
1

Demand Access Protocol Design and Validation with SPIN
John S. Seguí

Communications Networks Group
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

John.S.Segui@jpl.nasa.gov

Abstract— In order for distributed systems to communicate
reliably engineers standardize on communication rules (or
protocols). Unforeseen behavior in communication
protocols can push faults up to applications resulting in
uncontrollable systems and should not be tolerated.
However, while most modern protocols undergo extensive
testing, rigorous formal methods, such as model checking,
are rarely used due to complexity and massive incomputable
state spaces. Nevertheless, starting formal validation early
in the development cycle carries less-complexity,
significantly smaller state spaces and allows for full
validation. As a side benefit early error detection and
correction costs significantly less than redesigns later in a
system's life-cycle.

This paper discusses the preliminary design and validation
of the Demand Access Protocol (DAP) using the SPIN
model checker. Using English language specifications and
flow charts, the author developed a PROMELA (the
language used by SPIN) specification and tested basic
safety properties. Used correctly, a model checker can
thoroughly validate complex systems and guarantee absence
of fault conditions.1 2

TABLE OF CONTENTS

1. INTRODUCTION..1
2. SPECIFICATION..2
3. VALIDATION ..4
4. DISCUSSION ...6
5. ACKNOWLEDGMENTS..6
REFERENCES ...7
BIOGRAPHY ...7
APPENDIX A - PROMELA SPECIFICATIONS7

1
1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #1333 Version Final, Updated January 15, 2008

1. INTRODUCTION

In general, computer protocols are specified using time
charts, state-transition diagrams/tables, or natural (spoken)
languages. However, diagrams do not allow for direct
validation but require human inspection to identify possible
failure conditions, which while often effective is neither
formal nor guaranteed. Moreover, the inherent lack of
scalability of charts and diagrams make them ill-suited for
reasonably complex protocols. As a consequence, most
modern computer protocols are specified in quasi-formal
subsets of natural languages with diagrams for clarification.

One should note that implementation issues caused by
ambiguous protocol specifications can result in corrupted
communication, loss of communication or in some cases
injury to users. So, with a desire for correctness, formal
(non-ambiguous) specification languages have been
developed; however, looking at the Internet Engineering
Task Force's (IETF) Request For Comments (RFCs)
regarding communication protocols, one realizes that formal
languages are rarely used. While RFCs are not direct
specifications they are used as the basis for protocol design
and facilitate interoperability.

This paper discusses the application of a formal language,
PROMELA, for specification and validation of the Demand
Access Protocol with the SPIN model checker. PROMELA
specifications involve non-deterministic execution and
send/receive channels. Most importantly, PROMELA
allows

Figure 1 – Demand Access Architecture from [1]

2

for specification of complicated safety requirements
(internally called “never” claims) which when validated
using SPIN can guarantee the absence of undesired
conditions. For more complex properties, users can convert
safety requirements from Linear Temporal Logic (LTL) to
PROMELA “never” claims.

PROMELA models are similar to non-deterministic
extended finite state machines (EFSMs) and tools allow for
direct translation of Specification and Description Language
(SDL) EFSMs to PROMELA [4] processes. Furthermore,
other authors show that formal specification can be used for
performance analysis as described in [5], but is beyond the
scope of this paper.

Section 2 details design and PROMELA specification with
examples from Demand Access Protocol. Section 3
introduces the validation tool, SPIN, and describes the
validation process.

2. SPECIFICATION

Demand Access Protocol Overview

The Demand Access Protocol architecture defines an
application, a resource manager and a communication
system. In between these systems the Demand Access
Protocol handles message formatting. Figure 1 is from [1]

and shows the Demand Access architecture. The
specification of translation layers, communication systems,
and resource managers is beyond the scope of the Demand
Access Protocol specification. Thus, DAP is primarily a
messaging system.

The Demand Access Protocol (DAP) was originally
described in natural language reports and flow charts [1].
From these descriptions and face-to-face meetings with the
original developers, the author developed a PROMELA
specification. Figure 2 is an extract [1] of the DAP Provider
flowchart.

