
NavP: Structured and Multithreaded
Distributed Parallel Programming

Lei Pan
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

1-818-393-0477
lei.pan@jpl.nasa.gov

Abstract—We present Navigational Programming (NavP) —
a distributed parallel programming methodology based on
the principles of migrating computations and multithread-
ing. The four major steps of NavP are: (1) Distribute the
data using the data communication pattern in a given algo-
rithm; (2) Insert navigational commands for the computation
to migrate and follow large-sized distributed data; (3) Cut the
sequential migrating thread and construct a mobile pipeline;
and (4) Loop back for refinement. NavP is significantly dif-
ferent from the current prevailing Message Passing (MP) ap-
proach. The advantages of NavP include: (1) NavP is struc-
tured distributed programming and it does not change the
code structure of an original algorithm. This is in sharp con-
trast to MP as MP implementations in general do not resem-
ble the original sequential code; (2) NavP implementations
are always competitive with the best MPI implementations
in terms of performance. Approaches such as DSM or HPF
have failed to deliver satisfying performance as of today in
contrast, even if they are relatively easy to use compared to
MP; (3) NavP provides incremental parallelization, which is
beyond the reach of MP; and (4) NavP is a unifying approach
that allows us to exploit both fine- (multithreading on shared
memory) and coarse- (pipelined tasks on distributed memory)
grained parallelism. This is in contrast to the currently pop-
ular hybrid use of MP+OpenMP, which is known to be com-
plex to use. We present experimental results that demonstrate
the effectiveness of NavP.

Keywords— distributed parallel programming, navigational
programming (NavP), migrating computations, distributed
sequential computing (DSC), mobile pipelines

TABLE OF CONTENTS

1 INTRODUCTION 1
2 THE NAVP PROGRAMMING MODEL 2
3 THE NAVP METHODOLOGY 2
4 EXPERIMENTS 4
5 RELATED WORK 8
6 CONCLUSIONS 9

0-7803-7231-X/01/$10.00/ c©2007 IEEE

IEEEAC paper # XXX

1. INTRODUCTION

Many aerospace software applications, such as ocean/atmosphere
modeling, numerical weather prediction, data assimilation,
structural/thermal analysis, optical system modeling, require
tremendous processing power from modern supercomputers
to enable accurate and in-time simulations and allow effective
human-in-the-loop optimization. Although attempts are be-
ing made to transfer computationally intensive codes to paral-
lel computing platforms, great difficulties have been encoun-
tered in parallelizing algorithms that are fundamental to simu-
lations. Furthermore, once parallelized, the implementations
usually have little resemblance to the original sequential algo-
rithms, causing fear of loosing control and hence hesitation to
scientists and engineers in making investment in paralleliza-
tion. However, the hope in waiting for new CPUs with end-
lessly growing clock speed and memory size to drive faster
sequential executions is unrealistic because they are neither
physically possible nor economically viable. In fact, today
we are at a fundamental turning point toward concurrency and
distribution in software development.

The state of the art for implementing large-scale high-
performance scientific and engineering applications has been
Message Passing (MP) or a hybrid use of MP and OpenMP,
despite the fact that MP is widely considered to be hard to
use. Studies reveal that the two statements at the heart of MP
– Send() and Recv() – change the code like the goto
statements, thus making structured programming problem-
atic. This is reminiscent of the software crisis of the 1960s
that led to Dijkstra’s recommendation that goto statements
be abolished [9].

In this paper, we present a methodology called Naviga-
tional Programming (NavP) that is based on the use of self-
migrating computations. NavP is philosophically different
because it describes the quantity of interest – a distributed
computation along with the small data it requires – follow-
ing the movement of its locus. This changes the viewpoint of
distributed computation from the conventional Eulerian view
(or SPMD) to the Lagrangian view (or NavP) [38]. Program
transformations from sequential algorithms in NavP involves
the insertion of navigational statements (hop()), which, un-
like Send() and Recv(), do not change code structure.

1

NavP enables scalable parallelization of the problems that
are too hard or even impossible for MPI. It does so using in-
cremental code transformations without changing the original
sequential code structure, which is beyond the reach of MPI.
It easily handles unstructured data layouts, which are neces-
sary for good performance on distributed-memory machines
but too hard for MPI. And it provides performance that is
at least as good as that of MPI. We describe the steps pro-
vided by the NavP methodology, present performance studies
of several important and non-trivial algorithms, and compare
their implementations using both NavP and MP.

2. THE NAVP PROGRAMMING MODEL

Our approach is based on computation mobility enabled by
self-migrating threads — threads capable of moving among
different PEs (processing elements) in a network using spe-
cial navigational commands, such as hop(). We call
the resulting programming style Navigational Programming
(NavP). The concept and mechanism of mobility have been
pioneered by the research in mobile agents [25], [4], [31].
NavP threads use the same basic principles of strong mobil-
ity. Nevertheless, in NavP mobility is used as a programming
model (i.e., a way of describing distributed computations).
This is in contrast to mobile agent research work, where the
emphasis is on actual code mobility. Our target application
is high performance computing on a local area network and
we make our parallel execution environment efficient accord-
ingly. One feature worth noting is that we do not move code
to a PE more than once irrespective of how many times the
locus of computation revisits that PE [39], [40]. The over-
head of our runtime system is negligible as borne out by our
performance studies, some of which will be shown in this pa-
per.

As a programming methodology, NavP uses the following ex-
ecution and memory models.

