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Section overview

Introduction to Data Fusion

I Data fusion overview

I Motivating example

I Data fusion problems and issues
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Definition

Data fusion is the process of combining information from
heterogeneous sources into a single composite picture of the relevant
process, such that the composite picture is generally more accurate
and complete than that derived from any single source alone (Hall,
2004).
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Applicability

I Data collection is often incomplete, sparse, and yields
incompatible information.

I Fusion techniques can make optimal use of such data.

I When investment in data collection is high, fusion gives the best
return.
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Aerosols- definition and importance

An aerosol is defined as a suspension of fine, solid particles or liquid
droplets in a gas.

I Examples include dust or particle emissions of diesel cars, and
sulfates, nitrates and ammonium compounds.

I They contribute to air pollution.

I They affect the climate system in both direct and indirect ways.
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Direct aerosol effect

The direct aerosol effects include strong back-scattering and
absorption of light.

I Aerosols reflect solar radiation back into space by Mie scattering.

I According to the IPCC, the cooling effect of aerosols is about
-.7 watts/m2, compared to the total global warming effect of 2.5
watts/m2.

I Light-absorbing aerosols causes absorption instead of scattering
or transmission of solar radiation.
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Indirect aerosol effect

Aerosol contribute to climate change.

I Aerosol particles can act as nuclei for cloud formation.

I Studies suggest that aerosols shift asian tropical rainfall
southward.
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Remote sensing illustration

Our study uses data from two satellites:

I Multiangle Imaging SpectroRadiometer (MISR),

I Moderate Resolution Imaging Spectroradiometer (MODIS).
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Data from MISR and MODIS

We use two datasets from MISR and MODIS as our motivating
example.

I The domain is 30◦S latitude to the equator (0◦ latitude) and the
prime meridian (0◦ longtitude) to 30◦E longtitude.

I The time period is from January 1-16, 2001.

I MISR has 9,308 observations, and MODIS has 47,695
observations.
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MISR and MODIS aerosol maps
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Figure: Maps of AOD.
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Massive data size

MISR and MODIS, like many remote sensing instruments, return tens
of thousands of data points per day.

I Traditional interpolation methods have computational
complexity quadratic or cubic in data size.

I The rapid growth in remote sensing dataset size demands
methods that scale well.
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Change of support- example

Figure: Example of different footprints. Source: Amy Braverman

14



Change of support - cont.

Data comes at areal-level support, but we need to estimate the
point-level underlying continuous structure.

I Differences include alignments, orientation, shape, and size.

I Ignoring change of support makes inferences susceptable to the
ecological fallacy.
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Bias correction

Validation exercises (Paradise, 2007) indicate that MISR and
MODIS, like other satellite instruments, likely have bias.

I Fusion methodology should include bias correction.

I Estimate of bias coefficients generally require other unbiased
data sources.
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Section overview

Spatial statistics review

I Kriging

I Fixed-ranked kriging
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Data assumption

Suppose that we have the following model:

Z (s) = Y (s) + ε(s) , s ∈ D. (1)

I Z is the data vector.

I Y (·) is the true hidden process.

I ε(·) is a gaussian error process.
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Functional form and MSPE

Given a data vector, Z, we define our interpolator at location s0 as

Ȳ (s0) = a′ Z.

We want to minimize

E |a′Z− Y(s0)|2 = Var
(
a′Z− Y (s0)

)
= a′Var(Z)a + Var(Y (s0))− 2a′Cov(Z,Y (s0))

= a′Σa + Var(Y (s0))− 2a′c0.
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Solving for the kriging coefficients

We take the derivative of the expected prediction error with respect
to a:

d

da
(a′Σ a + Var(Y (s0))− 2a′ c0) = 2 Σ a− 2 c0

Setting this equation to 0 and solving for a, we get

Σ a− c0 = 0

Σ a = c0

a = Σ−1 c0.
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Comments on kriging

Kriging is a very popular spatial analysis methodology

I It can handle change of support.

I It can produce estimates of the MSPE.

Disadvantages of kriging include

I Kriging requires inversion of the covariance matrix, Σ.

