P and U tacitly assumed on the reflective
boundaries. The solution to (10) for the square bracket that satisfies the same boundary
conditions as the square bracket is given by

N K N
P+—Ul=P*+Y| P +—U, |Q,. 1
{ +2VT U} +§{ ’+2VTUI} ; (15)



Substituting (15) into (9) gives

- = K
Jm Iy 9Py P+ u |va,. (16)
2qD,, 29Dy ,



ITII. THE HIGH-INJECTION LIMIT

The analysis given here is intended to produce an approximation that becomes accurate
under high-injection conditions, i.e., when carrier liberation is sufficiently intense. The
DRs are assumed to be reverse-biased so high injection is produced by a large generation
rate. Therefore, a high-injection condition can be mathematically represented as a large-g
condition. The derivation given here is theoretical because it uses simplifying physical
approximations (drift-diffusion equations with constant mobilities) and applies to a
hypothetical device structure that is defined by these assumed governing equations. One
distinction between this hypothetical structure and a real device structure is that, for the
hypothetical case, it is possible to take the mathematical limit of an infinite carrier
generation rate. In contrast, a real device would be destroyed before this limit is reached.
However, it is assumed that the real device structure with a large but finite generation rate
can be approximated by the hypothetical case with the same finite generation, so an
approximation for this hypothetical case is also an approximation for the real case. The
mathematical limit is an approximation for the hypothetical case having a sufficiently
large but finite generation. Therefore, the limiting case is relevant to this investigation in
spite of the fact that a real device structure could not survive this limit.

The task now is to give the “large-g limit” a precise definition. This is done by first
selecting a non-negative (but otherwise arbitrary) reference function g,..(x). A large g is
obtained by multiplying this reference function by a constant and positive scale factor y
that becomes large. In other words, if we define a generation rate with an adjustable scale
factor by

g(X:7) =7 &rop (¥) (17)
then the large-g limit is the limit as y — oo.
Because g depends on j, the carrier density, electric field, and the currents satisfying
the equations in the previous section will also depend on y. We will be taking the limit as

y— o, so we want the notation to show this dependence. Using more descriptive
notation in (7) and (8) gives

In 57 _Gp ) - LD Gy (18a)
D,, Vr
gDy Vr
@ojm()?;y):—q;/g,ef(f), 6OJM(??;?/)Z‘H/gre;,f‘(ff)- (19)

There is no need to change notation in (12), because QY does not depend on y, but using
more descriptive notation with (13) gives

D*V2P*(%y)=—y Zrer (X) in QNR interior (20a)



P*(%7)=0 onS; (j=0,.,K). (20b)
The boundary values of the carrier density at the DRBs will be discussed at a later time,

but are allowed to depend on y. The potential at each DRB relative to the potential at the
electrode will also depend on , so (14) is written in more descriptive notation as

P(X%;7)=0 onSy, P(X;y)=P(y) on S; fori=1..N (21a)
U(X%;7)=0 onSy, U(X;y)=U;(y) on S; fori=1,..N . (21b)

Finally, (15) and (16) are written in more descriptive notation as
_ N . LS N _
PGEy)+——UE) | = PHED+ 2 RO+ 2=Ui(0) () - (22)
T i=1 T

TnGsy) Ty Gsp) _
29D, 29Dy

K
VP*(f;y)+Z{B<7)+—2]VV Um}mf(i). (23)
i=1 T

Note that (19) implies that the currents become singular as y — oo. This fact together
with (18) implies that at any point x in the QNR, at least one of the two quantities, P or
VU , becomes infinite as y — co. Similarly, P* becomes singular. It is also possible that
one or more boundary values of P or U might become infinite as y — . However, (19)
implies that these singularities are first order in y, meaning that they can be removed by a
normalization that divides by y. To obtain quantities that remain finite in this limit, we
define normalized quantities, indicated by script notation, by

I (Z57) E%jm(i”/)a Iu (%5%) E%jM (%;7) (24a)
P(:y) = %P(f;y), U(E;y) = %U(fc;y), P+ (7)= %P *(317). (24b)
2.(7) E%P,m, U,(7) E%Ui o). (24c)

The normalized quantities have finite limits so we can define
P(X;0) = lim @(X;7) = lim lP(fc;}/) (25)
y—>®© y—0 )y

with analogous definitions for the other normalized quantities. Also, because the
normalized quantities remain finite, a second division by yproduces quantities that go to
zero in the limit, i.e.,



lim 17, (Fy)=0, lim L7, F)=0
;/%oo}/ onoj/

lim lG’()?;;/) =0, lim lrU(?E;J’) =0.
y—0 Y yoo Yy

Using (24) to express (18) through (23) in terms of normalized quantities gives

InG5D) _ L Gp0z:0) - PED G o))
rq9D,, v Vr

- N
e . P(x;7)+—
Im (X57) :_§@()—5;},)+—7 6‘()(55;}/)
74Dy v Vr

Vo dn(E7)==q8er (), VoTp (F7)=q&rer (%)

D*V?@*(¥)=—g,,r(¥) in QNR interior
P*(x)=0 onS; (j=0...,K).
P(x;7)=0 onSy, P(X;7)=@(y) on S; fori=1..N

U(x;7)=0 onSy, U(X;y)=U;(y) on S; fori=1..N.

P(X; )+i'U()—C’ ) —@*(£)+§_@~( )+L‘U~( )_Q~(5€)
a}/ 2VT !7/ - P 1 7/ 2VT 1 7/ | 1 *

- Xr N -
=Ver(x)+), 4’;‘(7/)+7’Ui(7) VQ;(X).
i=1L r .

In () Iu ()
29D, 29Dy

Taking the limit as y — oo of either equation in (27) while using (26) gives

P(X)VU(X) =0

(262)

(26b)

(27a)

(27b)

(28)

(29a)
(29b)
(30a)

(30b)

€2))

(32)

(33)

where the notation was shortened by writing AX) in place of Ax;) and writing UX) in
place of U(x;0). This notation denotes normalized quantities in the high-injection limit.
Using similar notation (e.g., writing @, in place of ®(e0)) when taking the limits of (28)

through (32) gives

Vo 5n(E)==48,er (), Vo Ty (¥)=qger (¥)

(34)



D*V?@*(¥)=—g,,r(¥) in QNR interior (35a)

?*(¥)=0 onS; (j=0,.,K) (35b)
®(X)=0 onS,, P(xX)=® on S; fori=1,.N (36a)
U(X)=0 onS,, UX)=U; onS; fori=1,.N (36b)
- N - - -
{@(X)JF—’U(X)}:(P*(X)H//(X) (37)
2Vr

In ) In®) o s o -

24D, —ZqDM =Ve*(x)+Vy(x) (38)

where we further shortened the notation by defining
=36+ ; 39
‘//(x)=iz;,|:q3i +%’UZ}QI'(X)- (39)

Note that wis the solution to Laplace’s equation having a boundary value equal to the
square bracket in (39) on §; (for i = 1, ..., K), and having a boundary value of zero on the
electrode surface Sp.
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IV. REGIONAL PARTITIONING: DEFINITIONS AND EQUATIONS

Note that (33) can be used to define a partitioning of the QNR. At any given point x in
the QNR, either the normalized carrier density is zero or the normalized electric field is
zero in the high-injection limit. The ambipolar region (AR) (the motivation for this name
will be clear later) is defined to be the set of points in the QNR interior for which the
normalized carrier density is positive in the high-injection limit. It will be argued later
that the AR is never an empty set, i.e., there will always be some points in the QNR such
that P > 0. The high-resistance region (HRR) (the motivation for this name will be clear
later), when it exists, is defined to be the set of points in the QNR interior for which the
normalized carrier density is zero in the high-injection limit. If there are no such points in
the QNR interior, then the HRR is an empty set, i.e., there is no HRR. It will be seen later
that there may or may not be an HRR, depending on the example.

Let us now consider the AR in more detail. Recall that either the normalized carrier
density is zero or the normalized electric field is zero in the high-injection limit, but the
normalized carrier density is not zero in the AR, by definition of the AR. Hence, the
normalized electric field is zero in the AR in the high-injection limit, so the AR is
characterized by

P(3)>0  (in AR) (40)
VUG)=0  (inAR). (41)

Note that (41) suggests that U is constant in the AR. However, the AR is not necessarily
(or at least has not yet been shown to be) a connected region. It is possible that the AR
might consists of several disjoint sub-regions, with U equal to a constant in each sub-
region, but a different constant in different sub-regions. It is possible to define sub-
regions (that may or may not be disjoint, and may or may not be distinct) that make up
the AR, but it is necessary to first discuss carrier-density boundary conditions assumed at
the DRBs. This analysis does not solve carrier transport equations within the DR, so
boundary conditions at the DRB must be given in order to have a complete set of
equations. A boundary condition assumed here is motivated by computer simulations of
charge-collection in p-n junction silicon devices. These simulations show that, while the
excess carrier density is much smaller at the DRB than at other locations in the QNR
interior, the excess density at the DRB can still be much greater than the doping density
when carrier generation is sufficiently intense, and the excess density on at least one of
the DRBs increases with an increasing carrier-generation rate. We interpret this to mean
that the normalized carrier density is greater than zero on at least one of the DRBs. It is
small compared to the normalized carrier density at some interior points in the QNR, and
the boundary value will be approximated as being zero in some selected equations that
will be given later in Section V, but it is not exactly zero. Any DRB at which the
normalized carrier density is greater than zero in the high-injection limit (there will be at
least one such DRB) is surrounded by some region in which #> 0. Hence, there will
always be an AR in contact with at least one DRB (i.e., the AR is not an empty set).
However, it is not clear that the un-normalized carrier density must increase without

1



bound with increasing y on all DRBs (e.g., perhaps some DRBs are in contact with the
HRR), i.e., #might be exactly zero on some DRBs. At any DRB (if there is one) such
that @is exactly zero, there are two possibilities. One possibility is that ?increases as the
observation point moves from the DRB into the QNR interior, in which case the DRB is
in contact with the AR. The other possibility is that ®is zero throughout some region
surrounding the DRB, in which case the DRB is not in contact with the AR (it is in
contact with the HRR).

Foreachi=1, ..., K, a subset of the AR is denoted AR; and is defined to be the set of
all points in the AR that can be connected to S; by a path that lies entirely within the AR.
If S; 1s a DRB that is not in contact with the AR, then 4AR; is an empty set. This implies
that every pair of points within a nonempty 4R; can be connected to each other by a path
that lies within AR;, i.e., AR, 1s a connected set. If two such sets, call them AR; and AR;,
have any points in common, then they are the same set. In this case, we will say that “S; is
connected to S;.”” In other words, if AR; and AR; have any points in common, then there is
a connected portion of the AR that covers both S; and ;.

The fact that a nonempty 4R; is a connected set together with (41) implies that Uis a
constant in AR;. The boundary of this set includes S;, where U= U, so

UE) =V, (in AR)). (42a)

Substituting this result into (37) gives

q»(i):q»*()z)w(x)—%vi (in AR;). (42b)
T

The AR is characterized by (40) through (42), with (42) describing sub-regions within
the AR. Note that (41) not only implies that the normalized potential is constant in each
connected region within the AR, it also states that the normalized electric field is zero in
the AR, suggesting that the un-normalized electric field is finite. To be technically
correct, the mere fact that the limit of the un-normalized field divided by y (i.e., the
normalized field) is zero does not imply that the un-normalized field must have a finite
limit, but it does have a finite limit at each interior point in the AR, as can be seen by
deriving an equation for the un-normalized field. For this purpose, we write (27) as

jm(i;y) =§(P(k’;7/)_)/m 6‘(}()}"7/) (433_)
q Dy, Vr
o P(Ep)+
R VACTT AN SV 4 73 e (43b)
gDy Vr

To obtain quantities that remain finite when taking the y — oo limit in the AR, where >
0, it is necessary to pair the y on the far right of each equation in (43) with the
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normalized potential, because pairing y with @produces a singular quantity. This converts
the normalized potential into the un-normalized potential, i.e., the equations are written as

InGD) G010 - 2D Gy (44a)
gDy, Vr
I @(i;7)+ﬁ
_jM(xﬂy):ﬁ@()‘c’;y)_F—y%U()_C’;)/). (44b)
gDy Vr

When taking the y— oo limit, the un-normalized potential U(x;y) will sometimes become
singular in the AR because the reference potential was taken to be at Sy and the un-
normalized potential drop across a region outside the AR can become singular (as seen
later). However, this singularity is contained in an additive constant from the point of
view of the AR because (44) implies that the gradient of the un-normalized potential has
a finite limit in the AR. One way to interpret the limit of VU(%;y) is to interpret it as the
limit of the gradient, which is defined in the AR. Another way to interpret the limit of
VU(%;y) is to interpret it as the gradient of a limit, but with the reference potential

changed as needed so that U(x;y) has a finite limit in the AR. Using either interpretation,
taking the limit of (44) gives

I (%) P(X) &

=VP(¥)-——=VU(X)  (in AR) (45a)
q Ly VT
@ _ Ve(x) 26 VU(X)  (in AR) (45b)
gDy Vr
InX)  In® o - :
—Zq D 24Dy Ve(X)  (inAR) (45¢)

and substituting (42) into these results gives

- P*E) +y(®) -,

= Ve * (@) +y(@)]- E—vVU@)  Gn 4R (462)
gD, Vr
- - N
o PHE) +Y() = U,
9Dy &

Combining either equation in (46) with the corresponding equation in (28), while using
(35) and the fact that y satisfies Laplace’s equation, produces the same equation
governing U(x), which is

%{[maﬂw(i)—;g Ui}Vl;(x)}{zll) _2; }gref(,z) (in AR). (47)
T T m M
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In summary, the AR is characterized by (40), (41), (42), (46), and (47). The name
“ambipolar region” was chosen because (42), together with the fact that i satisfies
Laplace’s equation, implies that the normalized carrier density satisfies the same
ambipolar diffusion equation that is satisfied by #* and given by (35a).