Execution model:

• Logical network. The NavP runtime environment consists
of three layers of network: the physical network, the daemon
network (runtime system), and the logical network. At most
one daemon process is running on any one physical node, but
the daemon network topology can be different than that of the
physical network (e.g., the daemons can be fully connected
while the physical network is not). The logical network is an
application-specific network. Any number of logical nodes
can be mapped onto a daemon node. The topology of the
logical network is arbitrary;
• Self-migration. A NavP program pauses its computation at
a navigational statement, i.e., a hop() statement, migrates
to the destination logical node as defined by the argument
to hop(), and resumes its computation on the new logical
node. The hop() statements are inserted to the code either
by a programmer;
• User-level multithreading. A NavP program consists of
multiple self-migrating logical units that are each a user-level

thread;
• Synchronization. Synchronization among threads uses
events. The statements signalEvent() and waitEvent()
implement the classical operations of process blocking and
wake-up. The synchronization events are all local to a logical
node;
• Non-preemptive and FIFO scheduling. A thread’s execu-
tion is not preempted between any two navigational state-
ments. That is, a thread must explicitly relinquish control to
others using statements such as hop(). Also, threads hop-
ping from the same source logical node to the same destina-
tion logical node preserve their ordering;
• Function calls. Function calls are implemented as thread
spawning. A thread can spawn another thread using the
inject() or dothreads statement. Injected threads
communicate and synchronize with other threads on the same
node using local events.

Data
Distribution

DPC
Program

DSC

Sequential
Program

Program

Step 1.

Step 2.

Step 3.
Step 4.

Figure 1. The NavP steps.

Memory model:

• A thread-carried variable is private to a migrating thread
and is available to the thread wherever it navigates. It is pri-
marily used to communicate small-sized data across memory
boundaries;
• A node variable is stationary to a logical node and shared
by all threads running on the logical node. It is used to store
large-sized stationary data and to facilitate synchronizations
within a logical node. It can move with its hosting logical
node;
• A distributed shared variable (DSV) is logically one vari-
able but physically a collection of node variables residing in
disjoint address space. It is shared by multiple threads and it
provides a partitioned global address space. This is in contrast
to the localized view of data and computation provided by
MP [6], [28]. Unlike in DSM, shared data stored in a DSV is
not globally accessible; computations migrate to large-sized
stationary data to access rather than pulling the data back. It is
the DSVs and computation mobility that make NavP shared
variable programming beyond shared memory [28];

3. THE NAVP METHODOLOGY

In this section, we provide the steps, schematically depicted
in Fig. 1, that are followed in the NavP methodology. We

2

space

time

PE0

(a)

time

2

1

0

PE0 PE1 PE2

space

(b)

PE0 PE1 PE2

00

01

02

time

10

11

12

20

space

22

21

(c)

PE0 PE1 PE2

space

00

02

01

time

11

10

12

22

21

20

(d)
Figure 2. The code transformations in Navigational Programming. (a) Sequential. (b) DSC. (c) DPC with pipelining. (d) DPC
through phase-shifting.

start from a sequential algorithm and Step 1 is to derive a
data mapping that is efficient in data communication for that
given algorithm. With the given data distribution from Step 1,
we use Step 2 to transform the original sequential program to
a Distributed Sequential Computing (DSC) program by in-
serting hop() statements. In Step 3, we cut the DSC thread
into shorter DSC threads and build mobile pipelines using the
shorter DSC threads. This will give us a Distributed Parallel
Computing (DPC) program. Step 4 is a feedback loop, in
which we adjust the granularity level and the degree of par-
allelism by fine tuning the data distribution or changing how
the DSC is cut. These steps can be used by a programmer, or
they can be used to build automatic tools to facilitate program
transformations.

Step 1: Data Distribution

Data distribution for migrating computations is done by first
building a Navigational Trace Graph (NTG) and then parti-
tioning the NTG using a heuristical graph partitioning algo-
rithm. An NTG is an undirected weighted graph where the
nodes are individual entries of all distributed arrays and the
weight associated with an edge represents the trace between
the two incident array entries as the DSC thread navigates
through them. An NTG is generated by instrumenting the
sequential algorithm using a small problem as an input. The
NTG is partitioned using heuristics [21] to minimize the over-
all edge cuts in the graph; this corresponds to a heuristical
minimization of the overall communication cost for a dis-
tributed implementation. Data distribution itself is a research
area and we report our results in a separate publication [30].

Step 2: Distributed sequential computing

In this step of DSC, Navigational statements (e.g., hop())
are inserted into the sequential code, and the resulting DSC
thread navigates to large-sized data carrying small-sized data
for computation to happen. Figure 2(a) and (b) schematically

depicts the DSC code transformation. This step follows the
principle of pivot-computes, which requires that a subcom-
putation should happen at the computer node that hosts the
large-sized data. This code transformation preserves algo-
rithmic integrity, which says that the codes before and after
the transformation are structurally the same. This will be seen
in our examples in this paper.

Step 3: Distributed parallel computing

In this DPC step. The DSC thread is transformed into multi-
ple “shorter” migrating threads, and these threads are com-
posed into a DPC program to form mobile pipelines —
pipelined computations as a result of DSC threads follow-
ing each other. Figure 2(c) shows such a mobile pipeline
and Fig 2(d) depicts a phase-shifted mobile pipeline as
the dependency relationship among the computations al-
lows. Synchronization statements (e.g., waitEvent() and
signalEvent()) are inserted into the code to ensure cor-
rect execution of producer-consumer computations. This step
of code transformation exhibits composition orthogonality,
which means the code intersection among the composing
DSC threads is minimum.

Step 4: Feedback loop

This step is for feedback and refinement. The NavP trans-
formations can be systematically applied repeatedly or hier-
archically in different dimensions of a network of PEs. At
each step, we have a fully functional implementation that is
an improvement of the previous step. Further development
can be stopped if satisfying performance is achieve or a re-
source limit is reached. In this sense, the NavP methodology
supports incremental parallelization.