Since, DAP is a fairly simple protocol this work was
completed in short time and had little difficulty modeling
the high-level protocol behavior. However, implementers of
DAP can leverage the PROMELA specifications to create
initial code structure and, by adding implementation-
specific information to the specification, continually
validate correct operations. Additionally, multiple
implementations can create low-level (implementation-
specific) detailed PROMELA modes and validated inter-
operability.

DAP Natural Language Specification

DAP users and providers are similar to clients and servers,
respectively, in software architectures. During a session
DAP users send requests and acknowledgments, while DAP

Figure 2 – DAP Provider flowchart from [1]

3

providers send replies, acknowledgments, and commands to
handle resource allocations per session. Moreover, the DAP
providers interacts with a Resource Manager through a
translation layer. DAP does not specify the workings of the
translation-layer.

Additionally, each message can alternate between one-way
and two-way transmission modes. Two-way transmissions
require acknowledgments and response timers and are
useful in environments where the communication system
does not fully guarantee delivery. Also, each session uses a
priority tag, but DAP does not directly specify a priority
system (that will depend on the exact system requirements
and so is implementation specific). So, the QoS system
validation should be considered when implementing each
system, but is not discussed in this paper.

Appendix 1 of [1] provides a flowchart style description of
the DAP user and provider and a high-level overview of
protocol operations. No other software specification was
provided to the author. Starting validation at an early stage
allows the quickest use of automated validation by not
bringing the burden of a complete specification with added
complexity from application environments, such as:
memory managers or process schedulers.

On the other hand, if a complete specification and even
implementation was provided, additional environment
models could have been developed which would increase
validation time but provide system specific validation more
interesting to application developers. This paper only
considered high-level validation. So, while one must still
perform environment validation, starting with a simpler
model reduces the chance of bugs being added and, more
importantly, reduces the work required to abstract away
details from a sometimes highly complex implementation.

PROMELA Specification Overview

PROMELA uses non-deterministic execution and
send/receive channels to specify protocol behavior.
Consider each node (ellipse) in figure 3 as a set of states
with arrows being possible transitions to another set of
states. In essence, each PROMELA operation (.e.g, send,
receive, or variable manipulation) creates a possible
transition. So, figure 3 shows all possible transitions of the
Provider model without respect to data. However,
depending on local variables transition execution may not
always be possible.

The number of states within each set depends directly on the
number of process variables (and size). So, to calculate the
total possible model states one needs knowledge of the
internal data. For instance, assuming the Provider model
contained one (and only one) variable, a bit, the number of
states directly doubles from the number seen in figure 3 (as
there are 2 possible values for the bit). So the total number
of possible states is directly a product of the number of

transitions and the number of possible values for all
variables contained in the model. Since the number of
possible states can go rapidly as variables are added, the
burden rests on the user to limit variables to reasonable
sizes without losing fidelity.

Moreover, the number of system states is the multiple of
previously mentioned states for each model. Say we have
one instance of model X and one instance of model Y, then
the total system states is the product of the number of states
for model X and the number of states in model Y. As one
can surmise, the number of possible states grows quickly,
resulting in state spaces too large to fit into storage or with
too many states to check in any reasonable amount of time.

However, the one saving factor is that while the number of
possible system states grows rapidly, the number of possible
reachable states from a specific start state grows at a lower
rate, and most importantly, with good abstraction, can be
limited to a number allowing for full validation in a
reasonable time period.

Demand Access is functionally simple and so modern
computers are capable of performing full validation with
little difficulty. Also, since, at the time of this paper to the
author, little was known about other interacting systems
(i.e., the environment), this work only validated basic safety
properties of DAP such as the absence of illegal end states
(deadlocks) or infinite runs (live-locks).

DAP was structurally simple enough that full validation was
possible. Using only the description given in [1], the author
created a PROMELA specification with limited interaction

Figure 3 – DAP Provider transition graph

4

between the protocol designers. Additionally, the
communication channel was easily modeled because
Demand Access requires the communication system to
guarantee delivery of uncorrupted messages. Text boxes 1
and 2 show the first PROMELA specification of the DAP
user and provider, respectively. For this initial validation
only basic liveliness properties were checked. No never
claims were used.

