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Abstract— In order for distributed systems to communicate 
reliably engineers standardize on communication rules (or 
protocols). Unforeseen behavior in communication 
protocols can push faults up to applications resulting in 
uncontrollable systems and should not be tolerated. 
However, while most modern protocols undergo extensive 
testing, rigorous formal methods, such as model checking, 
are rarely used due to complexity and massive incomputable 
state spaces. Nevertheless, starting formal validation early 
in the development cycle carries less-complexity, 
significantly smaller state spaces and allows for full 
validation. As a side benefit early error detection and 
correction costs significantly less than redesigns later in a 
system's life-cycle. 

This paper discusses the preliminary design and validation 
of the Demand Access Protocol (DAP) using the SPIN 
model checker. Using English language specifications and 
flow charts, the author developed a PROMELA (the 
language used by SPIN) specification and tested basic 
safety properties. Used correctly, a model checker can 
thoroughly validate complex systems and guarantee absence 
of fault conditions.1 2
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1. INTRODUCTION

In general, computer protocols are specified using time 
charts, state-transition diagrams/tables, or natural (spoken) 
languages. However, diagrams do not allow for direct 
validation but require human inspection to identify possible 
failure conditions, which while often effective is neither 
formal nor guaranteed. Moreover, the inherent lack of 
scalability of charts and diagrams make them ill-suited for 
reasonably complex protocols. As a consequence, most 
modern computer protocols are specified in quasi-formal 
subsets of natural languages with diagrams for clarification. 

One should note that implementation issues caused by 
ambiguous protocol specifications can result in corrupted 
communication, loss of communication or in some cases 
injury to users. So, with a desire for correctness,  formal 
(non-ambiguous) specification languages have been 
developed; however, looking at the Internet Engineering 
Task Force's (IETF) Request For Comments (RFCs) 
regarding communication protocols, one realizes that formal 
languages are rarely used. While RFCs are not direct 
specifications they are used as the basis for protocol design 
and facilitate interoperability. 

This paper discusses the application of a formal language, 
PROMELA, for specification and  validation of the Demand 
Access Protocol with the SPIN model checker. PROMELA 
specifications involve non-deterministic execution and 
send/receive channels. Most importantly, PROMELA 
allows  

Figure 1 – Demand Access Architecture from [1]
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for specification of complicated safety requirements 
(internally called “never” claims) which when validated 
using SPIN can guarantee the absence of undesired 
conditions. For more complex properties, users can convert 
safety requirements from Linear Temporal Logic (LTL) to 
PROMELA “never” claims. 

PROMELA models are similar to non-deterministic 
extended finite state machines (EFSMs) and tools allow for 
direct translation of Specification and Description Language 
(SDL) EFSMs to PROMELA [4] processes. Furthermore, 
other authors show that formal specification can be used for 
performance analysis as described in [5], but is beyond the 
scope of this paper. 

Section 2 details design and PROMELA specification with 
examples from Demand Access Protocol. Section 3 
introduces the validation tool, SPIN, and describes the 
validation process. 

2. SPECIFICATION

Demand Access Protocol Overview 

The Demand Access Protocol architecture defines an 
application, a resource manager and a communication 
system. In between these systems the Demand Access 
Protocol handles message formatting. Figure 1 is from [1] 

and shows the Demand Access architecture. The 
specification of translation layers, communication systems, 
and resource managers is beyond the scope of the Demand 
Access Protocol specification. Thus, DAP is primarily a 
messaging system. 

The Demand Access Protocol (DAP) was originally 
described in natural language reports and flow charts [1]. 
From these descriptions and face-to-face meetings with the 
original developers, the author developed a PROMELA 
specification. Figure 2 is an extract [1] of the DAP Provider 
flowchart. 

Since, DAP is a fairly simple protocol this work was 
completed in short time and had little difficulty modeling 
the high-level protocol behavior. However, implementers of 
DAP can leverage the PROMELA specifications to create 
initial code structure and, by adding implementation-
specific information to the specification, continually 
validate correct operations. Additionally, multiple 
implementations can create low-level (implementation-
specific) detailed PROMELA modes and validated inter-
operability. 