We now consider the HRR in more detail. Recall that the HRR (when it exists) is
defined to be the set of points in the QNR interior for which the normalized carrier
density is zero in the high-injection limit. Depending on the specific example, there might
not be any points in the QNR interior satisfying this condition, in which case there is no
HRR and the entire QNR 1is the AR. That the points be interior points in the QNR is an
essential part of the definition of the HRR, because there would otherwise always be an
HRR containing (at least) the substrate electrode boundary. Combining @= 0 with (37),
we conclude that the HRR (when it exists) is characterized by

#(F)=0  (inHRR) (48)

N UG =e*(F)+p(¥)  (inHRR). (49)
2y

Note that defining the HRR to consist of interior points when it exists insures that the
HRR has a nonzero width when it exists. This implies that (48) and (49) apply to an
interval (as opposed to just a boundary), which implies that it is valid to take the
gradients of these equations within the HRR when the HRR exists.

The fact that the normalized carrier density is zero in the HRR suggests that the un-
normalized carrier density is finite. That this quantity is finite is seen by returning to (43).
To obtain quantities that remain finite when taking the y — oo limit in the HRR, where
VU(X) # 0 as seen by (49), it is necessary to pair the y on the far right of each equation in

(43) with the normalized carrier density, because pairing  with the Vu(¥) produces a

singular quantity. This converts the normalized carrier density into the un-normalized
carrier density. Taking the y — oo limit gives

jm()_é) R - _@ o -
—qu =Ve(x) v, VU(X)
IMD) o) PON G2y
gDy Vr

As previously stated, it is valid to take the gradient of (48) and (49) within the HRR when
the HRR exists, so we conclude that the gradient of ®is zero in the HRR. Using this fact
with the above equations, and also substituting (49) into the above equations, gives

In(X) __P()

2D, N V[e*(X)+w(¥)]  (inHRR) (50a)
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Iu( _PE+N

24Dr, N V[e*(®)+w(¥)]  (in HRR). (50b)

Combining either equation in (50) with the corresponding equation in (28), while using
(35) and the fact that y satisfies Laplace’s equation, produces the same equation
governing P(x), which is

V D+ Ve )+ p()]) = i
Y {{P(x)+Dm+DM N}V[(P (%) +w( )]} 0 (in HRR) . (51)

In summary, the HRR is characterized by (48) through (51). The name “high-resistance
region” was chosen because the carrier density remains finite (hence the electrical
conductivity remains finite) in the HRR, compared to the infinite (in they — oo limit) un-
normalized carrier density (hence an infinite conductivity) in the AR. All of the electrical
resistance associated with the QNR is in the HRR in they — oo limit. This is consistent
with another property, which is that the normalized electric field is nonzero (the un-
normalized electric field is infinite in they — oo limit) in the HRR, compared to a zero
normalized field (a finite un-normalized field) in the AR.

If there is an HRR, then part of the boundary of the HRR will be the demarcation
between the HRR and AR;. This boundary will be denoted 4ARB; and its location is
determined by setting Ax) equal to zero in (42) to get

P*(X)+w(X) =%u (on ARB;). (52)
T

If there is no HRR, we will define ARB; to be the electrode boundary Sy. With this
definition, (52) will also apply when there is no HRR because the normalized electric
field will be zero throughout the QNR, implying that U, = 0. We also have = 0 and #*
=0 on S, so (52) correctly gives Sy as the boundary.

The un-normalized electric field is finite at any point in the AR interior, but this does
mean that this field is bounded in the AR. It is not bounded, which can be seen by
selecting some point, call it xy, on the ARB. If there is no HRR, the ARB is . If there is
an HRR, the ARB is the demarcation between the AR and HRR. For either case, the
normalized carrier density is zero at xp. Now select a point x in the AR interior so that
(45) applies and implies

T (%) N Iu@ __2(%) VU()  (in AR)
2qD,, 2qDy Vr

Now take the limit as the point x approaches the point x; along a path in the AR interior.
Excluding special cases, the limit of the left side will not be zero, but the Ax) on the right
does approach zero, implying that the gradient of U increases without bound, i.e., the un-
normalized electric field is not bounded in the AR. In contrast, the relevant electric field
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in the HRR is the normalized electric field, which is not only finite at each point in the
HRR interior, but also bounded in the HRR as implied by (49).
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V. RELATING TERMINAL CURRENTS TO POTENTIAL BOUNDARY
VALUES UNDER IDEAL BOUNDARY CONDITIONS

The goal is to derive equations expressing terminal currents in terms of other
quantities, where the normalized terminal currents are defined by

I i E—j&. TmodS, Iy, E_.[sl' Tu odS, Ir;=Iy;+1y, (33)

which applies to any of the surfaces Sy, Si, ..., Sx. The normal unit vector in the surface
integrals is directed outward from the QNR because this is the customary convention
when using Green’s theorem. The signs in front of the integrals were selected to produce
positive currents at each reverse-biased DR. For example, minority carriers will be
flowing towards the DRB from the QNR interior, which is the direction of the outer-
normal unit vector in the surface integral, but the direction of 7, is opposite to the
direction of minority-carrier flow, so it is opposite to the direction of the normal unit
vector; hence, a negative sign in front of the integral produces a positive current.

If the drift-diffusion equations had been completely solved, there would be enough
information in that solution to calculate the minority and majority currents (and total
currents) at each boundary when the carrier density and potential boundary values are
given at all boundaries. Alternatively, if we are given the carrier density at each boundary
and majority current (instead of potential) at each boundary, a complete solution would
be able to calculate the total current and potential at each boundary from this given
information. We have not yet obtained a complete solution. In terms of the original (un-
normalized) quantities, the particular combination of carrier density and potential
appearing on the left side of (22) has been solved (when all quantities on the right are
regarded as known), but we have not yet solved for each quantity individually because
we have not yet solved all of the differential equations that have been listed. Because the
solution is not yet complete, we do not expect to be able to calculate (using only the
analysis given so far) the total currents and potential boundary values, even after
numerical values have been assigned to the majority currents and carrier density
boundary values. Additional analysis in later sections is needed for that. However, the
analysis given so far is at least enough to determine constraints between total currents and
potential boundary values after numerical values have been assigned to the majority
currents and carrier density boundary values. These constraints are equations relating the
total currents to the potential boundary values, and some useful information can be
extracted from these equations in spite of the fact that these constraints, by themselves,
are not enough to uniquely solve for the total currents and potential boundary values
individually.

A complete solution to the drift-diffusion equations would uniquely solve for all
quantities after values have been assigned to each majority current and carrier density
boundary value, so specifying any additional boundary conditions would be an over-
specification of boundary conditions, but we are at liberty to assign a value to each
majority current and carrier density boundary value. We will do this and then derive a
partial solution, which is a set of equations relating the total currents to the potential
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boundary values. The boundary values used as inputs are simplified approximations that
are intended to have adequate accuracy when each DR is one-sided (n"-p when the
substrate is p-type, or p -n when the substrate is n-type) and is reverse biased. Such a
junction blocks the majority current, so we use Ij;; =0 wheni=1, ..., K. An
approximation for the carrier density boundary values is motivated by computer
simulations which show that, while the excess density at the DRB can be much greater
than the doping density when carrier generation is sufficiently intense, the excess carrier
density is still much smaller at the DRB (when the DR is reverse biased) than at the
location in the QNR at which the density is maximum. This is interpreted to mean that @,
can be neglected compared to the other term in the square bracket on the right side of
(39). In summary, the assumed boundary conditions for the DRBs, which will be called
“ideal boundary conditions” (IBC) are

Iny,;=0 and @ =0 foreach i=1..,K  (IBC). (54)

It should be noted that (54) is only a partial listing of the conditions that define IBC. A
complete listing is given in Section V1. It should also be noted that ideal boundary
conditions are not approximations that become exact in the high-injection limit. They are
in the category of physical approximations, the same category as approximating
mobilities as constants in the QNR. They describe an ideal reverse-biased DRB that is
defined by these boundary conditions. The ideal DRB is not an exact representation of a
real DRB even in the high-injection limit, but it is taken for granted that the ideal DRB
resembles a real DRB close enough so that some useful physical insight can be obtained
from an analysis of the ideal case.

IBC will be assumed throughout the remainder of this paper, so from this point on (39)
reduces to

N K
v =22 V(). (55)
T =1

Because (38) applies throughout the entire QNR, it can be used to relate surface integrals
on any of the surfaces Sy, S, ..., Sx. Taking surface integrals while using (53) and (55)
gives

Imi Iy - - LS - ~
i ME [ GpredS -y Ui[ VQ;edS for i=0,..K. (56)
2qu 2qDM Si 2VT /.=1 ? Si ?

If we now restrict S; to be any of the DRBs, i.e.,i =1, ..., K, we can use I;;; = 0, which
implies that I7; = I,,;, to write (56) as

Ir;=1*=Y. U;Ci; for i=l..K (57)

where we shortened the notation by defining
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fi*s—quijl_ Ve*odS for i=0,..K (58)

ci,quDmVﬂjS, VO odS  for i=1,.K: j=1..K. (59)
T 1

Regarding I;* defined by (58) as a known quantity describing the spatial distribution of
the normalized carrier generation rate density, and C;; defined by (59) as a known set of
constants describing the QNR geometry, (57) becomes a set of constraints relating the
normalized terminal currents to the normalized potential boundary values on the DRBs,
which is the set of equations that was promised earlier in this section.

An alternate expression can be obtained for I;* defined by (58) by first using (12b),
then (29b), then Green’s theorem, and then (12a) and (29a) to get

_Is,- V@ *odS = —§ QDY@ *ods =§ ?*vQ® o 4§ —§ QDY@ *ods =

j @*Vzg(f)d%c—j QOV2 prgdy— L 0Dg . d3x
ONR ONR D*Jonr ref

Combining this result with (58) while using (11) gives

_ D D (Yo (3Vd> -
If*_q(HDMjJQNRQ (¥)grer (F)d x  for i=0,..K. (60)

Except for material constants that determine units of measure, the C;; defined by (59)
is the same as the coefficient of induction defined in electrostatic treatments of capacitors
consisting of K+1 conductors [4]. One conductor (Sy in our notation) defines the
reference potential and has a charge that balances the sum of the charges on the
remaining K conductors consisting of S, ..., Sk. It is intentional that the i and j subscripts
in Cj;j range from 1 to K (not zero to K) so that C;; will be an invertible matrix
(invertibility is proven in Appendix A).

The elements of the inverse of C;; are denoted here as @;;. These elements are the
same (except for material constants that determine units of measure) as the coefficients of
potential defined in electrostatic treatments of capacitors consisting of multiple
conductors [4]. Important properties of C;; and ®;; are that they are symmetric. This is
established in (A3) in Appendix A for C;;. Starting with the fact that the inverse of a
transpose is the transpose of the inverse, it is easy to show that the inverse of a symmetric
matrix is symmetric, implying that @;; is also symmetric. The conclusions are

Ci,j = Cj,i fOI" i= 1,...,K and J = 1,K . (613)

©;;=0;; for i=L..K and j=1.K. (61Db)

19



The statement that these matrices are inverses can be written as

K . ..
Lif i=j . .
Z ©,;;Crj=0;; = {O i) for i=1..,K and j=1..,K. (62)
k=1

This can be used to invert (57) so that it solves for the potential boundary values in terms
of the terminal currents instead of vice-versa. Changing the i subscript in (57) to &,
multiplying the resulting equation by ®;, summing in k, and then using (62) gives

K

"Ui = Z (Ik *_IT,k )(Di,k fOl" i= 1,...,K . (63)

k=1
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VI. SEVERAL INEQUALITIES

Several inequalities derived here will be used in later sections to derive necessary and
sufficient conditions for the existence of an HRR, and to derive some topological
properties of the AR and HRR. The focus here is on the inequalities themselves, with
applications postponed to later sections. However, some preliminary discussion is needed
first before the derivation of the inequalities can proceed because (54) is a partial list but
not a complete list of all of the properties that define IBC. It is necessary to list one more
property, so we start the discussion by revisiting the ideal reverse-biased DR. Section IV
mentioned the possibility that one or more (but not all) DRBs might be in contact with
the HRR, at least as predicted by ideal boundary conditions. There are two possible ways
in which a DRB can contact an HRR as predicted by ideal boundary conditions. The first
possibility occurs when the condition @ = 0 is an inexact approximation while the exact
condition is ® > 0, but @ decreases as the observation point moves away from the DRB.
The DRB is in contact with the AR, but the AR width is very narrow. In the IBC limit we
would predict a zero AR width for such an example, but this is an approximation because
the actual AR width is small but not zero. The exact description of a small but nonzero
AR width allows us to substitute (45¢) into the right side of