One possible feedback adjustment is data redistribution (e.g.,
increasing the number of blocks in a block cyclic data distri-
bution). Figure 3 qualitatively depicts how the execution time

3

P

C

k0

T/2

Number of Cyclic Blocks

E
la

ps
ed

 T
im

e

Figure 3. Performance as block cyclic data distribution is re-
fined (assuming two PEs, T is the sequential execution time.).

changes as we refine the block cyclic data distribution to have
smaller and smaller block sizes As we increase the number
of cyclic data blocks, we obtain more and more parallelism
(hence less and less time as depicted by the curve marked
with P) at the cost of increased communication (depicted by
the curve marked with C). At some point (when k=k0), the
total execution time, depicted by the curve with dashed line,
will reach the minimum and then start growing if we further
increase the communication cost.

4. EXPERIMENTS

In this section, we present our experimental results. The data
was obtained using a network of SUNW Ultra-60’s with 450
MHz UltraSPARC-II CPU, 256MB of main memory, 1GB
of virtual memory, 100Mbps of Ethernet connection with a
collision-free switch, and using the NFS file-sharing system.
The C compiler used was gcc 3.2.2, the MPI used was LAM
MPI 7.0.6 [37], and the NavP compiler and runtime system
used was MESSENGERS 1.2.05 [8].

A simple example
j+1

PE1 PE2 PE3 PE4 PE5

j

Figure 4. Mobile pipeline of DSC threads.

We use a simple, contrived example to illustrate how NavP
programming works. Consider the simple algorithm listed in
Fig. 5(a), in which the jth iteration of the outer loop, which
computes a[j], consumes the values of a[i] produced by all
the previous j iterations. Since the computation of a[j] is nei-
ther associative nor communicative, the consumption of a[i]
is in a sequential order that cannot be changed. This algo-
rithm is an example of the class of so-called “left-looking”
(or, consumer-driven) matrix algorithms [10], [27]. We as-
sume a block data distribution pattern for simplicity, and use
individual arrays on the PEs to host the data blocks. These

arrays logically form a DSV. The auxiliary array node map[.]
provides the logical node hosting a given array entry, and
l[.] contains the local array index of an entry with a given
global index. A DSV thus provides a partitioned global ad-
dress space. The computation of a[j] should take place on the
PEs where the a[i]s reside, so that the cost of communication
for the subcomputation of a[j] is minimized. We therefore
put a[j] in a thread-carried variable, x, and insert hop() state-
ments in the sequential code so that the computation follows
the data it accesses (i.e., the a[i]s) through the network. The
result is a DSC program: the computation uses distributed
data but has a single locus of computation. Figure 5(b) shows
the DSC code. Three hop() and load/unload compound state-
ments are inserted (at lines (1.1), (2.1), and (4.1)) without
changing the code structure. In the pseudocode, x, i, and j

are thread-carried variables, and a[.] is a DSV. If we cut the
single long DSC thread into multiple shorter threads, we get
a DPC program, listed in Fig. 5(c). Each computation of j
becomes a DSC thread that is spawned by the dothreads

at line (1). The NavP dothreads construct generalizes the
classical DOACROSS and DOALL parallelism constructs, but
the spawned threads are DSC threads. The code for each
thread, lines (1.1) through (5), remains almost the same as
the DSC code listed in Fig. 5(a). The only difference is the
insertion of two new lines to synchronize the accesses to the
entry a[1]. Each thread waits at line (2.2) until the previous
thread is done accessing a[1], and at line (3.1) it notifies all
other threads on the logical node that it has finished access-
ing a[1]. In this way, the threads organize themselves into a
mobile pipeline when they access a[1]: the thread computing
a[j] runs immediately after the thread computing a[j− 1].
Because of their FIFO scheduling, migrating threads do not
pass each other in the mobile pipeline. Each computation
migrates through the pipeline, progressively visiting the suc-
cessive stages (the entries a[i] that it successively incorpo-
rates into its computation). Notice that in NavP synchroniza-
tions are only local among the collocated threads. Figure 4
schematically depicts how a mobile pipeline works.

ADI integration

ADI integration is an example used by several papers on data
distribution [23], [3], [22], [26]. The pseudocode for ADI is
listed in Fig. 6 [23], [22]. There are three 2D arrays, namely
c, a, and b, involved in the computation. This code is usu-
ally subdivided into two phases, namely a row sweep phase
(lines (2)-(15)) and a column sweep phase (lines (16)-(29)).
These two phases are surrounded by an outer loop of time it-
eration (line (1)). One possible solution, existed in previous
work, is to find two different data mappings suited for their
respective phases. We use our tool to find these two separate
solutions and plot them in Figs. 7(a) and (b). Figure 7(c) de-
picts the data distributions for two phases combined together.
The two sweeps are two DOALL loops (i.e., full parallelism
with no communication) if they use their own data distribu-
tion, but in between the sweeps a dynamic data redistribution
is needed. If both phases are combined, pipeline parallelism
can still be exploited. The advantage of this data distribution

4

(1) for j = 2 to N

(2) for i = 1 to j− 1

(3) a[j] ← j ∗ (a[j] + a[i])/(j + i)

(4) end for

(5) a[j] ← a[j]/j
(6) end for

(a)

(1) for j = 2 to N

(1.1)hop(node map[j]); x ← a[l[j]]
(2) for i = 1 to j− 1

(2.1) hop(node map[i])

(3) x ← j ∗ (x + a[l[i]])/(j + i)

(4) end for

(4.1)hop(node map[j]); a[l[j]] ← x

(5) a[l[j]] ← a[l[j]]/j
(6) end for

(b)

(0.1)signalEvent(evt, 1)
(1) dothreads j = 2 to N

(1.1) hop(node map[j]); x ← a[l[j]]
(2) for i = 1 to j− 1

(2.1) hop(node map[i])
(2.2) if (i = 1) waitEvent(evt, j− 1)
(3) x ← j ∗ (x + a[l[i]])/(j + i)
(3.1) if (i = 1) signalEvent(evt, j)
(4) end for

(4.1) hop(node map[j]); a[l[j]] ← x

(5) a[l[j]] ← a[l[j]]/j
(6) end dothreads

(c)
Figure 5. A simple algorithm. (a) Sequential. (b) DSC using NavP. (c) Mobile pipelining using NavP.