DAP Natural Language Specification 

DAP users and providers are similar to clients and servers, 
respectively, in software architectures. During a session 
DAP users send requests and acknowledgments, while DAP 

Figure 2 – DAP Provider flowchart from [1]
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providers send replies, acknowledgments, and commands to 
handle resource allocations per session. Moreover, the DAP 
providers interacts with a Resource Manager through a 
translation layer. DAP does not specify the workings of the 
translation-layer. 

Additionally, each message can alternate between one-way 
and two-way transmission modes. Two-way transmissions 
require acknowledgments and response timers and are 
useful in environments where the communication system 
does not fully guarantee delivery. Also, each session uses a 
priority tag, but DAP does not directly specify a priority 
system (that will depend on the exact system requirements 
and so is implementation specific). So, the QoS system 
validation should be considered when implementing each 
system, but is not discussed in this paper. 

Appendix 1 of [1] provides a flowchart style description of 
the DAP user and provider and a high-level overview of 
protocol operations. No other software specification was 
provided to the author. Starting validation at an early stage 
allows the quickest use of automated validation by not 
bringing the burden of a complete specification with added 
complexity from application environments, such as: 
memory managers or process schedulers.  

On the other hand, if a complete specification and even 
implementation was provided, additional environment 
models could have been developed which would increase 
validation time but provide system specific validation more 
interesting to application developers. This paper only 
considered high-level validation. So, while one must still 
perform environment validation, starting with a simpler 
model reduces the chance of bugs being added and, more 
importantly, reduces the work required to abstract away 
details from a sometimes highly complex implementation.  

PROMELA Specification Overview 

PROMELA uses non-deterministic execution and 
send/receive channels to specify protocol behavior. 
Consider each node (ellipse) in figure 3 as a set of states 
with arrows being possible transitions to another set of 
states. In essence, each PROMELA operation (.e.g, send, 
receive, or variable manipulation) creates a possible 
transition. So, figure 3 shows all possible transitions of the 
Provider model without respect to data. However, 
depending on local variables transition execution may not 
always be possible.  

The number of states within each set depends directly on the 
number of process variables (and size). So, to calculate the 
total possible model states one needs knowledge of the 
internal data. For instance, assuming the Provider model 
contained one (and only one) variable, a bit, the number of 
states directly doubles from the number seen in figure 3 (as 
there are 2 possible values for the bit). So the total number 
of possible states is directly a product of the number of 

transitions and the number of possible values for all 
variables contained in the model. Since the number of 
possible states can go rapidly as variables are added, the 
burden rests on the user to limit variables to reasonable 
sizes without losing fidelity. 

Moreover, the number of system states is the multiple of 
previously mentioned states for each model. Say we have 
one instance of model X and one instance of model Y, then 
the total system states is the product of the number of states 
for model X and the number of states in model Y. As one 
can surmise, the number of possible states grows quickly, 
resulting in state spaces too large to fit into storage or with 
too many states to check in any reasonable amount of time. 

However, the one saving factor is that while the number of 
possible system states grows rapidly, the number of possible 
reachable states from a specific start state grows at a lower 
rate, and most importantly, with good abstraction, can be 
limited to a number allowing for full validation in a 
reasonable time period. 

Demand Access is functionally simple and so modern 
computers are capable of performing full validation with 
little difficulty. Also, since, at the time of this paper to the 
author, little was known about other interacting systems 
(i.e., the environment), this work only validated basic safety 
properties of DAP such as the absence of illegal end states 
(deadlocks) or infinite runs (live-locks). 