Imi — Imi :_J‘ Im  Ju odS
2gD,, 2qDy Si | 2gD,, 2qDy,

to get

I Ingi -
_mi _Mi [ pods. (64)
2gD,, 2qDy Si

If we now take the IBC limit by letting ® — 0, while noting that > 0 throughout the
QNR, we conclude the direction of increasing ®is opposite to the outer normal vector in
the surface integral, which gives

Tmi_ _Imi o
2qD,, 2qDy

The second possibility is more subtle and occurs if the y — oo limit leads to the exact
limiting condition & = 0, and with ®not increasing as the observation point moves away
from the DRB. The final property used to define IBC states that this case is equivalent to
a limit. The limit is obtained by starting with a DRB that is surrounded by an AR layer
separating the DRB from the HRR, and taking the limit as the thickness of the AR layer
shrinks to zero. In other words, the above inequality still applies. It also applies to any
DRB in contact with the AR, so the last property used to define IBC states that the above
inequality applies to every DRB. Combining this with the properties already listed in (54)
gives the complete list of properties that define IBC, which are

Iny,;=0 and I,;=1I7;20 and ® =0 foreach i=1.,K  (IBC). (65)

One inequality is part of the definition of IBC and is I,,; = I7; = 0. To obtain another
inequality, go back to (64) and use I;; = 0, implying that 7,,; = Ir;, to write (64) as
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Ir;=-2¢D,, Is;- Veods . (66)

Now combine (45¢) with (34) to get
D* V2P(3) =~ g, (¥) inAR. (67a)

Under IBC we have
P(¥)=0 onS; (j=0...K). (67b)

If there is no HRR then the ARB is Sy. If there is an HRR, then the ARB includes points
in the QNR interior, with these points being the union of ARB; for each i such that AR; is
not empty. For all cases we have

®(X)=0 on ARB. (67¢)

Now compare (67) to (35). If there is no HRR, so that the AR is all of the QNR, we
conclude that ®and ®* satisfy identical boundary value problems, so

P(¥)=@*(X) throughout QNR if there is no HRR . (68)

Now suppose there is an HRR. First consider a DRB, call it S;, that is in contact with the
AR. This DRB is surrounded by a connected portion of the AR denoted AR;. From (67b)
and (67c) we conclude that all portions of the boundary of AR; that are not reflective
boundaries are sink boundaries. Part of the sink boundary is ARB;. Note that P* satisfies
the same field equation as ®in AR,. Also, P* satisfies the same boundary conditions as ®
on all portions of the boundary of AR; consisting of DRBs (if any portion of the boundary
consists of DRBs) or the electrode (if the boundary includes the electrode) or reflective
boundaries (if the boundary includes reflective boundaries). However, if ARB; is in the
QNR interior, then this is a sink boundary for ®but not for #*. The presents of this sink
boundary can only reduce the surface integral on the right side of (66) compared to what
the integral would be without the sink boundary, i.e.,

—2qujSi 6@odES—2qujSi Ve *odS

and using (66) and (58) gives

Ir; <I;*.

This result was derived for a DRB that is in contact with the AR when the case
considered is one in which there is an HRR. Interpreting a DRB in contact with the HRR
as the limiting case of a DRB in contact with the AR, in the limit as the width of AR; goes
to zero, we not only obtain the above inequality, we obtain the stronger statement that I7;
= 0, because the sink boundary is adjacent to the DRB. Therefore the above inequality
applies to any DRB when there is an HRR. If there is no HRR, we conclude from (68)
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that we not only have the above inequality (hence the above inequality applies to all
DRBs with or without an HRR), we have the stronger statement that 7; = I*. The
conclusions are

0<Ip;<I;* foreach i=1,.,K (69)
If there isno HRR then 17 ; =1;* foreach i=1,..K (70)
If §; contacts the HRR for somei =1,...,K, then 77 ; =0. (71)

The next inequality involves the normalized potential boundary values. It is shown in
Appendix C that the coefficients ®;; are nonnegative (and the diagonal elements are
positive). Using this fact together with (69), we conclude from (63) that

U; 20 for i=1.,K. (72)

The last topic in this section discusses the minority-carrier current at the electrode .
If all of S is in contact with the HRR, we conclude from (50a) that the minority-carrier
current through S is zero because P = 0 on Sy. However, if some or all of Sy is in contact
with the AR, an analysis of the minority-carrier current using either (45a) or (46a) must
deal with the fact that the electric field is unbounded, as pointed out at the end of Section
IV. This inconvenience can be avoided by going back to the finite yto evaluate the
minority-carrier current at the electrode and then take the limit of the result as y— . For
a finite y we can write (43a) as

InED) _ G5y~ PED Gy
9D, Vr

The ideal electrode is a perfect sink not only for the normalized carrier density @, but also
for the un-normalized carrier density P. Therefore the current at the electrode is given by

Ino()==[  Tn(x:7)odS =D, [ V@(E7)odS . (73)

If the electrode is in contact with the HRR in the y — oo limit, the gradient on the right
will be zero. This produces a zero current in the y — oo limit which is consistent with
(50a). If the electrode is in contact with the AR in the y — oo limit, the result (73) is
consistent with (45a) when taking the limit of (45a) as the observation point x moves to
the electrode. In this limit, the electric field increases without bound as x moves to the
electrode, but the normalized carrier density goes to zero faster than the electric field
increases because the electrode is a sink for the un-normalized carrier density. (This
property is not shared by an ARB separating the AR from the HRR because this ARB is a
sink for the normalized carrier density but not for the un-normalized carrier density.
Hence, the product of a normalized carrier density that goes to zero multiplied by an un-
normalized electric field that increases without bound is more difficult to evaluate on any
ARB that is not the electrode). Note that ®is zero on the electrode and nonnegative in the
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QNR interior, so the direction of increasing ®is opposite to the direction of the outer
normal vector in the surface integral in (73). This gives

T ()20
for all », and taking the limit as y — oo gives
I,020. (74)

m,0 =

Another result implied by (74) is obtained by using the divergence theorem together with
(53) and (34) to get the second equality in

K K
Im,0+z IT,i:Im,0+Z Im’i:qIQNR gref()_é)d?)x (75)
i=1 i=1

and combining this with (74) gives
v = 3
Z;, IT,i SqJ‘QNR gref(x)d X (76)
To shorten the notation, define
R = j o rep () dx (77)

so that ® is the normalized total rate of carrier generation in the QNR, and g® is the
normalized charge generation rate in the QNR. This allows us to write (75) and (76) as

K
Imo+Y, I =4R (782)
i=1
K
> Iy <qR. (78b)
i=1
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VII. SOME TOPOLOGICAL PROPERTIES

This section begins with a review of some of the discussion that was given in Section
IV, which is repeated here for easy reference. For each i =1, ..., K, a subset of the AR is
denoted AR; and is defined to be the set of all points in the AR that can be connected to S;
by a path that lies entirely within the AR. If S; is a DRB that is in contact with the HRR
instead of the AR, then AR; is an empty set. This definition implies that every pair of
points within a nonempty AR, can be connected to each other by a path that lies within
AR;, 1.e., AR; is a connected set, and this in turn implies that U(x) is a constant in AR;. If
two such sets, call them AR; and 4AR; , have any points in common, then they are the same
set. In this case, we will say that “S; is connected to S;.” An equivalent definition of the
statement that a DRB §; is connected to another DRB ; is that there is a path within the
AR interior that connects some point on S; to some point on S;. Because U(x) is constant
on this path, and Ux) = U; on §; while Ux) = U;on S;, we conclude that if a DRB §; is
connected to another DRB §j, then U; = U,. Furthermore, if a DRB S; is connected to
another DRB S;, then AR; = AR;.

The remainder of this section derives new theorems regarding the topology of the AR
and HRR. To simplify the analyses, the remainder of this paper considers “irreducible
device geometries.” These are geometries that are not “reducible geometries,” where a
reducible geometry is one in which Sy is composed of multiple sections formed in such a
way so that the DRBs can be divided into groups with one group completely surrounded
by one section of Sy and another group completely surrounded by another section. An
example of a reducible geometry, which is excluded from consideration, is shown in Fig.
2. An example of an irreducible geometry, which is analyzed here, was already shown in
Fig. 1. Note that there is no loss of generality by excluding reducible geometries because
they decouple into separate and independent irreducible geometries. For example, the
configuration consisting of S3 and Sy in Fig. 2 is separate and independent of the
configuration consisting of S, S>, and Sy, and each configuration can be treated using an
analysis of irreducible geometries. An irreducible geometry has the property that there is
some coupling between every pair of DRBs in the sense that all off-diagonal elements of
C;,; are negative (not zero) and all of the elements ®;; are positive (no elements are zero).
These strict inequalities simplify the analysis and this is the motivation for confining our
attention to irreducible geometries. The strict inequalities allow us to replace (B5b) in
Appendix B and (C9b) in Appendix C with the stronger conditions

C;pj<0 for i=1.,K and j=1..K with i#j (79a)

0< (Di,j < cD],] fOV 1= 1,...,K and j = l,...,K . (79b)

Implications from the condition that two DRBs are connected were already discussed,
but now we derive implications from the condition that a DRB is connected to the
electrode. We will say that a DRB is connected to the electrode if there is a path lying
entirely within the AR that connects some point on the DRB to some point on the
electrode. A topology theorem that will be proven below states that if there is any DRB
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Fig. 2. lllustration of a device having a reducible geometry. This is excluded from consideration in the theory
derived here. However, this problem decouples into two independent problems that can be treated by the
theory derived here.

that is connected to the electrode, then there is no HRR anywhere. This implies that U; =
0 foreachi=1, ..., K, and that Iy; = I;* for each i = 1, ..., K. However, the proof will
actually establish these conclusions in a different order. Starting with the given
information that some DRB is connected to the electrode, we will first show that 17; = I*
foreachi=1, ..., K, then show that U, =0 for each i =1, ..., K, and finally show that
there is no HRR.

To prove the above conclusions, we start with the given information that there is some
DRB, call it S; for some j = 1, ..., K, with the property that there is some path in the AR
that connects some point on S; to some point on Sp. This path is a connected set of points
so (41) implies that U is constant along this path. Note that U(x) equals zero on S and it
equals U on S}, so the first conclusion is that U; = 0, and that U(x) = 0 along the path.
Using U; = 0 with (63) gives

0= i(z* ~I7,;);,

i=1
From (79b) and (69), we see that the right side of the above equation is a sum of
nonnegative terms, so each term in the sum must be zero. But the ®;; coefficients are all

positive, so each parenthesis on the right must be zero, i.e.,

Ir;=1;* foreach i=1,..K.

Substituting this result back into (63) gives

U; =0 foreach i=1,...K

and (55) gives y(x) = 0 throughout the QNR. Therefore, (42b) reduces to
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P(X)=@*(¥) in AR,

We next show that there is no HRR by contradiction. Assume that there is an HRR. Then
there will also be a boundary, denoted ARB;, that is in the QNR interior and separates AR,
from the HRR, and satisfies (52). Using y(x) = 0 and U, = 0, (52) reduces to

P*(x)=0 on ARB;.

However, there is no boundary in the QNR interior satisfying this condition, because
P*(x) > 0 in the QNR interior. Therefore there is no HRR.

The conclusions from the above paragraph are:

If any DRB s connected to the electrode, then
(a) There is no HRR (hence, all DRBs are connected to the electrode). (80)
(b)V; =0 and Ir; =1;* foreachi=1,...,K.

An important implication of (80) is that there are only two possibilities. Either there is
no HRR or the electrode is entirely covered by the HRR. We cannot have a situation in
which part of the electrode contacts the HRR while another part does not, because the
uncovered part establishes a connection with a DRB, which implies that there is no HRR.
However, this conclusion was derived for an irreducible geometry in the y — oo limit.
This limit may or may not be a good approximation for a large but finite y because,
depending on the geometry, there might be a problem with competing limits. For
example, consider Fig. 2 and suppose that the point where Sy contacts the upper plane is
displaced slightly downward to produce a small gap between Sy and the upper plane. The
geometry now becomes irreducible. However, if the gap is small enough, we can expect
almost no communication between the two sides of the device. In particular, if carrier
liberation is confined to the left side, we might expect an HRR to cover the left side of S
without covering the right side, contradicting the claim that Sy is completely covered if it
is covered at all. This is a problem of competing limits. If the gap shrinks to zero first and
then y — oo (a reducible geometry) we obtain a different result then we obtain if y — o
first (an irreducible geometry) and then the gap shrinks to zero. Stated another way, the
smaller the gap is, the larger ¥ must be in order to be well approximated by the y— o
limit. From a practical point of view, it is recommended that the small-gap case, i.e., an
irreducible geometry that is “almost reducible,” be approximated as a reducible
geometry. This will result in the y — oo limit being a better approximation of the finite y
case.