// time iteration

(1) for iter = 1 to niter

// Phase I : row sweep

(2) for j = 2 to N

(3) for i = 1 to N

(4) c[i][j] = c[i][j] − c[i][j− 1] ∗ a[i][j]/b[i][j− 1]
(5) b[i][j] = b[i][j] − a[i][j] ∗ a[i][j]/b[i][j− 1]
(6) end for

(7) end for

(8) for i = 1 to N

(9) c[i][N] = c[i][N]/b[i][N]
(10) end for

(11) for j = N− 1 to 1 by − 1

(12) for i = 1 to N

(13) c[i][j] = (c[i][j] − a[i][j + 1] ∗ c[i][j + 1])/b[i][j]
(14) end for

(15) end for

// Phase II : column sweep

(16) for j = 1 to N

(17) for i = 2 to N

(18) c[i][j] = c[i][j] − c[i− 1][j] ∗ a[i][j]/b[i− 1][j]
(19) b[i][j] = b[i][j] − a[i][j] ∗ a[i][j]/b[i− 1][j]
(20) end for

(21) end for

(22) for j = 1 to N

(23) c[N][j] = c[N][j]/b[N][j]
(24) end for

(25) for j = 1 to N

(26) for i = N− 1 to 1 by − 1

(27) c[i][j] = (c[i][j] − a[i + 1][j] ∗ c[i + 1][j])/b[i][j]
(28) end for

(29) end for

(30)end for

Figure 6. Pseudocode of ADI

for the entire program is that no dynamic data remapping is
needed between the two phases. The cost of a dynamic data
remapping can vary dramatically on different platforms.

We first turn the ADI code into a block implementation. That
is, we introduce “distribution blocks” — submatrix blocks
that are basic units for data distribution — in the matrices
and convert the loops over the matrix entries into the loops

5 10 15 20

5

10

15

20

c, a, b

i
5 10 15 20

5

10

15

20

c, a, b

i

5 10 15 20

5

10

15

20

c, a, b

i

(a) Phase I (b) Phase II (c) Phases I + II

Figure 7. ADI integration on a 20x20 matrix (4-way).

2 21 1 2 211
2

3 4 3

43 4 3

12

4

21 2 1

1

24 1

1 2

1 2

3 4

2 3 4 1

3 4

3

(a) 1D blk (b) 1D blk cyc (c) 2D blk cyc (d) 2D twisted
Figure 8. Block cyclic distribution patterns.

over the entries within the distribution blocks surrounded by
the loops over the distribution blocks. Next, we go through
the NavP steps to parallelize ADI. In particular, we first make
the sweeps two DSCs and turn the outer loop another DSC
responsible for injecting the sweeper DSCs. We then cut the
sweeper DSCs into shorter ones and pipeline them. These
steps are illustrated using the simple example presented in
earlier in this section, we therefore skip the details here.

Figure 8 depicts two different block cyclic patterns in 1D and
2D cases. Each box in this figure represents a submatrix block
and the number in a box indicates the ID of the PE that this
block is assigned to. It is assumed that in the 1D case we have
two PEs and in the 2D case we have four PEs. As in Fig. 6,
the three square matrices are each of order N. In Fig. 8(a), a
matrix is cut into four vertical slices each of N × N/4 and the
blocks are assigned to the two PEs in a block fashion (that
is, the first two blocks go to PE1 and the last two blocks go
to PE2). Figure 8(b) depicts a 1D block cyclic pattern where
the blocks are assigned to the PEs in order until the PEs are
exhaustively used, at which time the block assignment cycles
back. In HPF [34], a 2D block cyclic pattern is the cross prod-

5

uct of two 1D block cyclic patterns, shown in Fig. 8(c). For
2D, each submatrix block is N/4 × N/4. A different block
cyclic pattern is depicted in Fig. 8(d), in which the first row
of blocks are assigned to all the PEs in order. (This is un-
like the HPF pattern where the PEs are arranged as a 2 × 2

processor grid and the first row of blocks are assigned cycli-
cally along the first row of processors.) The next rows are
assigned to all the PEs in a similar way, except that they are
shifted east-ward one position from their previous rows. This
block distribution is effectively a “twisted pattern.” When the
sweeper threads sweep through all the rows or columns, all
PEs are busy simultaneously. That is, we achieve full paral-
lelism, at the cost of O(N) as one layer of the matrix entries is
carried over from block to block. In contrast, in the example
shown in Fig. 8(c), only two PEs are busy at any time as the
sweeper DSCs sweep through. The situation for the HPF pat-
tern is worse when the PEs are arranged as a 1D grid when,
e.g., the number of PEs is a prime number. As for the cost
of communication, the DOALL approach mentioned earlier re-
quires O(N2) in data redistribution.

Number of PEs

S
pe

ed
up

2 4 6 8
1

2

3

4

5

6

7

twisted 10080
twisted 7560
twisted 5040
twisted 2520
HPF 10080
HPF 7560
HPF 5040
HPF 2520
DOALL 10080
DOALL 7560
DOALL 5040
DOALL 2520

Performance of ADI (niter=10)

Figure 9. The performance of ADI.