DAP was structurally simple enough that full validation was 
possible. Using only the description given in [1], the author 
created a PROMELA specification with limited interaction 

Figure 3 – DAP Provider transition graph
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between the protocol designers. Additionally, the 
communication channel was easily modeled because 
Demand Access requires the communication system to 
guarantee delivery of uncorrupted messages. Text boxes 1 
and 2 show the first PROMELA specification of the DAP 
user and provider, respectively. For this initial validation 
only basic liveliness properties were checked. No never 
claims were used. 

PROMELA Overview 

PROMELA is a straightforward language. Text boxes 1 and 
2 show sample specifications. All commands are either 
executable or block until possible. All lines beginning with 
double colons (::) are unordered guarded command 
sequences. Semi-colons separate command strings (but are 
not required to terminate the command string). 

PROMELA “if” control statements are different than the C 
programming language counterpart and somewhat similar to 
“switch/case” control statements, particularly because of the 
ability to have multiple execution paths. However, unlike, 
“switch/case” statements PROMELA “if” statements can 
have multiple executable paths and do not specify an order 
of preference (i.e., non-deterministic) whereas, in C, case 
checks are sequential. Furthermore, PROMELA contains 
only one type of loop statement: the “do” loop. Other 
common loops can be created by combining “do” loops 
with additional “break” commands. “If” and “do” blocks 
end with “fi” and “od,” respectively. 

Command sequences preceded by “proctype” and 
surrounded by curly-brackets specify individual processes. 
Processes can either start active (preceded with the “active” 
keyword) or wait for invocation by another process. 

Processes interact through channels. Processes can read 
from (using “?”) or write to (using “!”) channels. For 
example, the command “achan?var” reads from channel  
“achan” and stores the value in the local variable “var.” If 
the channel is empty the command is not executable and the 
process blocks until capable of reading a value from the 
channel. Additionally, processes can check channel status 

by surrounding variable names with square-brackets (e.g., 
“achan?[var]”). Writing to (“!”) a channel functions 
identically to reading and checking channel status before 
writing is also possible. 

Advanced users can use “syntactic sugar” to expedite 
validation. For example, surrounding command sequences 
with the “atomic” keyword and curly-brackets notifies the 
SPIN compiler that the commands should be treated as a 
single state and executed in one step. For atomic sequences 
the user must guarantee that all commands are executable if 
the first (the guard) is executable. Most models do not 
require atomic sequences, but “syntactic sugar” shortens 
validation time and can prove crucial for large complex 
systems 

Automata Theory 

For those so inclined, in terms of automata theory, the 
PROMELA specification and defined safety properties are 
similar to finite state automata (as shown in Figure 3). 
These automata are specified by four sets: automaton states, 
transitions, valid start states, and valid end states. During 
validation, SPIN computes the asynchronous product, A, of 
all protocol automata. Afterwards SPIN computes the 
synchronous product of the negation of the safety 
automaton and A. Consequently, in terms of automata 
theory, searching for violations equates to finding an �-run 
[2]. The core verification algorithms are discussed in [6] 
and [2].  

3. VALIDATION

The SPIN model checker works by compiling a PROMELA 
specification into a binary validation program, which makes 
for compact, quick and efficient runs. Additionally, SPIN 
has various options allowing for tradeoffs in memory or 
computational requirements depending on the 
specification's complexity and validation hardware 
resources. 

Once a protocol is specified in PROMELA and the safety 

do 
::userToChan!daRequest 
::if 
    ::atomic { chanToUser?[daAck] -> chanToUser?daAck } 
    ::else -> if 
        ::atomic { chanToUser?[daReply] -> chanToUser?daReply} -> userToChan!daAck 
        ::else -> if 
 :: atomic { chanToUser?[daCommand] -> chanToUser?daCommand} -> userToChan!daAck 
 ::else 
 fi 
        fi 
  fi 
od 

Text 1: Demand Access - User (v1) 
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requirements are defined, one can use the Simple 
PROMELA INterpreter, SPIN, to compile the model into a 
self-validating binary. The SPIN tool allows for various 
simulation and validation methods. For instance, if enough 
memory is available users can run an exhaustive validation 
and guarantee absence of the defined error conditions. 
While full validation is desired, for systems too complex to 
fit in memory one can run simulation which can guarantee 
full state-space traversal at the expense of requiring an 
undetermined finite amount of time. Users can run 
simulations until enough time has elapsed that a high 
percentage of states were traversed. 