Note that there will always be an AR covering at least one DRB. Also, it was
concluded in this section that if any DRB is connected to the electrode then there is no
HRR. Furthermore, either there is no HRR or the electrode is entirely covered by the
HRR. These conclusions limit the possible topologies of the AR and HRR. For
illustration, consider a device containing two DRBs. There are five possible topologies
for the AR and HRR, which are shown in Fig. 3. For the first possibility (Fig. 3a), there is
no HRR, so the AR, the AR,, the AR, and the QNR are identical sets. For the second
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possibility (Fig. 3b), there is an HRR that covers S, as
well as Sy, so AR; is all of the AR while AR, is an
empty set. The third possibility (Fig. 3c) is the same as
the second but with S} and S, interchanged. For the
fourth possibility (Fig. 3d) there is an HRR but §; and
S, are connected so the AR, the AR,, and the AR are
identical sets. For the fifth and last possibility (Fig.
3e), there is an HRR, and the 4R, is disconnected from
the AR,, with neither set being empty.

The conclusion that an HRR covers the entire
electrode when an HRR exists has an important
implication regarding the minority-carrier current at
the electrode. If there is an HRR, then it covers the
entire electrode, so (50a) applies everywhere on the
electrode. Because P = 0 on the electrode, there is no
minority-carrier current through any part of the
electrode. The conclusion is:

If there is an HRR, then 7,,, o = 0. (81a)

Using (78a), this can also be written as

K
If there isan HRR, then ) Ir; =q® . (81b)
i=1
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VIII. NECESSARY AND SUFFICIENT CONDITIONS FOR
THE EXISTENCE OF AN HRR

A necessary condition for the existence of an HRR can be derived by assuming that
there is an HRR. From (81b) we conclude that

K
Z It; =qR
i=1
while (69) gives
K K
PIRITED IS
i=1 i=1

Combining these results, we conclude that if there is an HRR then

K
Z I;*>qR. .
i=1
Inverting this implication gives
K
If  1;*<q® then thereis no HRR. (82a)

i=1

Now assume that there is no HRR. Using (70) gives

K K
z IT,i: Ii*'
i=1 i=1

Combining this with (78b), we conclude that if there is no HRR then

K
D *<qR.
i=1
Inverting this implication gives
K
If Z I;*>g® then thereisan HRR. (82b)

i=1
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IX. THE TWO-TERMINAL PROBLEM

The two-terminal problem is a K =1 problem with the DRB being one terminal and the
electrode the other. With only one DRB, we will omit subscripts and write I and r*
instead of Ir; and I;*. Regarding /* and the volume integral of g,.(x) as known
quantities (note that I* can be solved from (60)), enough information has been listed to
solve for I7. There are two cases to consider. The first is defined by

I*> q®R (defines Casel) (83a)

which implies an HRR via (82b), so (81b) gives

I =qR. (for Casel) . (83b)
The second case is defined by

I* < qR (defines Case 2) (84a)
which implies no HRR via (82a), so (70) gives
Iy =T1* (for Case2). (84b)

In view of the discussion in the second paragraph in Section V, it might be surprising
that the current can be solved for the two-terminal problem. In terms of the original (un-
normalized) quantities, the only equation that has been solved is the equation
corresponding to one combination of the two currents, with that combination being the
left side of (23), and the solution solves for only one combination of P and U, with that
combination being the left side of (22). The two quantities P and U were not individually
solved because in order to do so it would be necessary to solve the equation
corresponding to another, independent, combination of the currents, and that was not
done (equations were listed but not solved). The complete solution to the boundary-value
problem has not yet been obtained. When taking the limit as ¥ — oo while recognizing a
regional partitioning, the fact that the solution is not yet complete is reflected by the fact
that the un-normalized electric field in the AR, and the un-normalized carrier density in
the HRR, have not yet been solved (equations were listed for these quantities but the
equations were not yet solved). As previously stated, it is necessary to solve the equation
corresponding to some other combination of the currents, a combination that is
independent of the combination on the left side of (23), to have a complete solution. Until
that is done, there is one equation missing. This leads to the question of how it was
possible to completely solve the two-terminal problem when there is an equation missing.
The answer under Case-1 conditions is that we actually did supply an additional equation.
The equation associated with the minority-carrier current, which is obtained by
combining (18a) with the left equation in (19), was not completely solved, but we did
extract enough information from these equations to conclude that 1,, 9 = 0. When this
supplementary equation is included, we have a complete set of equations that were able
to completely solve the two-terminal problem under Case-1 conditions. Unfortunately,
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this approach does not generalize to multiple DRBs if the goal is to solve for each
individual current I7; (but the sum of these currents can be solved using the two-terminal
analysis). For K DRBs, we would need K supplementary equations, and we only have
one. The problem of multiple DRBs is going to require further analysis.

However, under Case-2 conditions, the approach used for the two-terminal problem
does generalize to multiple DRBs. For the two-terminal problem we have (84b) under
Case-2 conditions, and for multiple DRBs we have (70). The reason that it was possible
to completely solve the problem under Case-2 conditions when there is an equation
missing is that, while the equation associated with the minority-carrier current was not
completely solved, we did extract enough information from it to conclude that 7, > 0.
Case 2 is unique in that this small amount of supplementary information, when combined
with the equations that were solved, is enough to conclude that U, =0 and I, = I* for
eachi=1, ..., K.
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X. THE THREE-TERMINAL PROBLEM

The three-terminal problem is a K =2 problem, i.e., there are two DRBs and an
electrode. For this case, (57) can be written as

L*=1Ip+ U G+, G (85a)
12* = IT,Z +Ul C2,1 +Uz C2’2 . (85b)

A particular combination of these equations will be useful later in the analysis. This is
obtained by multiplying the first equation by C,; + C,,, multiplying the second equation
by Ci1 + Ci 2, and subtracting. The result is

vy +Cralry *—|Coy + Coa ¥ =|Coy + Cra i = [Coy + Con 17, +
€11+ Cip lUi Coy + 05 Con |- [Coy + Coa J|Uy €1y + 05 €15 )
Combining terms containing U; and U, gives

v + Ci |y *-|cy, + Cr In*=lcy, + Ci JIT,z ~|Cay + Gy JIT,I +
lC1,1C2,2 -C1C1 vy -vy). (86)

It was already shown, and stated in (82a), that there is no HRR if 1;* + L,* <¢g®,
Furthermore, if this condition is satisfied, we conclude from (70) that Iy, = I;* and Iy, =
L*. A more difficult case occurs when there is an HRR. This is more difficult because
there are different possible topologies (S; might be connected to S,, or it might not be)
and the currents are calculated differently for different topologies. Instead of deducing
the topology from a given set of conditions, we will work in the other direction. We will
assume a topology and then determine the conditions that are implied by this assumption.
If these conditions are not satisfied in a given example, the assumed topology is not the
topology that is present in that example. Several assumed topologies are discussed
separately below. An HRR is present in all cases below, so for all of these cases (81b)
gives

Ity+Irp;=qR  (if HRR). (87)

A. Case 14: S, Contacts the HRR

The first case considered, illustrated in Fig. 3b, is one in which there is an HRR and S,
contacts the HRR while S contacts the AR. Inverting (82a), the presence of an HRR
implies that ;* + L* > g®, The conditions that define Case 1A are

I} *+I,*>qR and S, contacts the HRR (defines Case1A). (88)
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Note that (71) and (87) together imply

Irp=0 and Ip;=gR (forCaselA) (89)
so (86) becomes
[Coy+ Can | *—Cr +Cra | =[Coy + Cop gm +
|C11Cyn ~ Co1Cra [V - V,y)  (for Case1A) . (90)

Recall from the discussion at the end of Section IX that the analysis in the main text is
incomplete for the multi-junction problem, and another piece of information must be
supplied in order to have a complete set of equations. The missing piece of information is
extracted from (51), which is discussed in detail in Appendix D. Fortunately, it is not
necessary to solve (51) for the un-normalized carrier density in the HRR. A simple
conclusion from (51) provides enough information to complete the analysis for Case 1A.
This conclusion, derived in Appendix D, is that floating terminals are at intermediate
potentials. Using (72) and the fact that S, is a floating terminal (i.e., Ir» = 0) we conclude
that 0 < U, < U so

Uy -V, 20 (forCaselA). 91)

Note that (B5c) in Appendix B gives C;; > —C,, and C,, = —C;; with at least one of
these inequalities being a strict inequality. Each side of each inequality is nonnegative so
the inequalities can be multiplied, and using the fact that at one inequality is a strict
inequality gives

C11C22=C51C2 > 0. (92)
Combining (91) and (92) with (90) gives

[Cay +Can | *=[Cry + Cra |12 *-{Cay + Can R > 0.

The conclusions for Case 1A are

Under Case 1A conditions we have
(a) [Cz,z +Cz,1]11*2 [C1,1 +C1,2]12 *+[C2,2 +C2,1]CI‘1{ 93)
(b) IT,I = qﬁ and IT,2 =0.

B. Case 1B: S; Contacts the HRR

The second case considered, illustrated in Fig. 3c, is one in which there is an HRR and
S; contacts the HRR while S, contacts the AR. This is the same as Case 1A but with S;
and S, interchanged. The conditions that define Case 1B are
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I} *+1,%>¢q®R and S contacts the HRR (defines Case1B) . (94)

The conclusion is the same as (93) but with S} and S, interchanged, i.e.,

Under Case 1B conditions we have
(a) [Cu +C1,2]12* 2 [Cz,z +C2,1]11 *+[C1,1 +C1,2]‘1R 95)
(b) IT,2 = qq{ and IT,I =0.

C. Case 2: 8; and S, are Connected
The next case considered, illustrated in Fig. 3d, is one in which there is an HRR and
the AR is a connected set so that AR; = AR,. For this case we have U; = U5, so Case 2 can
be defined by
I} *+1,*>qR and U; =1, (definesCase2). (96)
For this case, (86) reduces to

vy +Craln *—Con + Co 1% =[Cry + Cra fir 2 =[Can + Coy 1y (for Case2).  (97)

Note that Ir; and I, will each be strictly greater than zero for Case 2, and combining this
fact with (87) gives

0<Iy;<gqR and 0<Iy,<q®R (forCase2). (98)
Note that (B5c) states that each square bracket on the right side of (97) is nonnegative,

and at least one of them is positive. Combining this fact with 77, > 0 and I < g® gives
the two inequalities

s + C1,2J1T,2 <lci + Cl,zjqqi and —|Cy + C2,2J1T,1 <0

with at least one of these inequalities being a strict inequality so adding inequalities gives
the strict inequality

lCLi+Cialir =|Coy + Con 17y <[Cry +Cra o

Similar steps using I, > 0 and I7; < g® give a second inequality, and combining that
result with the above inequality gives

~Can +Canlar <|Coy + Cralir s =|Coy + Con Jiry <[Cry +Cra ek

Using this with (97) gives
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—|Cor+Conlar <|Cpy +Cra |1y *-|Coy + Con n* < |Cry + CaJg®  (for Case2) . (99)

To solve for the currents, note that (87) and (97) are two simultaneous equations
containing Ir; and Ir,. Solving these equations produces the bottom two entries in the
conclusion below that summarizes Case 2 results.

Under Case 2 conditions we have
@ [cn+Cialn* <oy +Coln 4o, +cinlar
(0) [Cz,z +Cy Jnx< [C1,1 + C1,2]I2 * +[C2,2 +Cy Ja=. (100)
(©) Ip= [, + €yl 4oy, + o lgm - 12 %)
’ [C11 +Cia[+[Can + Gy
[C1y +Cialia *4[Can + €y Jlg — 1y %)
[C11+Cia [+ [Can +Coy '

(d) Irp=

The denominator in items (¢) and (d) in (100) are positive according to (B5c). Note that
item (a) insures that the right side of item (c) is positive and that the right side of item (d)
is less than g ®, while item (b) insures that the right side of item (d) is positive and that the
right side of item (c) is less than g®, Also, by combining I;* + L* > g® with item (c), we
verify consistency with 7r; < I;*. Similar steps used with item (d) verify that 77, < L*.
Note that the conditions on I;* and L* for the three cases (item (a) in (93) for Case 1A,
item (a) in (95) for Case 1B, and items (a) and (b) together in (100) for Case 2) are
mutually exclusive and all inclusive.

D. The Unfinished Case

The only possible case that still remains when there is an HRR is the case, illustrated in
Fig. 3e, in which S and S, both contact the AR, but they contact nonempty and
disconnected portions of the AR. We will call this the “disconnected case” but the title of
this subsection calls it the “unfinished case” to emphasize the fact that conclusions are
not given here for this case. Additional work is needed to derive conclusions for this case,
and perhaps this will be done in the future. However, we can include a discussion of the
conditions needed for this case to be encountered so that the relevancy (or lack of
relevancy) of this case can be recognized.