As presented in Fig. 9 (the numbers in the legend are matrix
orders), the NavP program using the twisted block cyclic data
distribution pattern performs the best. Using the HPF block
cyclic pattern, the NavP program incurs the same communi-
cation cost of O(N) but has less degree of parallelism. There-
fore, the performance is inferior, especially when the number
of PEs is a prime number1. Finally, if we employ data redis-
tribution in the DOALL approach, even though the two sweeps
are fully parallel, the cost of data redistribution, O(N2), is so
large that the overall performance is poor. We used the MPI
library call MPI Alltoall() to obtain the cost for matrix re-
distribution.

With this example of ADI, we are able to demonstrate the fol-

1We use a true 2D processor grid for the HPF block cyclic pattern when-
ever possible.

lowing: (1) The data distribution for NavP is obtained from
minimizing the cost of communication with load balancing
as a constraint. Parallelism is exploited later using mobile
pipelines. The HPF style block cyclic data distribution helps
to improve parallelism by making the PEs busy earlier, and
the twisted block cyclic data distribution enables the NavP
program to achieve full parallelism; and (2) On loosely cou-
pled systems such as clusters, data redistribution between the
two phases, aimed at achieving full DOALL parallelism for
both phases, is prohibitively expensive. As a result, choosing
a data distribution that minimizes communication and further
minimizing communication using DSCs that follow the prin-
ciple of pivot-computes are of decisive importance to overall
performance. Using pipelining may result in loss of some
degree of parallelism, but this impact to performance is sec-
ondary. Furthermore, with careful adjustment in data distri-
bution using the twisted cyclic pattern, it is still possible to
achieve full parallelism using mobile pipelines at a cost of
asymptotically less communication than what is required in
the DOALL approach.

Crout factorization

Crout factorization [20] has the data access pattern similar
to the simple example presented earlier in this section, ex-
cept that the problem is now 2D. We initially use a block data
distribution (with blocks of columns) and program our DSC
thread to compute following the large-sized data. The differ-
ence from the simple example is that the DSC now carries a
column (entries on and above the diagonal line) of the 2D ma-
trix rather than an entry of the 1D array. The DPC is obtained
in the same way as described in the simple example and block
cyclic data distribution (using a block of columns as a distri-
bution unit) is used to adjust the performance of the code. The
sequential, DSC, and DPC pseudocodes are listed in Fig. 10
and the performance data of DSC and DPC Crout factoriza-
tion are presented in Fig. 11 and Fig. 12, respectively. DSC
is useful by itself because an “all-memory” performance is
obtained for large-sized problems as heavy paging, or disk
thrashing, is replaced by a modest cost of network communi-
cation. Besides, code modification from sequential to DSC is
small, as depicted by Fig. 10(a) and (b).

Parallel implementation of Crout factorization using MP is
extremely difficult and is therefore left as an open problem.
To our best knowledge, we are not aware of any such imple-
mentation in literature.

Cholesky factorization

Cholesky factorization [14] is an algorithm for factorizing
symmetric positive definite matrices. The DSM pseudocode
for Cholesky factorization is adopted from a classical text-
book for matrix computation [14] and listed in Fig. 13(a).
Our NavP DPC code is listed in Fig. 13(b). Again, a cyclic
data distribution scheme for updating the columns is used for
load balancing. Performance data from three different im-
plementations, namely MP, ScaLAPACK [5], and NavP are

6

(1) for j = 1 to N

(2) for i = 1 to j− 1

(3) Kij ← Kij −
Pi−1

l=1 KliKlj
(4) end for

(5) for i = 1 to j− 1

(6) T ← Kij

(7) Kij ← T

Kii
(8) Kjj ← Kjj − TKij
(9) end for

(10) end for

(a)

(1) for j = 1 to N

(1.1) hop (node[j]); load (column j)
(2) for i = 1 to j− 1

(2.1) hop (node[i]); load ({Kii})
(3) Kij ← Kij −

Pi−1
l=1 KliKlj

(4) end for

(4.1) hop (node[j]); unload (column j, {Kii})

(5) for i = 1 to j− 1

(6) T ← Kij

(7) Kij ← T
Kii

(8) Kjj ← Kjj − TKij
(9) end for

(10) end for

(b)

(1) for j = 1 to N

(2) for i = 1 to j− 1

(3) Kij ← Kij −
Pi−1

l=1 KliKlj

(4) end for

(5) for i = 1 to j− 1

(6) T ← Kij

(7) Kij ← T
Kii

(8) Kjj ← Kjj − TKij
(9) end for

(10) end for

(c)

(1) dothreads j = 1 to N

(1.1) hop (node[j]); load (column j)
(2) for i = 1 to j− 1

(2.1) hop (node[i]); load ({Kii})
(2.2) if (j > 1 and i = 1) waitEvent(evt, j− 1)
(3) Kij ← Kij −

Pi−1
l=1 KliKlj

(3.1) if (i = 1) signalEvent(evt, j)
(4) end for

(4.1) hop (node[j]); unload (column j, {Kii})

(5) for i = 1 to j− 1

(6) T ← Kij

(7) Kij ← T

Kii
(8) Kjj ← Kjj − TKij
(9) end for

(10) end dothreads

(d)
Figure 10. Pseudocode for Crout factorization. (a) Sequential; (b) DSC using NavP; (c) Sequential; (d) Pipelining using NavP

Matrix order

E
la

ps
ed

Ti
m

e
(s

,l
og

sc
al

e)

5000 10000 15000 20000

103

104

105

106

c
DSC on 2 nodes
DSC on 3 nodes
DSC on 4 nodes

Performance of DSC Crout factorization

Figure 11. Performance of DSC Crout factorization.

presented in Table 1.