After creating a PROMELA model, one uses the “spin” 
command to generate a binary validation program. The 
description of this process and list of command line options 

can be found in [2]. For this test the author used “spin -a 
demandAccess.pml” where demandAccess.pml is the file 
containing the PROMELA specifications. 

Text box 3 shows the output from validation. The first line 
warns that validating this specification through SPIN 
resulted in an “invalid end state” (deadlock). However, 
upon further inspection one realizes that this deadlock was 
not directly due to any faults of the Demand Access model, 
but was actually a result of the buffer model. Particularly 
the “userToCha!daRequest” write operation was blocking 
since the “userToChan” message channel filled up and did 
not allow overflow. In this case, the buffer model did not 
discard messages, and so, the provider's send buffer would 
fill when sending acknowledgments while the user's buffer 
would fill sending requests and neither would be able to 
process the other's message until the local channel allows 
message transmission. Since user requests can be generated 
at any time an excessive amount can overload the user to 
provider channel while simultaneously the provider 
overloads the provider to user channel with 
acknowledgments and the system deadlocks. This failure 
case is commonly known as circular blocking.  

However, given the nature of demand access (and other 
user-driven protocols) this case is unavoidable. So, correct 
implementations should either use application layer flow 
control to limit the number of outstanding requests or 
simply allow the communication system to discard 
messages. 

The second version of the DAP model implemented flow 
control by allowing providers to ignore application requests 
when the outbound channel is full. Adding this allowed full 
validation without error. On the other hand, spin can 
compile with the “-m” option to specify for channels to 
allow overflow and discard messages.  Both were tested and 
allowed error free operation. 

The rest of the lines in Text box 3 are standard validation 
reporting. While full validation was not completed, 53,032 

do 
:: providerToChan!daCommand 
:: if 
    ::atomic { chanToProvider?[daAck] -> chanToProvider?daAck } 
    ::else -> 
        if 
        ::atomic { chanToProvider?[daRequest] -> chanToProvider?daRequest } ->  
   providerToChan!daAck;        providerToManager!1
        ::else -> 
            if 
            ::atomic { managerToProvider?[1] -> managerToProvider?1 } -> providerToChan!daReply 
            ::else 
            fi 
        fi 
    fi 
od 

Text 2: Demand Access - Provider (v1) 
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states were traversed and 47 megabytes of memory was 
used. Note that 40 megabytes was pre-allocated for the 
Depth-First-Search stack (maximum depth of 1,000,000). 
With the corrections made full validation required similar 
time and memory. 

An imperfect communication channel was also tested by 
adding a separate thief process with a continuous loop that 
checks for messages and removes them at will. Given the 
nature of distributed systems this “theft” can occur at any 
(and all) possible time. So a full validation will inject this 
into all possible orders.  

Additionally, for quick testing, one can use the built-in 
SPIN simulation function. Sample output is shown in Figure 
4. Running a random simulation allows developers to get a 
visual “feel” of the model, but does not assure full coverage 
and so is not directly used for validation.  

However, the simulation function is useful when errors are 
discovered through exhaustive validation. Upon reaching an 
error case, SPIN outputs a trace file which when run 
through the simulator shows the exact steps taken to reach 
the error state. Note that the trace is only one possible error 
trail (out of an unknown number) and not necessarily the 
shortest. For instance, in the previous example the error trail 
was 34,256 steps long, whereas the error case can be 
quickly reached by having the user loop on 
“userToCha!daRequest” until the channels are full.. 