The case considered is one in which AR, and AR, are both nonempty and are distinct.
Note that the close boundary of AR, can be divided into three sections. One section is a
portion of the reflective QNR boundary adjacent to S;. Another section is S;, where P* +
w= NU,/2Vy (under IBC). The remaining section is ARB,, where, again, P* + y=
NU,/2V7. Therefore, on all non-reflective portions of the boundary of AR, we have &* +
= NU\/2V7, but in the interior of ARB, we have &* + > NU,/2V7. This implies that &*
+ i has a relative maximum in the interior of AR,. Similarly, P* + y has a relative
maximum in the interior of AR,. Note that i satisfies Laplace’s equation, so @* +
satisfies the same ambipolar diffusion equation (35a) that is satisfied by #*, and this is
satisfied throughout the QNR. Therefore, in order for AR; and AR, to be nonempty and
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distinct, it is necessary (but not sufficient) for a solution to the ambipolar diffusion
equation, with the driving term g,z to have relative maximums at distinct locations
within the QNR. This places restrictions on what g,.rcan be. For example, suppose carrier
liberation is produced by a point source. The function #* +  has a relative maximum
only at the location of the source because in any region excluding this point the function
P* + y satisfies Laplace’s equation which has no relative maximums. If AR; and AR, are
both nonempty then they each contain a relative maximum, but a relative maximum
occurs at only one point for this example, so AR, and AR, have a point in common,
implying that they are connected, which implies that AR, = AR,. Therefore, a point source
cannot produce the disconnected case. Similarly, if the DRs are in a horizontal
arrangement and carrier generation is confined to a vertical line segment, the
disconnected case will not occur. However, if the DRs are in a horizontal arrangement
and carrier generation is confined to a horizontal line segment, the disconnected case
cannot be excluded based on these arguments because a horizontal arrangement of
boundary values for #* + i can result in @ + y having relative maximums at distinct
locations within the QNR. The arguments given here are inconclusive for a horizontal
line source of carrier generation, and additional work is needed to reach conclusions for
this kind of generation source. Fortunately, the analysis in this section is sufficiently
complete to treat the specific examples discussed in Section XII.
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XI. MINIMUM VOLTAGE NEEDED TO MAINTAIN
A REVERSE-BIASING CONDITION

Previous sections considered the QNR alone. In an actual device, there are two sides to
a p-n junction, and the power supply connections used to bias the junction are on the side
opposite of the QNR. It was not necessary to analyze the interior of a DR because IBC,
intended to represent boundary conditions at the DRB of a reverse-biased DR, supplied
boundary conditions for the QNR so that a complete set of equations were obtained when
investigating only the QNR interior. However, IBC implies voltages across the QNR
when carriers are generated. Therefore, in order to maintain IBC, the power supply
voltages connected to the device must be at least large enough to supply these QNR
voltages. It is not enough for the power supply to have the correct polarity. To maintain a
reverse-biasing condition, the biasing from the power supply must have a large enough
magnitude to produce the QNR voltage drops plus a reverse-biasing voltage across the
DR. Therefore, the power supply biasing voltage must exceed the voltage drop that
occurs across the QNR. Stated another way, the QNR voltage drop implied by IBC is the
minimum power supply voltage that can maintain a reverse-biasing condition. This
minimum voltage is easily calculated for any example for which the currents have
already been solved by using (63).

For a specific example, consider the two-terminal device. This is a K =1 device so
there is only one C;; element, which is C| ;, and the inverse ®@;; has one element given by
®,; = 1/C; ;. Omitting subscripts because there is only one DR, (63) reduces to

U=(r*-17)/C  (K=1). (101)

Recall from Section IX that if I* < g®, then there is no HRR and 7= r*, implying that U
= 0. However, U is the normalized potential in the limit as y — oo, so a value of zero does
not imply that the un-normalized potential with a finite yis exactly zero. It does imply
that the un-normalized potential is much smaller than it would be with the same finite y
but with a different spatial distribution of carrier generation as needed to produce an
HRR, so let us consider that case. This occurs when I* > g®, which gives I =¢g®, so
(101) becomes

U=(1*—qR)/IC (K=1, I*>4qR). (102)

Again, Uis the normalized potential in the limit as y — oo, so the significance of (102)
regarding the un-normalized potential produced by a finite generation rate requires some
explanation. The definition of a limit implies that the approximation U(y) = U() can be
made as accurate as desired by letting y be sufficiently large. If accuracy is measured in
terms of a relative or fractional error (a.k.a., percent error) instead of absolute error, the
fact that U(0) # 0 for the example considered (which was not true for the previous
example in which there was no HRR) implies that the approximation yU() = yU(©) is
accurate when yis sufficiently large. Replacing the left side with U(») and using (102) to
substitute for U(e0) on the right side, the approximation is written as
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U(y) = (11 *-qR)/C . (103)

If we define /*() and R(y) by

* — 7% — Dy o~ =73, _ Dy, ) of 3 3
I*()=mn “’(HE)JQM Q) ey () x—q(nm)jgm Q) g(%:17)d

R =m=[ 0 g @ dx=[ erdis

ONR
then (103) becomes

U(y) = (I*(7)-qR(y))/ C .

The parameter y has no further use here if we denote the actual (un-normalized) finite
generation rate density as g(x) instead of g(x; ), so the above equations become

Ux(I*—qR)/C  (K=1, I*>gR) (104)
where
* = Dy o3 d3
I _q(1+DM ijNR O>F) g(3)d>x (105a)
REJQNR g(¥)d’x. (105b)

The end result is equivalent to a simple substitution. If we replace the normalized
generation rate density g,.(x) in both (60) and (77) with the actual (un-normalized) finite
generation rate density g(x), then U in (102) is replaced by an approximation for the
actual (un-normalized) potential U.

To make the example more specific so that a numerical estimate can be obtained,
suppose the diode is a cylinder (not necessarily circular), with the DRB at one end, the
electrode at the other end, and the cylinder wall is reflective. Regardless of the spatial
distribution of carrier generation, the device is one-dimensional from the point of view of
Q) defined by (12), and the solution for Q is Q(x) = 1 — x/L, where L is the distance
between the DRB and electrode, and x is the distance between the DRB and the point of
evaluation of Q. The parameter C calculated from (59) for this Q is given by

_c..=qD. N oW ogs = —ap N[ A6
C_Cl’l_quVTJDRB vaW ods = quVT'[: ds =
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where 4 is the cross sectional area of the cylinder. To make the example still more
specific, suppose the carrier generation rate is uniform within the cylinder. For a uniform
g together with Q(x) = 1 — x/L, the parameters /* and R calculated from (105) become

D
I*:%qg(l+D—mJAL, R=gAL.
M

A uniform g makes the example simple, but the example is interesting only if this
produces an HRR, i.e., if I* > gR. Comparing the above expressions, we conclude that a
uniform g will produce an HRR if D,,/D,,> 1. This condition is satisfied in a p-type
substrate (the minority carriers are electrons which have a larger diffusion coefficient
than holes) which is the case considered, so (104) applies. Substituting the above
expressions for C, I*, and R into (104) gives

1 (1 1 1 (11
UsVrgm| o |=og | ——]|.
2 N|(Dy, D 2° N\ p

An equivalent equation that expresses U in terms of gR/A instead of g for this example is

UNL(ﬁ](L](L_L]
204 N\gN )\ pyy He

To obtain a numerical estimate that can be compared to a TCAD simulation result that
was previously reported, let the substrate depth L be 4um and let the substrate doping
density N be 8x10'*/cm’. The mobilities for this doping density in silicon, used by the
TCAD software that a prediction will be compared to, are s, = 13 10cm?/V-s and My =
495cm*/V-s. We also select the carrier generation rate density to satisfy gR/4 =
1000A/cm?. This number was selected because it was concluded in [1] that this will
produce the high-injection level condition that is needed for the above approximation for
U to be accurate. Using these numbers in the above equation gives U = 1.96V. This is the
minimum voltage that the power supply must have, according to the model, in order to
force a reverse-biasing condition across the DR when the device is subject to this carrier
generation rate. A 1V (for example) power supply voltage is not enough and will result in
the DR becoming forward biased. This conclusion was confirmed by a TCAD simulation
result reported in [1]. In fact, it was reported in [1] that the voltage across the QNR, at a
power supply voltage of 1V, was 1.62V. This is roughly (but not exactly) the same as the
1.96V that the model predicts would occur if the power supply voltage was increased by
the amount needed to produce a reverse-biasing condition. A QNR voltage of 1.62V in
the simulated device when the power supply provides only 1V implies that the applied
voltage across the DR is —0.62V (stated another way, the total voltage across the DR is
the equilibrium voltage, a.k.a., built-in voltage, minus 0.62V, which agrees with TCAD
results for the total voltage reported in [1]), implying that the DR was forward biased at
0.62V. However, in spite of this forward bias condition, terminal currents calculated by
the model for this two-terminal example agreed with TCAD results reported in [1], even
though the derivation of the model assumes a reverse-biasing condition. An explanation
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as to why the model should give a correct prediction for such an example is outside the
scope of the theoretical analysis given in this report, but an empirical observation from
[1] is that a reverse-biasing condition is not always essential for the model to give a
correct prediction of terminal current.
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XII. ANUMERICAL EXAMPLE COMPARED TO TCAD

This section considers a specific example of the three-terminal (K =2) problem. Model
predictions for this problem will be compared to predictions made by TCAD simulations
performed by the ATLAS code, which is a device simulator developed by Silvaco [5].
The code solves the drift-diffusion equations governing carrier transport in a
semiconductor device. Physical models include bandgap narrowing, Shockley-Read-Hall
(SRH) recombination, Auger recombination, and the mobilities depend on doping density
and on the electric field. The code accepts a user-specified low-concentration SRH
lifetime (which was arbitrarily selected to be 1us in the examples below) and
automatically modifies this to account for doping density. Our version of the code is two-
dimensional, and the example silicon device is two-dimensional in rectangular
coordinates denoted x and y. An equivalent three-dimensional problem extends the
device, as well as the spatial distribution of carrier generation, uniformly in the z
direction. Therefore, if carrier generation is confined to a line section in the two-
dimensional problem, this will be seen as a section of a plane in the equivalent three-
dimensional problem. It is not possible, using our version of the code, to confine carrier
generation to a line section in three-dimensions (i.e., a steady-state version of an ion
track, which is relevant to studies of SEE) when using rectangular coordinates. However,
numerical estimates of terminal currents are not the final products that are regarded as
important here. What is considered important here is whether model predictions do or do
not agree with TCAD predictions. A two-dimensional problem should be adequate for
this comparison.

A. Device Description

TCAD inputs describe the device differently than model inputs, so both descriptions
are given here. We begin with the description used for TCAD inputs. The two-
dimensional n'-p silicon device is shown in Fig. 4. The vertical walls at x =0 and x =
24um are reflective boundaries needed to produce finite dimensions (a net width of
24um) that can be represented by a finite number of grid points. The depth of the device
from top to bottom (not including the aluminum contacts) was arbitrarily taken to be
4um. Each n' region has a Gaussian doping profile with a peak concentration (at the top
of the device) of 10°”/cm’, and the metallurgical (MJ) that separates the n-region from the
p-region is at a depth of 0.1um. The MJ on the left side extends horizontally from x =
4.4um to x = 7.6pum (a uniform in x doping between x =4.5um to x = 7.5um but a
Gaussian roll-off extends the width another 0.1um on each side). The MJ on the right
side extends horizontally from x = 16.4um to x = 19.6um. The doping of the p-region
was uniform with a concentration of 10'*/cm’. Excluding locations near an MJ, the
horizontal spacing between grid lines was about 0.25um, and the vertical spacing was
about 0.125um. The grid was finer near either MJ, with a minimum spacing of 0.02um.
A 3V reverse-biasing voltage was applied to each upper contact. Carrier generation is
along a vertical line as seen in the two-dimensional plot (which is a section of a plane in
the equivalent three-dimensional geometry), and is vertically uniform. The horizontal
location of this line, or “track,” is a variable denoted X. Details regarding carrier
generation are given later in Section XII-C. Another example considered, the p'-n device,
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Fig. 4. The simulated two-dimensional n*-p device. The p*-n device is the same except that doping types
are interchanged and the polarity of the applied voltage is reversed. Carrier generation is on a vertical line,
or “track,” and is uniform in the vertical (y) coordinate. The horizontal (x) location of the track is denoted X
and is a variable. Dimensions denoted x or y are in um.

is the same as Fig. 4 except that n-type and p-type are interchanged, and the polarity of
the biasing voltage is reversed.

We now describe the device in the context of model inputs. This is a specification of
the QNR geometry, which requires a specification of the DRB location. The lateral
dimension of each DR produced by the doping profile in Fig. 4 will be about 4pum, but
the DR thickness in the vertical direction requires some consideration. In the absence of
carrier generation, a 3V biasing voltage with the doping densities shown in Fig. 4 would
produce a DR thickness of about 2.25um. However, intense carrier liberation results in
the DR being sufficiently flooded with carriers so that the DR thickness is reduced even
if the voltage across the DR is held fixed. The fact that some of the applied voltage
appears across the QNR, which reduces the voltage across the DR, further reduces the
DR thickness. The end result is that the DR thickness will be considerably less than the
nominal value of 2.25um. Furthermore, the actual DR thickness will depend on the
location of carrier generation relative to the DR, and the thickness will not be uniform
over the lateral dimensions of the DR. To keep the model simple, the DR thickness used
in the model will be uniform over the DR lateral dimensions, and the same DR thickness
will be used regardless of the location of carrier generation. The task now is to select a
uniform thickness having the property that the calculated currents have adequate
accuracy when the same thickness is used in all examples. The model does not calculate
this thickness, so the selection was made by comparing model predictions to TCAD
simulation results. Two trial values were considered for the DR thickness. One was 1um
and the other was 2um. For each trial value, model predictions for the terminal currents
were compared to TCAD simulation predictions of the terminal currents, and the
agreement was found to be better for the first trial value (comparisons using the first trial
value are discussed in detail later). Therefore, the DR thickness that will be used by the
model is 1pum. The QNR geometry used for model predictions is shown in Fig. 5.
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Fig. 5. The model two-dimensional device. Sy and S; are DRBs while S is the substrate contact. A
simplified geometry was selected to represent the DRBs and is the same for both the n*-p device and the

p*-n device. Dimensions denoted x or y are in um.