Pseudocode for an MP solution of Cholesky factoriza-

Number of PEs

E
la

ps
ed

Ti
m

e
(s

)

S
pe

ed
up

2 4 6 8 10 12
0

500

1000

1500

1

2

3

4

5

6

7

8

9
time, N=3,120
time, N=5,040
time, N=6,960
speedup, N=3,120
speedup, N=5,040
speedup, N=6,960

Performance of DPC Crout factorization

Figure 12. Performance of DPC Crout factorization.

tion, adapted from the implementation by Golub and Van
Loan [14], is presented in Fig. 14. It is obvious that the origi-
nal code structure is dramatically changed. The Send() and

7

(1) for k = 1 to n

(2) if (rank == 1)
(3) vloc(k : n) = A(k : n, k)

(4) vloc(k : n) / =
p

vloc(k)
(5) A(k : n, k) = vloc(k : n)
(6) end if

(7) barrier

(8) vloc(k + 1 : n) = A(k + 1 : n, k)

(9) for j = k + rank to n by p

(10) wloc(j : n) = A(j : n, j)
(11) wloc(j : n)− = vloc(j)vloc(j : n)
(12) A(j : n, j) = wloc(j : n)
(13) end for

(14) barrier

(15) end for

(a)

(1) for k = 1 to n

(2)
(3)
(4) A(k : n, col(k)) / =

p
A(k, col(k))

(5)
(6)
(7)
(7.1) dothreads rank = 1 to p

(8) vloc(k + 1 : n) = A(k + 1 : n, col(k))
(8.1) hop (node map(k + rank))
(8.2) waitEvent (Evt, k)
(9) for j = k + rank : p : n
(10)
(11) A(j : n, col(j))− = vloc(j)vloc(j : n)
(12)
(13) end for

(13.1) signalEvent (Evt, k + 1)
(13.2) end dothreads

(14)
(14.1) hop (node map(k + 1))
(14.2) waitEvent (Evt, k + 1)
(15) end for

(b)
Figure 13. Pseudocode for parallel Cholesky factorization using (a) DSM. (b) NavP.

Table 1. Performance of parallel Cholesky factorization.

Order 3000 5000 7000

Sequential

Num Time Speed Time Speed Time Speed
Proc (s) up (s) up (s) up

1 95.04 1.00 453.15 1.00 1373.50 1.00

NavP

2 66.72 1.42 361.67 1.25 1052.91 1.30
4 30.47 3.12 177.56 2.55 519.86 2.64
6 22.39 4.24 113.92 3.98 346.20 3.97
8 17.66 5.38 81.31 5.57 258.11 5.32
10 15.27 6.22 64.51 7.02 203.69 6.74
12 13.91 6.83 54.60 8.30 166.30 8.26

MPI

2 67.08 1.42 363.07 1.25 1031.49 1.33
4 30.34 3.13 177.85 2.55 517.02 2.66
6 21.01 4.52 112.46 4.03 346.84 3.96
8 18.14 5.24 82.02 5.53 263.03 5.22
10 14.61 6.51 64.70 7.00 200.60 6.85
12 14.31 6.64 54.66 8.29 170.31 8.06

ScaLAPACK

2 77.05 1.23 358.63 1.26 1000.71 1.37
4 36.34 2.62 178.32 2.54 508.66 2.70
6 23.75 4.00 117.17 3.87 342.84 4.01
8 19.02 5.00 84.08 5.39 261.06 5.26
10 16.36 5.81 68.37 6.63 209.17 6.57
12 14.18 6.70 56.30 8.05 177.05 7.76

Recv() statements are the reason for this change because
they behave just like the goto statement in sequential pro-
gramming [15].

5. RELATED WORK

There is a large body of literature devoted to MP [32],
[36], [16] is the de facto standard of high-performance par-

(1) k = 1; q = 1; col = rank : p : n; L = length(col)
(2) while (q <= L)
(3) if (k == col(q))

(4) Aloc(k : n, q) / =
p

Aloc(k, q)
(5) if (k < n)
(6) Send(Aloc(k : n, q), right)
(7) end if

(8) k = k + 1

(9) for i = q + 1 to L

(10) r = col(i)
(11) Aloc(r : n, i)− = Aloc(r, q) ∗ Aloc(r : n, q)
(12) end for

(13) q = q + 1

(14) else

(15) Recv(gloc(k : n), left)
(16) α = proc which sent kth G col

(17) β = index of right′s final col

(18) if (right ! = α and k < β)
(19) Send(gloc(k : n), right)
(20) end if

(21) for i = q to L

(22) r = col(i)
(23) Aloc(r : n, i) − = gloc(r) ∗ gloc(r : n)
(24) end for

(25) k = k + 1

(26) end if

(27) end while

Figure 14. Pseudocode for MP parallel Cholesky factoriza-
tion.

allel programming, and is considered a success [17]. Con-
ceptually, MPI is very simple: it consists of a small num-
ber of send/receive primitives used directly by the programs.
MPI-2 [16], [1], [13] has several new features, such as one-
sided communication based on remote memory access, par-
allel I/O, dynamic process, and threads. The basic program-
ming style, however, is unchanged. In most cases, the pro-
grammer must restructure a given sequential algorithm to
make it work in a distributed memory environment because

8

of the SPMD view used. In contrast, NavP programs evolve
incrementally from sequential algorithms, and hence are eas-
ier to derive. Furthermore, our preliminary results indicate
that NavP programs perform as well as or faster than MP pro-
grams.

Because of the difficulty of hand-crafted parallelism in MPI
and the difficulty of writing parallelizing compilers, several
approaches have emerged that allow the programmer to sug-
gest data distribution and parallel structures. Examples of
such systems include HPF [24], [18], [2], OpenMP [7], [35],
[19], and UPC [12], [11]. OpenMP assumes a shared mem-
ory model, and provides annotations for thread management,
work distribution, data scope specification, and synchroniza-
tion. HPF and UPC also have constructs to control the map-
ping of data. In general, these approaches are not able to de-
liver a performance that is competitive to that of handcrafted
MPI programs.