4. DISCUSSION

Usually, Protocol validation is an afterthought and requires 
abstracting implemented systems; however, in this case the 
author worked with the creator of the DAP and wrote the 
protocol specification while validating it along the way. 
However, certain details can still be abstracted away to 
narrow the state space. For instance, while the DAP 
message format has several fields useful for 
implementation, the model is not concerned with routing 
and multiple-access; this model assumes messages will only 
arrive at the appropriate destination, if at all (the model does 
allow for loss of messages). 

Validating communication protocols during the design 
phase limits the amount of ambiguities in specifications. For 
this project, the author started by specifying the Demand 
Access Protocol (DAP) in PROMELA. However, this 
method caused difficulty later since no tools existed to 
generate diagrams useful for collaboration or for visual 
inspection directly from PROMELA (with the exception of 
SPIN simulation output and PROMELA-specific transition 
diagrams). 

On the other hand, starting with a protocol specified in the 
Specification and Description Language (SDL) one can 
semi-automatically generate a PROMELA specification [4] 
As the Demand Access Protocol PROMELA specification 
gains environment models, the author will check more 
extensive properties. 
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Figure 4 – SPIN simulation sample output
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APPENDIX A - PROMELA SPECIFICATIONS

#define bufferSize 1 
#define CHANNEL_THIEF 

mtype = { daRequest, daAck, daReply, daCommand, 
daTimeout }; 

chan providerToChan = [1] of {mtype}; 
chan chanToProvider = [bufferSize] of {mtype}; 
chan userToChan = [1] of {mtype}; 

chan chanToUser = [bufferSize] of {mtype}; 
chan managerToProvider = [bufferSize] of {bit};chan 
providerToManager = [bufferSize] of {bit}; 

active proctype channelUserToProv() 
{
        mtype m; 
end: do 
     :: atomic { nfull(chanToProvider)  
 && nempty(userToChan) -> 
             userToChan?m; chanToProvider!m } 
        od 
}
active proctype channelProvToUser() 
{
        mtype m; 
end: do 
    :: atomic { nfull(chanToUser)  
                      &&  nempty(providerToChan) ->  
 providerToChan?m; chanToUser!m } 
        od 
}
#ifdef CHANNEL_THIEF 
active proctype userToProvThief() 
{
end: do 
           :: atomic { nempty(userToChan) -> userToChan?_ }
       od 
}
active proctype provToUserThief() 
{
end: do 
          :: atomic { nempty(providerToChan) ->  
        providerToChan?_    } 
        od 
}
#endif 

active proctype user() 
{
end: do 
        ::atomic { nfull(userToChan) -> 
userToChan!daRequest } 
              ::(1) -> if 
                     ::atomic { chanToUser?[daAck] ->  
 chanToUser?daAck } 
               ::else -> if 
                       ::atomic { chanToUser?[daReply]  
  && nfull(userToChan) ->          
chanToUser?daReply;           
userToChan!daAck} 
        ::else -> if 
  :: atomic { chanToUser?[daCommand] 
&& nfull(userToChan) ->chanToUser?daCommand; 
userToChan!daAck} 
  ::else 
  fi 
                fi 
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 fi 
        od  
}
active proctype provider() 
{
end: do 
        :: atomic {nfull(providerToChan) ->  
                        providerToChan!daCommand } 
        :: (1) -> if 
                ::atomic { chanToProvider?[daAck] ->  
 chanToProvider?daAck } 
                ::else -> if 
 ::atomic { chanToProvider?[daRequest]             
      && nfull(providerToChan)  
                 && nfull(providerToManager) ->  
 chanToProvider?daRequest;  
  providerToChan! 
 daAck;providerToManager!1 }  
 ::else ->if 
            ::atomic { managerToProvider?[1]  
 && nfull(providerToChan) ->  
  managerToProvider?1;  
 providerToChan!daReply} 
          ::else            fi 
 fi 
                fi 
        od 
}

active proctype manager() 
{
end: do 
        :: atomic {providerToManager?[1] 
 && nfull(managerToProvider) ->           
providerToManager?1;          
managerToProvider!1 } 
       od 
}