I For small datasets, estimates of the covariance function requires
simplifying assumptions.
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Covariance model

Kriging requires the inversion of the N × N covariance matrix,
Σ = C + σ2V.
Cressie and Johannesson (2008) model C (u, v) as

C (u, v) = S(u)′KS(v) u, v ∈ D.

I C (·, ·) is the covariance function.

I u, v are locations in the domain, D.

I S(v) is an basis expansion of location s into r -dimensions.

I K is an r × r matrix.
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Inverting the FRK covariance matrix

We model Σ = σ2V + S′KS.

I S′ is an N × r matrix.

I K is an r × r matrix.

Using the Sherman-Morrison-Woodbury formula, the exact inversion
of Σ is,

Σ−1 = (σ2V)−1 − (σ2V)−1S′
(
K−1 + S(σ2V)−1S′

)−1
S′(σ2V)−1.
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Notes on FRK

Some notes:

I FRK has order of computation O(Nr2).

I The parameter K may be estimated by minimizing with respect
to the Frobenius norm.

I S(·) could be any basis expansion.
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FRK performed on separately on MISR and
MODIS
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Figure: Single-dataset FRK estimates.
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FRK performed on separately on MISR and
MODIS
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Section overview

Spatial Statistical Data Fusion

I Assumptions about data structure

I SSDF estimates

I Solving the fusion equations

I Scalability

I Change of support

I Estimating SSDF parameters
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Model assumptions

We assume the data are generated according to the following model:

Zi = (Zi (Bi1),Zi (Bi2), . . . ,Zi (BiNi
))′,

Zi (Bij) =
1

|Bij |

∫
u∈Bij

Y (u)du + εi (Bij), (2)

where

I Bij is the jth footprint from data set i ,

I Zi is the vector of response variable from dataset i ,

I Y (·) is the true process,

I εi (Bij) is the error process.
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Error process assumptions

We assume a multiplicative bias model:

E(εi (Bij)) = ciµ,

Var(εi (Bij)) = σ2
i .
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Functional form for SSDF

To estimate the underlying process Y (·) at s, we construct a linear
combination of Z1 and Z2,

Ŷ (s) = a′1sZ1 + a′2sZ2. (3)

We seek values of a1s and a2s that minimize the mean-squared
prediction error for this estimate.

minimize MSPE = E(Y (s)− Ŷ (s))
2

subject to E(Ŷ (s)) = µ.
(4)
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Mean-squared prediction error expansion

The expanded form for the mean-squared prediction error is

E (Y (s)− Ŷ (s))
2

= Var(a′1sZ1 + a′2sZ2 − Y (s)),

= a′1sVar(Z1)a1s + a′2sVar(Z2)a2s + Var(Y (s))

+ 2a′1sCov(Z1,Z2)a2s − 2a′1sCov(Z1,Y (s))

− 2a′2sCov(Z2,Y (s)). (5)
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Unbiasedness constraint

We wish to find the fusion coefficients that minimize the MSPE,
subject to the unbiasedness contraint,

E(Ys) = µ = E
(
a′1sZ1 + a′2sZ2

)
= E (Ŷs),

µ = a′1s1N1(1 + c1)µ+ a′2s1N2(1 + c2)µ,

0 = a′1s1N1(1 + c1) + a′2s1N2(1 + c2)− 1. (6)
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The Lagrangian

We wish to find the optimal fusion coefficients such that the MSPE
is minimized. Let:
Σii = Var(Zi ), Σik = Cov(Zi ,Zk), and cis = Cov(Zi , s).

L = a′1sΣ11a1s + a′2sΣ22a2s + σs,s + 2a′1sΣ12a2s − 2a′1sc1s − 2a′2sc2s

+ 2m
[
a′1s1N1(1 + c1) + a′2s1N2(1 + c2)− 1

]
. (7)
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Derivatives w.r.t. the fusion coefficients

Differentiating L with respect to a1s, a2s, and m, and setting the
resulting expressions equal to zero, we have