6. CONCLUSIONS

NavP has a number of advantages. (1) As validated by our
preliminary results, NavP implementations are always com-
petitive with the best MPI implementations in terms of per-
formance, and in some cases are considerably better. As a
special use of NavP, DSC threads can speed up the execu-
tion of even a single sequential process (refer to the perfor-
mance of DSC Crout factorization in Fig. 11). (2) NavP is
structured distributed programming, as it directly captures
the algorithm. MP, by comparison, requires significant re-
structuring of the program, obscuring its original purpose. It
has been pointed out that send and recv are harmful today
for much the same reason that unrestricted goto statements
have been considered harmful since the “software crisis” of
the 1960’s [15]. Because of its structured programming,
NavP allows us to parallelize certain programs that are gener-
ally considered unparallelizable using other approaches [29].
(3) NavP provides incremental parallelization, in the sense
that a sequential program can be converted into a fully par-
allel program through a sequence of small transformations,
where each intermediate step is a fully functioning program.
This is in sharp contrast to MP, where a parallel program
usually requires a complete rewrite and major restructuring.
(4) Today a hybrid programming model of MP+OpenMP is
sometimes used [33], but this requires extensive program-
ming efforts. NavP is a unifying approach that allows us
to exploit both fine- (multithreading on shared memory) and
coarse- (pipelined tasks on distributed memory) grained par-
allelism. These advantages make NavP a competitive alterna-
tive to MP as an intermediate representation for manual pro-
gramming as well as automatic source-to-source code trans-
formations by a compiler.

Our future work includes using real-world, non-trivial
aerospace applications to further evaluate the effectiveness of
the NavP methodology and porting the NavP underlying in-
frastructure to multi-core or cell clusters.

REFERENCES

[1] MPI-2: Extensions to the Message-Passing Interface.
The MPI Forum, July 1997.

[2] Vikram Adve, Guohua Jin, John Mellor-Crummey, and
Qing Yi. High Performance Fortran compilation tech-
niques for parallelizing scientific codes. In Proceedings
of Supercomputing 98: High Performance Computing
and Networking, November 1998.

[3] Jennifer M. Anderson, Saman P. Amarasinghe, and
Monica S. Lam. Data and computation transformations
for multiprocessors. In Proc. 5th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, PPoPP’95, pages 166–178, Santa Barbara, Cali-
fornia, 1995.

[4] Lorenzo Bettini and Rocco De Nicola. Translating
strong mobility into weak mobility. In Gian Pietro
Picco, editor, Proceedings, 5th International Confer-
ence on Mobile Agents, MA 2001, volume 2240 of Lec-
ture Notes in Computer Science, pages 182–197, Berlin,
Germany, December 2001. Springer-Verlag.

[5] L. Susan Blackford, J. Choi, A. Cleary, E. D’Azevedo,
James Demmel, I. Dhillon, Jack Dongarra, S. Ham-
marling, Greg Henry, Antoine Petitet, K. Stanley,
D. Walker, and R. Clint Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics,
Philadelphia, Pa., 1997.

[6] David Callahan, Bradford L. Chamberlain, and Hans P.
Zima. The Cascade high productivity language. In
9th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS
2004), pages 52–60, 2004.

[7] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror
Maydan, Jeff McDonald, and Ramesh Menon. Parallel
Programming in OpenMP. Morgan Kaufmann Publish-
ers, San Francisco, Calif., 2001.

[8] Department of Computer Science, University of Cal-
ifornia, Irvine, Irvine, Calif. MESSENGERS User’s
Manual (Version 1.2.05 Beta), May 2005.

[9] Edsger W. Dijkstra. Go to statement considered harm-
ful. Communications of the ACM, 11(3):147–148,
March 1968.

[10] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and
Henk A. van der Vorst. Solving Linear Systems on Vec-
tor and Shared Memory Computers. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pa., 1991.

[11] Tarek El-Ghazawi and Sebastien Chauvin. UPC bench-
marking issues. In Lionel M. Ni and Mateo Valero, edi-
tors, Proceedings of the 2001 International Conference
on Parallel Processing (ICPP 2001), pages 365–372,
Los Alamitos, Calif., September 2001. IEEE Computer
Society.

[12] Tarek A. El-Ghazawi and Sebastien Chauvin. Getting
Started with UPC. High Performance Computing Labo-

9

ratory, George Washington University, Washington DC,
June 2001.

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca,
Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, An-
drew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, and Timothy S. Woodall. Open
MPI: Goals, concept, and design of a next generation
MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, Bu-
dapest, Hungary, September 2004.

[14] Gene H. Golub and Charles F. Van Loan. Matrix Com-
putations. Johns Hopkins University Press, Baltimore,
Md., third edition, 1996.

[15] Sergei Gorlatch. Send-receive considered harmful:
Myths and realities of message passing. ACM Trans-
actions on Programming Languages and Systems,
26(1):47–56, January 2004.

[16] William Gropp, Steven Huss-Lederman, Andrew Lums-
daine, Ewing Lusk, Bill Nitzberg, William Saphir, and
Marc Snir. MPI–The Complete Reference, volume 2,
The MPI-2 Extensions. The MIT Press, Cambridge,
Mass., 1998.

[17] William D. Gropp. Learning from the success of MPI.
In Burkhard Monien, Viktor K. Prasanna, and Sri-
ram Vajapeyam, editors, Proceedings, 8th International
Conference on High Performance Computing - HiPC
2001, volume 2228 of Lecture Notes in Computer Sci-
ence, pages 81–92, Berlin, Germany, December 2001.
Springer-Verlag.