PROMELA Overview

PROMELA is a straightforward language. Text boxes 1 and
2 show sample specifications. All commands are either
executable or block until possible. All lines beginning with
double colons (::) are unordered guarded command
sequences. Semi-colons separate command strings (but are
not required to terminate the command string).

PROMELA “if” control statements are different than the C
programming language counterpart and somewhat similar to
“switch/case” control statements, particularly because of the
ability to have multiple execution paths. However, unlike,
“switch/case” statements PROMELA “if” statements can
have multiple executable paths and do not specify an order
of preference (i.e., non-deterministic) whereas, in C, case
checks are sequential. Furthermore, PROMELA contains
only one type of loop statement: the “do” loop. Other
common loops can be created by combining “do” loops
with additional “break” commands. “If” and “do” blocks
end with “fi” and “od,” respectively.

Command sequences preceded by “proctype” and
surrounded by curly-brackets specify individual processes.
Processes can either start active (preceded with the “active”
keyword) or wait for invocation by another process.

Processes interact through channels. Processes can read
from (using “?”) or write to (using “!”) channels. For
example, the command “achan?var” reads from channel
“achan” and stores the value in the local variable “var.” If
the channel is empty the command is not executable and the
process blocks until capable of reading a value from the
channel. Additionally, processes can check channel status

by surrounding variable names with square-brackets (e.g.,
“achan?[var]”). Writing to (“!”) a channel functions
identically to reading and checking channel status before
writing is also possible.

Advanced users can use “syntactic sugar” to expedite
validation. For example, surrounding command sequences
with the “atomic” keyword and curly-brackets notifies the
SPIN compiler that the commands should be treated as a
single state and executed in one step. For atomic sequences
the user must guarantee that all commands are executable if
the first (the guard) is executable. Most models do not
require atomic sequences, but “syntactic sugar” shortens
validation time and can prove crucial for large complex
systems

Automata Theory

For those so inclined, in terms of automata theory, the
PROMELA specification and defined safety properties are
similar to finite state automata (as shown in Figure 3).
These automata are specified by four sets: automaton states,
transitions, valid start states, and valid end states. During
validation, SPIN computes the asynchronous product, A, of
all protocol automata. Afterwards SPIN computes the
synchronous product of the negation of the safety
automaton and A. Consequently, in terms of automata
theory, searching for violations equates to finding an �-run
[2]. The core verification algorithms are discussed in [6]
and [2].

3. VALIDATION

The SPIN model checker works by compiling a PROMELA
specification into a binary validation program, which makes
for compact, quick and efficient runs. Additionally, SPIN
has various options allowing for tradeoffs in memory or
computational requirements depending on the
specification's complexity and validation hardware
resources.

Once a protocol is specified in PROMELA and the safety

do
::userToChan!daRequest
::if
 ::atomic { chanToUser?[daAck] -> chanToUser?daAck }
 ::else -> if
 ::atomic { chanToUser?[daReply] -> chanToUser?daReply} -> userToChan!daAck
 ::else -> if
 :: atomic { chanToUser?[daCommand] -> chanToUser?daCommand} -> userToChan!daAck
 ::else
 fi
 fi
 fi
od

Text 1: Demand Access - User (v1)

5

requirements are defined, one can use the Simple
PROMELA INterpreter, SPIN, to compile the model into a
self-validating binary. The SPIN tool allows for various
simulation and validation methods. For instance, if enough
memory is available users can run an exhaustive validation
and guarantee absence of the defined error conditions.
While full validation is desired, for systems too complex to
fit in memory one can run simulation which can guarantee
full state-space traversal at the expense of requiring an
undetermined finite amount of time. Users can run
simulations until enough time has elapsed that a high
percentage of states were traversed.

After creating a PROMELA model, one uses the “spin”
command to generate a binary validation program. The
description of this process and list of command line options

can be found in [2]. For this test the author used “spin -a
demandAccess.pml” where demandAccess.pml is the file
containing the PROMELA specifications.