B. Model Predictions

The device in Fig. 5 has geometric symmetry. The spatial distribution of carrier
liberation need not conform to this symmetry, but symmetry in the device construction

implies that

€22+ Canl=Cri+Cra >0 (symmetry). (106)

Recall from Section X-D that the “disconnected case” will not be encountered when
carrier liberation in this example device is confined to a vertical line. Therefore, Cases
1A, 1B, and 2 (see Section X) are the only possible cases when there is an HRR. Using
this fact in a proof by contradiction, we can invert some of the implications in (93), (95),

and (100) to obtain

Given that there is an HRR, i.e., given that I} *+1,* > g® , then

a) [1*>1, *+ implies Case 1A

(b) I,*> 11 *+q® 1implies Case 1B

(c) 1*< I, *+gR together with I,* < I; *+¢g® imply Case2

where (106) was used to simplify expressions appearing in (93), (95), and (100).
Combining (107) with other implications in (93), (95), and (100), and again using (106)

to simplify expressions, gives

If 1;*> I, *+gq®R,, then
(a) Case 1A applies (108a)
(b) IT,] :qR and IT,Z =0
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If 12* > 1 *+qﬁ, then
(a) Case 1B applies (108b)
(b)I7p =¢qR and I7;=0

If I} *+I,*>qR, and I,*—qR <I|*<I,*+qR then
(a) Case 2 applies . (108c)
1

1
(®) I, =5[11 *—I, *+q®R| and Iy, :5[12 *—1) *+qR ]

To complete the list, we include a reminder from (82a) and (70), which is

If]l *+12*<qﬁ,then
(a) There isno HRR . (108d)
(b)IT,IZII* and IT,2 :Iz*

In order to use (108) to calculate the currents, it is necessary to calculate 7;* and L*.
Using the coordinates shown in Fig. 5, and with carrier generation being confined to a
vertical line at x = X and having a uniform intensity in the vertical direction, (60) reduces
to

D 4 um .
o - 114 2 Q) | =
I *(X) qg,¢1(1+DM]JYmp QDx,y)dy for i=12

where Y, is the y coordinate of the top of the substrate at x = X. If carrier generation is
under a DRB, i.e., if either 4pm <X < 8um or 16um <X <20um, then Y, = lpm.
Otherwise, Y, = 0. Recall that QW(x,y) satisfies Laplace’s equation in the QNR, has a
zero boundary value on Sy and on S, (Fig. 5) and has a unit boundary value on S;. Hence,
QY(x,y) is defined only in the QNR. Similarly for Q®(x,y), but with S; and S,
interchanged. However, the above equation for 7;*(X) includes the contribution to
collected charge only from carriers liberated in the QNR. It does not include carriers
liberated in the DR. We can include carriers liberated in the DR, and also make 7*(X) a
continuous function of X, from the following considerations. First consider carrier
liberation under S, i.e., 4um < X < 8um. Carriers liberated in the left DR will contribute
to Ir; and can be included by extending the domain of Q(l)(x,y) to include the left DR by
defining it to be 1 in the left DR. Now consider carrier liberation under S5, i.e., 16pum <X
<20pm. Carriers liberated in the right DR will not contribute to Ir,; so we can use Yy, =
1um for this case. This is equivalent to extending the domain of Q"(x,y) to include the
right DR by defining it to be 0 in the right DR. The result is
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4
q8rer| 14— (1W+J‘ufmm Q(1)(X,y)a’y) if dpm <X <8um

D 4
N0 =4 a8 | 1+ | QO )dy i 16m < X < 20um

4
q8ref| 14— Joﬂm Q(l)(X,y)dy otherwise

Note that 7;*(X) as given by this equation is continuous in X at X =4, 8, 16, and 20pum.
To shorten the notation, note that the total carrier generation rate, that includes carriers
liberated in a DR, is given by

R = grof X4pm . (109)
We also define

4
1ym+jl:n'” oO(X,y)dy if 4um<X <8um

wO(x)= ji;‘m oWV(x,yydy if 16um<X<20um . (110a)

4
IO . o® (X,y)dy otherwise

A similarly defined #?(X) can be calculated from symmetry by
wAx)y=w®24um-X). (110b)

Using this notation, the above equation for 7;*(X) can be written as

)
11*(X)=qr&[1+D_ij—(X), (111a)
Similarly, for ,*(X) we have
2
I *(X) =qq<,(1+D—'"jW—(X). (111b)

In order to calculate WV(X) and W2 (X) given by (110), it is necessary to solve
Laplace’s equation subject to the boundary conditions previously stated for QV(x,y).
Approximate solutions to Laplace’s equation can be found in the literature, especially for
two-dimensional problems, but the method of solution is not the focus here because any
available method that successfully produces the solution for Q"(x,y) can be used. Here
we will use a numerical method. The same TCAD software previously discussed can be
used to solve for Q(x,y) by entering the geometry shown in Fig. 5. The source of carrier
generation is removed and physical models affecting carrier mobilities are de-activated so
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that the mobilities are spatially uniform in the code calculations. Also, the substrate is
uniformly doped and (in this calculation) there are no p-n junctions. Instead, Sy, S}, and S,
are treated as ideal ohmic contacts. This will produce a uniform carrier density, and the
potential will satisfy Laplace’s equation. The boundary conditions are imposed by
assigning a common terminal voltage to Sy and S», and assigning a terminal voltage that is
1V larger to S;. Finally, a suitably selected constant added to all three terminal voltages
will compensate for the contact potentials between electrodes and semiconductor, with
the result being a unit potential on §; and a zero potential on Sy and S,. The potential
produced this way is Q")(x,y). The software has a provision for integrating the potential
along a user-specified line, which is a convenient way to evaluate the integrals on the
right side of (110a). Using this method to evaluate WP(X) and W?(X) given by (110)
produces the values shown in Table 1.

We now estimate the terminal currents for the n'-p device shown in Fig. 5. This is
done in three steps. The first step calculates 1;*(X) and L*(X) from (111). The substrate is
p-type, so the minority carriers are electrons. This gives D,,/Dy = D./Dj,. Using the
Einstein relation, this ratio is the electron mobility divided by the hole mobility. An
accurate estimate of this ratio is needed only in the AR, which is the weak-field region, so
low-field mobilities are used. We will use the same low-field mobilities that are used by
the TCAD software, and these are given by z, = 1300cm?/V-s and 1, = 480cm?/V-s. This
gives D,/Dy;=2.7,s0 (111) becomes

D5 _00ps, WD) D) e WO

forn* -p. (112a)
qR Lpm qR. 1pm

Using Table 1 for WV(X) and W?(X), values calculated from (112) for I;*(X)/g® and
L*(X)/qR are shown in the second and third columns of Table 2. The second step uses
these column entries with the tests in (108) to determine which case applies. The
identified case is shown in the Comments column in Table 2. The last step uses the

Table 1. W(X) and W2)(X) Calculated from (110)
X | Wi(X) | Wia(x) X | WiX) | wa(x)
(um) | (um) | (um) (um) | (um) | (um)
2 | 1.251 | 0.000 12.5 | 0.371 | 0.572
3 | 1.659 | 0.000 13 | 0.294 | 0.704
3.99 | 2.285 | 0.000 13.5 | 0.229 | 0.863
6 | 2.443 | 0.000 14 | 0174 | 1.054
8.01 | 2.263 | 0.002 145 | 0.125 | 1.283
9 | 1.558 | 0.083 15 | 0.083 | 1.558
95 | 1.283 | 0.125 15.99 | 0.002 | 2.263
10 | 1.054 | 0.174 18 | 0.000 | 2.443
10.5 | 0.863 | 0.229 20.01 | 0.000 | 2.285
11 | 0.704 | 0.294 21 | 0.000 | 1.659
11.5 | 0572 | 0.371 22 | 0.000 | 1.251
12 | 0463 | 0.463
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Table 2. Model-predicted Currents for the N*-P Example

X

(um) | It*IgR | I2*IqR | Ir4/qR | Ir2/qR | Comments
2 | 1157 [0.000 | 1 0 Case 1A
3 [1.535]0.000]| 1 0 Case 1A
4 |211410.000 | 1 0 Case 1A
6 | 2260|0000 1 0 Case 1A
8 |2.093)0002| 1 0 Case 1A
9 144110077 | 1 0 Case 1A
95 [1.187 | 0.116 | 1 0 Case 1A

10 | 0.975 | 0.161 | 0.907 | 0.093 | Case?
10.5 1 0.798 | 0.212 | 0.793 | 0.207 | Case 2
11 10.651 | 0.272 | 0.651 | 0.272 | NoHRR
11.5 1 0.529 | 0.343 | 0.529 | 0.343 | NoHRR
12 10428 | 0.428 | 0.428 | 0.428 | NoHRR
12.5 1 0.343 | 0.529 | 0.343 | 0.529 | NoHRR
13 10.272 | 0.651 | 0.272 | 0.651 | NoHRR
13510212 | 0.798 | 0.207 | 0.793 | Case 2
14 10161 [ 0.975 | 0.093 | 0.907 | Case2
14.5 | 0.116 | 1.187 0 1 Case 1B

15 1 0.077 | 1.441 0 1 Case 1B
16 | 0.002 | 2.093 0 1 Case 1B
18 | 0.000 | 2.260 0 1 Case 1B
20 | 0.000 | 2.114 0 1 Case 1B
21 10.000 | 1.535 0 1 Case 1B
22 10.000 | 1.157 0 1 Case 1B

identified case to determine which calculations listed in (108) are to be used to obtain the
terminal currents, and then performs the calculations. The results are listed in the fourth
and fifth columns in Table 2. Similar steps are used for the p'-n version of the Fig. 5
device, except that we flip the ratio D,,/Dy, to obtain D,,/Dy, = 1/2.7 so that (112a) is
replaced with

ICONPYNNGAlC SN FAIES W x)
qR 1um qR

=0.343x forp*-n. (112b)

Results for the p'-n version are shown in Table 3. Note from Table 3 that an HRR is not
created in the p'-n version of this example regardless of the location of carrier generation.
In contrast, Table 2 shows that the n"-p version has an HRR for any carrier-generation
location that is not very close to being midway between the DRs.
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Table 3. Model-Predicted Currents for the P*-N Example
X
(um) | h*IqR | I2*IqR | I74/qR | Ir2lqR | Comments
2 |0.429|0.000 | 0429 | 0.000 | NoHRR
3 |0.569 | 0.000 | 0.569 | 0.000 | NoHRR
4 10784 | 0.000 | 0.784 | 0.000 | NoHRR
6 |0.838 | 0.000 | 0.838 | 0.000 | NoHRR
8

9

0.776 | 0.001 | 0.776 | 0.001 | NoHRR
0.534 | 0.028 | 0.534 | 0.028 | NoHRR
9.5 10440 | 0.043 | 0.440 | 0.043 | NoHRR
10 | 0.362 | 0.060 | 0.362 | 0.060 | NoHRR
10.5 1 0.296 | 0.079 | 0.296 | 0.079 | NoHRR
11 10.241 10101 | 0.241 | 0.101 | NoHRR
11.5 10196 | 0.127 | 0.196 | 0.127 | NoHRR
12 1 0.159 | 0.159 | 0.159 | 0.159 | NoHRR
125 10127 | 0.196 | 0.127 | 0.196 | NoHRR
13 10.101 | 0.241 ] 0.101 | 0.241 | NoHRR
13.5 1 0.079 | 0.296 | 0.079 | 0.296 | NoHRR
14 1 0.060 | 0.362 | 0.060 | 0.362 | NoHRR
14.5 | 0.043 | 0.440 | 0.043 | 0.440 | NoHRR
15 1 0.028 | 0.534 | 0.028 | 0.534 | NoHRR
16 |1 0.001 | 0.776 | 0.001 | 0.776 | NoHRR
18 |1 0.000 | 0.838 | 0.000 | 0.838 | NoHRR
20 |0.000 | 0.784 | 0.000 | 0.784 | NoHRR
21 10.000 | 0.569 | 0.000 | 0.569 | NoHRR
22 10.000 | 0.429 | 0.000 | 0.429 | NoHRR

C. Simulation Results and Comparisons

While the model is a mathematical limit (a  — oo limit), which requires that certain
quantities be normalized in order to remain finite, simulations treat the case of a finite
generation rate. The relevant quantities for a simulated device are the actual (un-
normalized) terminal currents as calculated by the simulation, and the actual (un-
normalized) carrier generation rate R given by (105b). All simulated ionization sources
were steady-state and selected to mimic the ideal case of a uniform line (a line as seen in
the two-dimensional plot) source, but were actually given a Gaussian horizontal profile
with a characteristic width of 0.5um so that adequate resolution can be obtained without
the need for excessively fine grid-line spacing. However, a finite grid-line spacing still
produces some numerical error. During a simulation run, the code reports the generation
rate as seen by the code with the finite grid spacing. To compensate for numerical error,
the value assigned to gR is the generation rate reported by the code. Inputs given to the
simulation were selected to make the code-reported value of the generation rate equal to
107*A/ um. The per-micron units appear because in the equivalent three-dimensional
problem the current would be reported as amps per micron in the z dimension (terminal
currents calculated by the code also have the units of A/um). This generation rate was
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selected because the model is a high-injection model and the intention is to produce high-
injection conditions in the simulated device. It was pointed out in [1] that high-injection
conditions are produced when the generation rate divided by the area of the charge-
collecting junction is at least 1000A/cm?. For the equivalent three-dimensional problem
that extends 1pum in the z dimension, the generation rate becomes 10~*A. With two DRBs
that are each 4um wide in the x dimension, the charge-collecting area in the equivalent
three-dimensional problem is 8um?. The generation rate divided by the area slightly
exceeds 1000A/cm?, so we expect these simulation inputs to produce high-injection
conditions. Plots of carrier density produced by simulation runs (not shown here) confirm
this expectation, showing that the carrier density at locations of maximum density is
between one and two orders of magnitude greater than the doping density.