∂L

∂a1
= Σ1a1s + Σ12a2s − c1s + m1N1(1 + c1) = 0,

∂L

∂a2
= Σ2a2s + Σ12a1s − c2s + m1N2(1 + c2) = 0,

∂L

∂m
=
[
a′1s1N1(1 + c1) + a′2s1N2(1 + c2)− 1

]
= 0. (8)
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In matrix forms

We can express the equation for the fusion coefficients in matrix
form, Σ11 Σ12 1N1(1 + c1)

Σ21 Σ22 1N2(1 + c2)
1′N1

(1 + c1) 1′N2
(1 + c2) 0

  a1s

a2s

m

 =

 c1s

c2s

1

 . (9)
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Solving for the fusion coefficients

The fusion coefficients are

a1s = −Σ−1
11 Σ12a2s + Σ−1

11 c1s −Σ−1
11 1N1(1 + c1)m,

a2s = −Σ−1
22 Σ21a1s + Σ−1

22 c2s −Σ−1
22 1N2(1 + c2)m ,

which can be expressed as

a1s = A−1
1 (B1 + C1m) , and

a2s = A−1
2 (B2 + C2m) . (10)
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Solving for the fusion coefficients- cont.

Ai ,Bi and Ci are defined as

A1 ≡ (IN1
−Σ−1

11 Σ12Σ−1
22 Σ21) , an N1 × N1 matrix, (11)

A2 ≡ (IN2
−Σ−1

22 Σ21Σ−1
11 Σ12) , an N2 × N2 matrix,

B1 ≡ Σ−1
11 (c1s −Σ12Σ−1

22 c2s) , an N1-dimensional vector,

B2 ≡ Σ−1
22 (c2s −Σ21Σ−1

11 c1s) , an N2-dimensional vector,

C1 = −Σ−1
11 (1N1

(1 + c1)−Σ12Σ−1
22 1N2

(1 + c2)) , an N1-dimensional vector,

C2 = −Σ−1
22 (1N2

(1 + c2)−Σ21Σ−1
11 1N1

(1 + c1)) , an N2-dimensional vector ,
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Using FRK covariance structure

We need to invert Ai . If we use the FRK covariance structure, the
inversions are

Σ−1
ii = (σ2

i Vi + S′iKSi )
−1,

= (σ2
i Vi )

−1 − (σ2
i Vi )

−1S′i
(
K−1 + Si (σ

2
i Vi )

−1S′i
)−1

Si (σ
2
i Vi )

−1.

A−1
1 = (IN1 −Σ−1

11 Σ12Σ−1
22 Σ21)−1,

= (IN1 −Σ−1
11 S′1KS2 Σ−1

22 S′2KS1 )−1 (by the Woodbury identity),

= IN1 −Σ−1
11 S′1

(
K−1 + S2 Σ−1

22 S′2KS1Σ−1
11 S′1

)−1
S2 Σ−1

22 S′2KS1,

A−1
2 = IN2 −Σ−1

22 S′2
(
K−1 + S1 Σ−1

11 S′1KS2Σ−1
22 S′2

)−1
S1 Σ−1

11 S′1KS2.
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Scalability- notes

I Given the FRK structure, the inversion is exact.

I Only K,
(
K−1 + Si (σ

2
i Vi )

−1S′i
)
,(

K−1 + S2 Σ−1
22 S′2KS1Σ−1

11 S′1
)
, and(

K−1 + S1 Σ−1
11 S′1KS2Σ−1

22 S′2
)

need inversion.

I We incur constant cost of O(r3) for these inversions.

I The overall computational complexity of the method is O(Nr2).
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Different spatial support

So far, we assumed the following covariance model:

C (s1, s2) = S(s1)′KS(s2). (12)

Our data, however, are observed at areal-level.