[18] High Performance Fortran Forum. High Performance
Fortran language specification. Scientific Programming,
2(1-2):1–170, 1993.

[19] Y. C. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel.
OpenMP for networks of SMPs. In Proceedings
IPPS/SPDP, pages 302–310. IEEE Computer Society
Press, 1999.

[20] Thomas J. R. Hughes. The Finite Element Method : Lin-
ear Static and Dynamic Finite Element Analysis. Pren-
tice Hall, Englewood Cliffs, N.J., 1987.

[21] George Karypis and Vipin Kumar. hMETIS A hyper-
graph partitioning package (version 1.5.3). Department
of Computer Science & Engineering, University of Min-
nesota, Minneapolis, MN 55455, 1998.

[22] Ken Kennedy and Ulrich Kremer. Automatic data lay-
out for distributed-memory machines. ACM Trans-
actions on Programming Languages and Systems,
20(4):869–916, July 1998.

[23] J. Knoop and E. Mehofer. Distribution assignment
placement: Effective optimization of redistribution
costs. IEEE Transactions on Parallel and Distributed
Systems, 13(6):628 – 647, June 2002.

[24] Charles H. Koelbel. The High Performance Fortran

Handbook. MIT Press, Cambridge, Mass., 1994.

[25] David Kotz, Robert Gray, and Daniela Rus. Future di-
rections for mobile agent research. IEEE Distributed
Systems Online, 3(8), 2002.

[26] Peizong Lee and Zvi Meir Kedem. Automatic data and
computation decomposition on distributed memory par-
allel computers. ACM Transactions on Programming
Languages and Systems, 24(1):1–50, January 2002.

[27] Vijay Menon and Keshav Pingali. Look left, look right,
look left again: An application of fractal symbolic anal-
ysis to linear algebra code restructuring. International
Journal of Parallel Programming, 32(6):501–523, De-
cember 2004.

[28] Lei Pan, Lubomir F. Bic, and Michael B. Dillencourt.
Shared variable programming beyond shared memory:
Bridging distributed memory with mobile agents. In
Hartmut Ehrig, Bernd Kramer, and Atila Ertas, editors,
Proceedings of the 6th International Conference on In-
tegrated Design & Process Technology (IDPT-2002),
Grandview, Texas, June 2002. Society for Design &
Process Science.

[29] Lei Pan, Ming Kin Lai, Michael B. Dillencourt, and
Lubomir F. Bic. Mobile pipelines: Parallelizing left-
looking algorithms using navigational programming. In
Proceedings, 12th International Conference on High
Performance Computing - HiPC 2005, volume 3769
of Lecture Notes in Computer Science, pages 201–212,
Berlin, Germany, December 2005. Springer-Verlag.

[30] Lei Pan, Jingling Xue, Ming Kin Lai, Michael B. Dil-
lencourt, and Lubomir F. Bic. Toward automatic data
distribution for migrating computations, 2006. submit-
ted for review.

[31] G. Picco, editor. MA ’01: 5th International Conference
on Mobile Agents, volume 2240 of Springer-Verlag,
Lecture Notes in Computer Science, Atlanta, Georgia,
December 2001.

[32] Ira Pramanick. MPI and PVM Programming, volume 2,
Programming and Applications, chapter 3, pages 48–86.
Prentice Hall PTR, Upper Saddle River, N.J., 1999.

[33] Rolf Rabenseifner and Gerhard Wellein. Comparison of
parallel programming models on clusters of SMP nodes.
In H.G. Bock, E. Kostina, H.X. Phu, and R. Rannacher,
editors, In Modelling, Simulation and Optimization of
Complex Processes (Proceedings of the International
Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam), pages 409–426.
Springer, 2004.

[34] Robert S. Schreiber. An introduction to HPF. Lecture
Notes in Computer Science, 1132:27–44, 1996.

[35] Lorna Smith and Mark Bull. Development of mixed
mode MPI/OpenMP applications. Scientific Program-
ming, 9(2–3):83–98, Spring–Summer 2001.

[36] Marc Snir, Steve Otto, Steven Huss-Lederman, David

10

Walker, and Jack Dongarra. MPI–The Complete Refer-
ence, volume 1, The MPI Core. The MIT Press, Cam-
bridge, Mass., 2 edition, 1998.

[37] Jeffrey M. Squyres and Andrew Lumsdaine. A com-
ponent architecture for LAM/MPI. In Jack Dongarra,
Domenico Laforenza, and Salvatore Orlando, editors,
Proceedings, 10th European PVM/MPI Users’ Group
Meeting, volume 2840 of Lecture Notes in Computer
Science, pages 379–387, Berlin, Germany, October
2003. Springer-Verlag.

[38] D. J. Tritton. Physical fluid dynamics. Oxford Univer-
sity Press, New York, second edition, 1988.

[39] Christian Wicke. Implementation of an autonomous
agents system. Master’s thesis, Dept. of Information
and Computer Science, University of California, Irvine,
Irvine, Calif., September 1998.

[40] Christian Wicke, Lubomir F. Bic, Michael B. Dillen-
court, and Munehiro Fukuda. Automatic state capture
of self-migrating computations in MESSENGERS. In
Kurt Rothermel and Fritz Hohl, editors, Proceedings,
Second International Workshop on Mobile Agents, MA
’98, volume 1477 of Lecture Notes in Computer Sci-
ence, pages 68–79, Berlin, Germany, September 1998.
Springer-Verlag.

Lei Pan is a senior computer scien-
tist at the Jet Propulsion Laboratory,
California Institute of Technology. He
holds an MS in Mechanical Engineering
(Rensselaer Polytechnic Institute, NY)
and a PhD in Information & Com-
puter Science (University of California,
Irvine). His research interests include

distributed parallel computing, parallelizing compilers, and
numerical methods.

11