Simulation predictions of terminal current divided by gR are obtained by dividing
terminal current calculated by the code by 10™*A/um. The results are shown in Fig. 6 for
the n"-p device and in Fig. 7 for the p -n device. These plots also include model
predictions so that they can be compared to the simulation predictions. The model
predictions were obtained by using arguments similar to those given in the discussion
surrounding (104) to conclude that the ratio I7,/g® of normalized quantities for the
limiting case approximates the ratio /7;/gR of actual (un-normalized) quantities for the
finite case. Therefore, the model predictions in Figs. 6 and 7 are identical to the

numerical entries in the fourth and fifth columns in Tables 2 and 3.
(a) (b)
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Fig. 6. Simulation predictions of terminal currents for the Fig. 4 device are compared to model predictions
for the n*-p version of the Fig. 5 device. Individual currents are compared in (a) and (b). The current sum in
(c) is the best indication of whether an HRR is present.
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Fig. 7. Like Fig. 6 but for the p*-n device.

Looking at results for the n"-p device in Fig. 6, we see excellent agreement between
model predictions and simulation results. The two terminal currents are shown
individually in Figs. 6a and 6b. However, the sum of the two terminal currents in Fig. 6¢
is the best indication of whether an HRR is present. These plots combined show distinct
charge-collection regimes, but the same conclusions can be seen with greater resolution
by looking at the “Comments” column in Table 2. If the track is sufficiently close to one
of the junctions (specifically, if X < 9.5um which produces Casel A, or X > 14.5um
which produces CaselB), all of the liberated charge is collected by the closest junction. If
the track is moderately close to one of the junctions (specifically, if either 9.5um < X <
[1pm or 13pum < X < 14.5um, which produces Case 2), liberated charge is shared
between the two junctions and the two junctions together collect all of the liberated
charge. However, if the track is sufficiently far from both junctions (specifically, if 11um
< X < 13um, which produces no HRR), liberated charge is shared between the two
junctions and the two junctions together collect less than all of the liberated charge. In
contrast, results for the p’-n device in Fig. 7 do not show distinct charge-collection
regimes. Liberated charge is shared between the two junctions for any track location
between the junctions, and the two junctions together collect less than all of the liberated
charge for any track location. This is consistent with the “Comments” column in Table 3,
showing that an HRR is not present for any track location.
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XIII. CONCLUSIONS

What is probably the most notable conclusion from this analysis is the theoretical
prediction of distinct charge-collection regimes. This was demonstrated in an example
representing a reverse-biased n'-p silicon device with two junctions arranged horizontally
and with carrier liberation along a vertical line (or “track’) having a horizontal location
that is different in different examples. Depending on where the ionizing track is relative
to each of two junctions, either of three possibilities can occur in the example device
according to the model. One possibility is that charge is shared by both junctions, and the
total collected charge from the two junctions is less than the total amount of liberated
charge. This occurs when the track is far enough from both junctions so that there is no
strong-field blocking region (HRR) created anywhere in the substrate. The quantitative
version of the last statement is that this occurs when 1;* + L,* < gR. A second possibility
is that collected charge is shared by both junctions, and the total collected charge from
the two junctions is equal to the total amount of liberated charge. This occurs when the
track is close enough to one of the junctions (but not too close to either junction) so that
there is a strong-field blocking region (HRR) in the substrate and surrounding both
junctions. The quantitative version of “the track is close enough to one of the junctions”
is [1* + L* > gR, while the quantitative version of “but not to close to either junction” is
Li* <bL*+ gR and L,* < I;* + gR. The third possibility is that all liberated charge is
collected by one junction, and no charge is collected by the other. This occurs when the
track is close enough to one junction so that there is a strong-field blocking region (HRR)
in the substrate surrounding just that one junction, with the other junction inside the
HRR. The quantitative version of “the track is close enough to one junction” is either /;*
> bL*+qR or L* > I1* + gR. The model correctly (according to TCAD simulations)
predicted which track locations will produce each situation in the example n'-p device. In
contrast, the same example but with n-type and p-type interchanged did not display
distinct charge-collection regimes. An HRR was not created by any track location.
Collected charge is shared by both junctions, and the total collected charge from the two
junctions is less than the total amount of liberated charge for this example. Quantitative
agreement between model predictions and TCAD simulations was excellent for all of
these examples.
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Appendix A: Invertibility of the Coefficient Matrix C;;

To show that C;; is an invertible matrix, select two arbitrary sets of numbers, with one
set denoted X1, ..., Xk, and the other set denoted X,’, ..., Xx’, and then define another pair
of number sets by

Y;

K K
D CijXp Y= Gy X (A1)
j=1

Jj=1

Invertibility of C;; will be established if it can be shown that the condition that ¥;” = ¥; for

eachi=1, ..., K implies the condition that X;" = X; for each i =1, ..., K. To prove this

implication, first combine equations in (A1) to get

K K
(=X )X x5 )Ci (A2)

2 r)a-x)=3 X

i=1 i=1 j=1

The next step starts with (59), then (12b), then the divergence theorem, and then (12a) to
get

N Dods=gp, & 0OV ods =
Ci,j =4 Dnm fsl. vQ ds_quVT{»Q vQW o ds =
q mVﬁ ONR [ﬁQ(i)oﬁg(j)_‘_Q(i)VzQ(j) d3x=
T
WDniy o VA VR for i=1Ki 1K (A3)
T

Substituting (A3) into (A2) gives
K
2, (=1 X =x;)=

i=1

K K
4On %IQNR 6{Z(Xi ’_Xi)Q(i):| ° 6[2()(1 =X )Q(j)]d3x . (Ad)

i=1 Jj=1

Note that (A4) applies to any set of numbers related by (A1) when C;; is given by (59).
As previously stated, invertibility of C;; will be established if it can be shown that the
condition that ¥;” =Y, foreach i = 1, ..., K implies the condition that X;’ = X; for each i =
I, ..., K, so we assume the former condition and the goal is to prove the latter condition.
The assumed condition implies that the left side of (A4) is zero, which implies that the
right side is zero. But the integrand on the right is the dot product of a gradient with itself,
which is not negative anywhere, so the integrand must be zero everywhere, i.e.,
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which implies

(Xi'—Xi)Q(i)(i) =constant in X .

M

1

The constant in the above equation is determined by noting that each function Q"(x), ...,
Q%(x) is zero on Sy, so evaluating the equation on this surface to determine the constant
gives

K
> (x-x )00 @ =0.

i=1
Finally, we evaluate this equation on each surface Sy, ..., Sx while using (12b) to

conclude that X;” = X; for each i = 1, ..., K, which completes the proof that C;; is
invertible.
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Appendix B: Inequalities Involving the Coefficients C;;

We first derive inequalities for the C;; defined by (59). These coefficients were already
shown to be symmetric in (61). We start with a property of OY(x) defined by (12). It is
well known that functions satisfying Laplace’s equation in a given region take on their
minimum and maximum values on the boundary of that region. Using this fact together
with (12) we conclude that 0 < Q(i)(x) <1 at any point x that is either in the QNR interior
or on the QNR boundary. Therefore, if we first select the observation point x to be on S;,
where Q(i)(x) = 1, and then move the observation point into the QNR interior, Q(i)(x)
cannot increase. It either remains constant or it decreases. Therefore, VQ(i)(x) is either
zero or is directed outward from the QNR when evaluated at S;, implying that

o vaDedS>0 for i=1,.K. (B1)
1

Similarly, if we consider a surface S; with j #i, so that QY(x) is zero on this surface, it
increases (or remains constant) as the observation point is moved into the QNR interior,
and we conclude that

js, vODodS<0 for i=1...K and j=1..K with i#j. (B2a)
)/

Now consider the sum function

K .
Z Q(j)()‘c’) .

Jj=1

This function is the solution to Laplace’s equation that is zero on the electrode Sy, and 1
on each DRB Sy, ..., Sk. Therefore, if the observation point starts on any DRB, this
function decreases (or remains constant) as the observation point is moved into the QNR
interior, and we conclude that

0dS>0 for i=1,.,K

o < )
jSinQJ
J=1

or

K
> js_ v odS>0 for i=1..K. (B2b)
j=1 7

The above derivation of (B1) had the advantage that the same derivation could be used
to obtain (B2a) and (B2b), but an alternate derivation of (B1) will produce a stronger
statement that the strict inequality applies. This derivation starts with the equality
between the second term and the far right term in (A3) and evaluates the result at i = to
get

55



j m(f)oa@:j v ovaDidx >0 for i=1,..K (B2c¢)
Si ONR

with the right side easily seen to be strictly greater than zero. Similar steps will derive a
stronger conclusion (a strict inequality) then can be obtained by summing (B2b) in i. The
boundary-value property of the sum function implies that

i jSi ﬁli Q(j)]od§=§ Is,- [Z Q(/)] [Z Q(/)] odS

i=1 j=1

and applying the divergence theorem to the right side while using the fact that the sum
function satisfies Laplace’s equation gives

ZQ(I) 0dS = I

Jj=1

> [,

i=1

K » - K o
Z oW oy z oW |43y

J=1 J=1

The right side is seen to be strictly positive so

K K
> 2 [, vaVeds>o. (B2d)

i=1 j=1

Therefore, while (B2b) states that each j sum is nonnegative, (B2d) implies that at least
one of these sums is positive.

Another inequality is obtained from (A4) by setting the primed quantities equal to zero
so that the equation reduces to

i

Y; X; =qD,,— IQNR [Zx Q(’):| [ﬁxig(i)}ﬁx. (B3)

i=l1

This applies to any set of numbers X, ..., Xy and Y1, ..., Y that are related by the first
equation in (A1). Note that if at least one of the numbers X, ..., Xk differs from zero,
each square bracket on the right will be a non-constant function having a gradient that
differs from zero somewhere within the QNR, so the dot product of the gradient with
itself, which is nonnegative everywhere, will be greater than zero somewhere. Therefore,
the integral will be positive. With the understanding that the Y’s are related to the X’s by
the first equation in (A1), the conclusion is

K
Z . X; >0 if at least one of the numbers X|,..., X g differs from zero . (B4)
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Using (59) to express (B2) in terms of C;;, and using (A1) to express (B4) in terms of
C;;, and repeating (61a) so that all properties are included in a single list, a summary of
the properties of C;; is given by

Ci,j = Cj,i fO}" i= 1,...,K and J = 1,K (Bsa)

Ci ;<0 for i=1...K and j=1,..K with i#j (B5b)

K K
Z C; ;20 foreveryi=1,.,K,and Z C; ;>0 foratleastonei=1,..K. (B5c¢)
=

j=1
Ci,i >0 f‘Or i= 1,...,K (BSd)
K K
> > Ci;X;X; >0 if at least one of the numbers X} ..., X g differs from zero . (B5e)

=1 j=I

Note that the simple fact that C;; is symmetric implies a reciprocity theorem. For any set
of primed and unprimed quantities related by (A1) we have

j= j=1

K K K K K K K
DX =2 DG XX =D { Ci,in}Xj': > {ZC/‘,:’X:}X/: 2 Y
i=1 1 i=1 j=1

i=1 | j= j=1 i=1

and changing dummy symbols on the right gives

DM~

K
Y X =) Y X (B51)
i1 i1

Note that (B5d) states that the diagonal elements of C;; are positive, while (B5b) states
that the off-diagonal elements are negative (or zero), but (B5c) implies that each diagonal
element is at least as large as the sum of absolute values of the off-diagonal elements that
are in the same row (or column because of symmetry) as the selected diagonal element.
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Appendix C: Inequalities Involving the Coefficients ®@;;

Inequalities for the coefficients @;; can be derived from properties of the C;;
coefficients listed in (B5). Recall that these are inverse matrices (invertibility of C;; was
already established in Appendix A), so if any set of numbers X, ..., Xy and Y, ..., Yx are
related by

K
Yi=z Cl,/Xj (Cl)
=
then these numbers are also related by
K

Two conclusions are fairly obvious. The first is derived from the fact that the inverse of a
transpose matrix is the transpose of the inverse, combined with the fact that C;; is
symmetric, to conclude that ®;; is symmetric, as already pointed out in Section V. The
second obvious conclusion is obtained by using (C1) to substitute for the sum inj in
(B5e), then use (C2) to substitute for the remaining X; in (B5e), and finally use the fact
that at least one of the numbers X, ..., X differs from zero if and only if at least one of
the numbers Y, ..., Yk differs from zero (because C;; is invertible) to conclude that

2 2 P YY; >0

i=1 j=1

for any set of numbers Y7, ..., Yk that are not all zero. A special choice for these numbers
shows that the diagonal elements are positive, i.e.,

(Di,i >0 fO}" = 1,...,K .