I We need to estimate K from areal-level data.
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Data generation model review

Recall that we assume the following model for the data

Z = (Z (B1),Z (B2), . . . ,Z (Bn))′, (13)

Z (Bi ) =
1

|Bi |

∫
u∈Bi

Y (u)du + ε(Bi ). (14)
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Point-level and areal-level covariance

We can find expression for the areal-covariance in terms of the
point-level covariance,

Cov(Z(Bk ), Z(Bl )) = Cov

(
1

|Bk |

∫
u∈Bk

Y (u)du + ε(Bk ),

1

|Bl |

∫
v∈Bl

Y (v)dv + ε(Bl )

)
,

= Cov

(
1

|Bk |

∫
u∈Bk

Y (u)du ,
1

|Bl |

∫
v∈Bl

Y (v)dv

)

+ Cov

(
1

|Bk |

∫
u∈Bk

Y (u)du, ε(Bl )

)

+ Cov

(
1

|Bl |

∫
v∈Bl

Y (v)dv, ε(Bk )

)
+ Cov (ε(Bk ), ε(Bl ))) , (15)
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Point-level and areal-level covariance

Cov(Z (Bk),Z (Bl)) =
1

|Bk |
1

|Bl |

∫
u∈Bk

∫
v∈Bl

Cov (Y (u),Y (v)) du dv,

=
1

|Bk |

∫
u∈Bk

S(u)′du K
1

|Bl |

∫
v∈Bl

S(v) dv,

= S̃(Bk)′ K S̃(Bl), (16)

where

S̃(Bi ) =
(
S̃1(Bi ), S̃2(Bi ), . . . , S̃r (Bi )

)
,

with S̃j(Bi ) =
1

|Bi |

∫
u∈Bi

Sj(u) du.
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Cov (Y (u),Y (v)) du dv,

=
1

|Bk |

∫
u∈Bk

S(u)′du K
1

|Bl |

∫
v∈Bl

S(v) dv,

= S̃(Bk)′ K S̃(Bl), (16)

where

S̃(Bi ) =
(
S̃1(Bi ), S̃2(Bi ), . . . , S̃r (Bi )

)
,

with S̃j(Bi ) =
1

|Bi |

∫
u∈Bi

Sj(u) du.
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Estimating K

Given the empirical covariance matrices, Σij , and S, we model the
covariance as

Σ11 = S̃
′
1KS̃1 + σ2

1V′1,

Σ12 = S̃
′
1KS̃2,

Σ21 = S̃
′
2KS̃1,

Σ22 = S̃
′
2KS̃2 + σ2

2V′2.
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Estimating K- cont.

Rewrite the previous equation as[
Σ̂11 − σ2

1V1 Σ̂12

Σ̂21 Σ̂22 − σ2
2V2

]
=

[
S̃
′
1

S̃
′
2

]
K
[

S̃1 S̃2

]
. (17)
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Estimating K- cont.

Minimize the differences with respect to the Frobenius norm,

K = Q(R′)−1

[
Σ̂11 − σ2

1V1 Σ̂12

Σ̂21 Σ̂22 − σ2
2V2

]
R′Q′. (18)

I Q and R are derived from QR decomposition of S.
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Section overview

Spatial Statistical Data Fusion

I SSDF on MISR and MODIS

I SSDF on synthetic example
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Fusing MISR and MODIS

We apply SSDF to MISR and MODIS data.

I We use a 30× 30 grid for estimating the empirical covariance
matrices.

I We use 342 bisquare basis functions for S.
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Maps of basis functions and binning grid
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Figure: Map of bin centers and basis centers.
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Figure: Empirical vs. estimated covariances for MISR (left four) and
MODIS (right four).
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Review of the raw data

0 5 10 15 20 25 30

−
30

−
25

−
20

−
15

−
10

−
5

0
MISR Aerosol Optical Depth

Longitude

La
tit

ud
e

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

−
30

−
25

−
20

−
15

−
10

−
5

0

MODIS Aerosol Optical Depth

Longitude
La

tit
ud

e

0.0

0.2

0.4

0.6

0.8

Figure: Maps of AOD.
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SSDF and single-dataset estimates
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Figure: Estimates of AOD using single-dataset FRK and SSDF.
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MSPE for estimates
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Figure: MSPE of estimates using single-dataset FRK and SSDF.
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AERONET locations

Over the same time and spatial region, we have data for 3 AErosol

RObotics NETwork (AERONET) Stations.
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Figure: Left: Locations of AERONET stations. Right: Boxplots of
observations at AERONET sites.
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AERONET comparisons to model estimates
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Figure: Individual FRK predictions vs SSDF predictions for AERONET sites.
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