The remaining properties of ®;; that are listed below are more difficult to derive. The
analysis will be easier to follow if we use the same terminology that is used in a familiar
physical problem so that visualization becomes easier. For this purpose, we will
temporarily forget about the problem of charge collection in a semiconductor and think in
terms of a simpler electrostatics problem that encounters the same equations as those
discussed here. In the electrostatics problem, the surfaces Sj, ..., Sx are conductors at
potentials X, ..., Xx, while Y, ..., Yk are the charges induced on the conductors. The
surface Sy is a grounded conductor that defines the reference potential and has a charge
that balances the sum of the charges on the remaining conductors. The remainder of this
discussion will use the terminology of this electrostatics problem. Properties of ®;; will
be derived in several steps, with the conclusion derived in one step being used by the next
step to derive another conclusion.
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The first step shows that if at least one conductor has a positive potential, then the
conductor at the highest potential has a positive charge. To show this, we consider the
case where the maximum of the set { X1, ..., Xx} is positive, and let X, denote this
maximum value. It is possible for more than one conductors to be at this maximum
potential, so we define the index set IND, a subset of { 1, ..., K}, by the property that i €
IND if and only if X; = X, Note that if i ¢ IND then X; < X,,,,. Summing (C1) in i over
the index set, and breaking the j sum up into two parts gives

ZYi:Xmax Z ZCi,j+ Z ZCi,ij- (C3)

ieIND ieIND jeIND ieIND j¢IND

The goal is to show that the left side is positive. For this purpose, we first derive an
inequality for the first term on the right. This is obtained by changing notation in (B5e) to
get

K K
2 2 CijZiz;>0
i=1 j=1

where the strict inequality applies if the Z’s are not all zero. In particular, if we let Z; =1
when i € IND and Z; = 0 when i ¢ IND we obtain

> >G>0,

ieIND jeIND

Combining this with X,,,, > 0 gives

Xoax 2, 2, Cij>0. (C4)

ieIND jeIND

An inequality for the second term on the right side of (C3) is obtained from the fact that
each C;; in that term is an off-diagonal element, so

C; ;<0 when ieIND and jgIND. (C5)

i,j
Combining this with X; < X,,,, when i ¢ IND gives

JXjzCij

C; Xmax Wwhen i€IND and jeIND. (C6)
At this point it is necessary to consider two possibilities. The first would occur (for
example) if Sy were composed of multiple sections formed in such a way so the each
conductor Sj, ..., Sk is completely surrounded by a different section of Sy, so there is no
interaction between the conductors S, ..., Sx. More specifically, the first possibility is the
case in which the equality in (C5) applies to every i € IND and everyj ¢ IND. For this
case, the right side of (C3) reduces to the first term, which is positive according to (C4),

so the left side of (C3) is positive for this case. The only other possibility is that there is at
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least one 7, j pair, with i € IND and j ¢ IND, for which the strict inequality in (C5)
applies. This implies the strict inequality in (C6) for at least one pair of indices,
producing a strict inequality between the sums given by

D 2 CipXi>Xp D, D Cij

ieIND j¢IND ieIND j¢IND

and substituting this into (C3) gives

K
Z Yi>Xmax Z Z Ci,j'

ieIND ieIND j=1

The right side is positive or zero, because of (B5c) together with X, > 0, so for this
second possibility we also reach the conclusion that the left side of (C3) is positive. The
final conclusion is

If the maximum of the set {X Lo X K } is positive,
and if IND is the index set that identifies those
conductors that are at the maximum potential, then (C7a)

ZYi>O.

icIND
A similar derivation will show that

If the minimum of the set {X Lo XK } is negative,
and if IND is the index set that identifies those
conductors that are at the minimum potential, then (C7b)

2Yi<0.

ieIND

The next step uses (C7) to conclude that uncharged conductors are at intermediate
potentials. To be more specific, select one of the conductors and call it S,, for some m =1,
..., K. Place a positive charge Y, on §,,. All remaining conductors are uncharged, i.e., ¥;
=0 for each i = 1,..., K when i # m. The potential of S,, is X,,, and this potential is seen to
be positive via (C2) combined with Y, > 0 and ®,, ,, > 0. The conclusion to be proven is
that each uncharged conductor is at a potential that is somewhere between 0 and the
potential of the charged conductor. In other words, the conclusion to be proven is that 0 <
X; £ X, for each i = 1,..., K. The proof for each inequality is by contradiction. We first
prove that X; < X, for each i = 1,..., K by assuming that there is at least one conductor
satisfying X, < X; and then look for a contradiction. This assumption implies that the
conductor having the maximum potential is one of the uncharged conductors, or several
of the uncharged conductors if they are at the same potential. Let IND be the index set
that identifies all conductors at the maximum potential. The assumption implies that these
are uncharged conductors, implying that
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> ¥ =0.

ieIND

The promised contradiction is obtained from (C7a). The contradiction implies that X; <
X, for each i = 1,..., K. Similar steps that use (C7b) to obtain a contradiction conclude
that 0 < X; for eachi =1,..., K. The conclusion is

If ¥,, >0 for somem =1,...,K, and if
Y; =0 for each i =1,...,K when i # m, (C8)
then 0< X; < X, foreachi=1,... K.

The last step uses (C8) to derive inequalities for @;;. This is done by letting ¥, = 1 and
letting Y¥; = 0 for each i = 1,..., K when i # m. Substituting this into (C2) gives X; = ®;,,
for this choice of ¥’s, and combining this with (C8) gives 0 < @;,, < D, .

In summary, properties of ®;; are

©;;=0,; for i=L..K and j=1..K (C9a)
qu)l’j Sq)],] fOr lzl,,K and jzl,,K (Cgb)
(Di,i >0 f‘Or i= 1,...,K (C9C)

K
> > ®;;Y;Y;>0 if atleast one of the numbers ¥;....,Yx differs from zero . (C9d)

i=1 j=1
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Appendix D: Properties of Ohm’s Law

We consider the case in which there is an HRR. If we define the total current density 7,
to be 9, + Ju, then (50) gives

D, + Dy,

Jr(X)=-2¢ m

{P(fc) +D—MN}€[@*(;C) +w(¥)]  (in HRR). (D1)
Dm + DM

The fact that the total current has a zero divergence was already stated in (51). To shorten
the notation, define

o(¥) = q%{P(fc) +Dmli—M’WN} (in HRR) (D2a)
u =2 L@ +p@] (0 QNR) (D2b)
so (D1) and (51) become
Jr(¥)=-o(¥)Vu(¥)  (in HRR) (D3a)
Volo(®)Vu(®]=0  (in HRR). (D3b)

This is Ohm’s Law with a conductivity o and a potential g Within the HRR, the
potential x is the same as the normalized potential U given by (49). Different symbols are
used because (D2b) defines y throughout the entire QNR (note that #* and y are defined
throughout the entire QNR), including the AR where (49) does not apply and U is not
equal to & Note that o is bounded above zero because P > 0. In the main text, P* was
regarded as known, and y was regarded as known via (55), so the purpose of (51) was to
solve for P. This is equivalent to solving (D3b) for o when x is regarded as the known
via (D2b). However, the mere existence of a o that is bounded above zero and satisfies
(D3b) implies some properties of z. Stated another way, the HRR is some subset of that
portion of the QNR in which x has certain properties. This places a restriction on how
large the HRR can be. One property, which is a well-known property of potentials
satisfying Ohm’s Law, is that & has no relative maximums or minimums in the HRR
interior. The defining equation (D2b) for x together with (29a) and the fact that y
satisfies Laplace’s equation can be used to show that x has no relative minimums
anywhere in the QNR, but it can have a relative maximum in the QNR. Any point in the
QNR at which x has a relative maximum, if there is such a point, is outside the HRR.

Other properties of x in the HRR interior can be obtained in analogy with the analysis

already given in the first three appendices. To establish this analogy, first consider the
closed surface that is the boundary of the HRR. Part of this surface is Sy, where the
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boundary value of xis zero. Another part is a portion of the reflective QNR boundary,
which would be more appropriately be called “insulated” when discussing Ohm’s Law,
where u satisfies reflective boundary conditions. The remainder of the boundary is a set
of surfaces that have the role of contacts or terminals and each of these surfaces can be
placed in one of two groups. The first group consists of those DRBs that contact the
HRR. Foranyi=1, ..., K such that S; contacts the HRR, S; is one of the terminals in the
first group. On this surface, the value of x given by (D2b), with  satisfying (55) and #*
satisfying (35b), is U.. The second group of terminals consists of portions of the ARB.
Foranyi=1, ..., K such that S; contacts the AR, ARB; is one of the terminals in the
second group. On this surface, where (52) applies, the value of x given by (D2b) is U..
Note that the number of distinct terminals in the second group might be less than the
number of DRBs that contact the AR because if S; is connected to S; then ARB; = ARB;
and U, = U.. Let M (< K) denote the number of distinct terminals in the two groups
combined, and let the terminals be denoted S74, ... , S"y. Let U'; denote the value of 1 on
S™;. The set of numbers U, ..., Uy 1s the same as the set of numbers U, ... , Uk, but
they can differ in the way the subscripts were assigned because M can be less than K (in

which case the latter set of numbers has repeated elements). The terminal currents are
defined by

Fri=-] Greds (D4)

with the unit normal vector in the surface integral directed outward from the HRR.
Corresponding to the conductivity ois a set of functions (", ..., z/*?, defined by the
boundary-value problems

Vo [0'()?) ﬁ,u(i)(i)J: 0  in HRR interior (i =1,...,M) (D5a)
pD=0 onSy (i=1,.,M) (D5b)
pD =1 onS7; and g =0 onS7jif j#i (i=l.,M:j=1..,M) (D5c¢)

with reflective boundary conditions tacitly assumed on the insulated boundaries.
Comparing (D5) to (D3b) and to the boundary conditions previously stated for z, we
conclude that

M
w3 =Y 07 4" (inHRR). (D6)
i=1

Combining (D3a) with (D4) and (D6) gives

M
I'ri=Y UV ;CTij for i=l.,M (D7)
=
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where

CU,‘,-EJSNI, oVu'DodS for i=l.,M; j=l..M. (D8)

Conclusions previously derived for C;; can also be applied to C;; after showing that
the latter satisfies the inequalities that were used to derive those conclusions. For
example, (B5d) in Appendix B was derived from (B2c). The same result can be derived
for C;; by using (D8) with (D5) and the divergence theorem to get

Cii= J‘S”i o ﬁlu(l') odS :i*; ,u(i)a ﬁlu(l') odS = -[HRR o) ju(i) oﬁy(i) d’x.

Using the fact that o is bounded above zero, we conclude from the above that C™;;> 0. In
fact, every statement listed in (B5) remains true when C;j; is replaced by C™;; and K is
replaced by M. Therefore

C"i,j=C"ji for i=L..M and j=1..M (D9a)

C7ij <0 for i=l,.,M and j=1..M with i#;j (D9b)
K

C7i,j 20 foreveryi=1,.,M,and z C™i,j>0 foratleastonei=1,.,M . (D9c)
Jj=1

Cii>0 for i=1...M (D9d)

M=

~.
Il
—_

K
D> C7ijX;X;>0 if at least one of the numbers X,..., Xy differs from zero . (DY%e)
=1

M=

1

Il
—
~

The positive definite property (D9e) implies that C™;; has an inverse. This inverse will be
denoted @7;;. This inverse allows us to invert (D7) to get

M
V= z I~T,j ('DNZ',j for i=1,..M. (DIO)
J=1

Note that all properties listed in Appendix C for ®;; were derived from the properties of
Ci, listed in (B5). Because C;; has the same properties listed in (B5) for C;;, we conclude
that @;; has the same properties listed in Appendix C for @;;. In particular,

Q=07 ; for i=L..M and j=1..M (D11a)
0<®~; ;<D ; for i=1,.,M and j=1.,M (D11b)
O7ii>0 for i=1..M (Dl1lc)
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2

M
®7;,jY;Y; >0 if at least one of the numbers ¥;,..., Yx differs from zero . (D11d)

—
~
LR

Also, an inequality stated in Appendix C in the context of the electrostatics problem was
the statement that uncharged conductors are at intermediate potentials. The same
mathematical inequality applies to the Ohm’s Law problem, but a more appropriate
physical statement of this inequality is that floating terminals are at intermediate
potentials.
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