Text box 3 shows the output from validation. The first line
warns that validating this specification through SPIN
resulted in an “invalid end state” (deadlock). However,
upon further inspection one realizes that this deadlock was
not directly due to any faults of the Demand Access model,
but was actually a result of the buffer model. Particularly
the “userToCha!daRequest” write operation was blocking
since the “userToChan” message channel filled up and did
not allow overflow. In this case, the buffer model did not
discard messages, and so, the provider's send buffer would
fill when sending acknowledgments while the user's buffer
would fill sending requests and neither would be able to
process the other's message until the local channel allows
message transmission. Since user requests can be generated
at any time an excessive amount can overload the user to
provider channel while simultaneously the provider
overloads the provider to user channel with
acknowledgments and the system deadlocks. This failure
case is commonly known as circular blocking.

However, given the nature of demand access (and other
user-driven protocols) this case is unavoidable. So, correct
implementations should either use application layer flow
control to limit the number of outstanding requests or
simply allow the communication system to discard
messages.

The second version of the DAP model implemented flow
control by allowing providers to ignore application requests
when the outbound channel is full. Adding this allowed full
validation without error. On the other hand, spin can
compile with the “-m” option to specify for channels to
allow overflow and discard messages. Both were tested and
allowed error free operation.

The rest of the lines in Text box 3 are standard validation
reporting. While full validation was not completed, 53,032

do
:: providerToChan!daCommand
:: if
 ::atomic { chanToProvider?[daAck] -> chanToProvider?daAck }
 ::else ->
 if
 ::atomic { chanToProvider?[daRequest] -> chanToProvider?daRequest } ->
 providerToChan!daAck; providerToManager!1
 ::else ->
 if
 ::atomic { managerToProvider?[1] -> managerToProvider?1 } -> providerToChan!daReply
 ::else
 fi
 fi
 fi
od

Text 2: Demand Access - Provider (v1)

���������	�
���
��
�
����
�
��
���������
��������
��
���
�	���	�
���	�
�������������������������� !����""���
#�����$������%����
�%���	�
�
�
�
&!		��
�
����%������%��'����
��������������%	���������������������������%�'��
��
�������������
�������	�
��������(�
��������%)%	��%��%*����������������
���+	�
�+)��,�-&./0��
������������	�
���
��
�
��������(�
�
�
�
����%
���1""�+)
�2�
��
�����%��
������2���������1�
�����"����
�
��2��
���
�
����3�����
�
��2���
%��
�
��111����
�����
������4��
���
(��
%��
��
�����533��
���%��
����
�����%��'	�%
���1�1�������	��
��
�
�
�
����������)�!��$��������$�+)
�����
��5�"����6!���	��
������)�!��$��'����
�
�������
���������%
!�	������)�!��$��'����
�
����%�����������
���537��
��15���������)�!��
�'��������
�+	�����15��
�"�"""�������)�!��
�'���,&���
�%*����1""""""��
"�"51��������)�	��
�
��'��$���
�
����
�����5��
�
�	��%
!�	������)�!��$��

Text 3 Validation Output (v1)

6

states were traversed and 47 megabytes of memory was
used. Note that 40 megabytes was pre-allocated for the
Depth-First-Search stack (maximum depth of 1,000,000).
With the corrections made full validation required similar
time and memory.

An imperfect communication channel was also tested by
adding a separate thief process with a continuous loop that
checks for messages and removes them at will. Given the
nature of distributed systems this “theft” can occur at any
(and all) possible time. So a full validation will inject this
into all possible orders.

Additionally, for quick testing, one can use the built-in
SPIN simulation function. Sample output is shown in Figure
4. Running a random simulation allows developers to get a
visual “feel” of the model, but does not assure full coverage
and so is not directly used for validation.

However, the simulation function is useful when errors are
discovered through exhaustive validation. Upon reaching an
error case, SPIN outputs a trace file which when run
through the simulator shows the exact steps taken to reach
the error state. Note that the trace is only one possible error
trail (out of an unknown number) and not necessarily the
shortest. For instance, in the previous example the error trail
was 34,256 steps long, whereas the error case can be
quickly reached by having the user loop on
“userToCha!daRequest” until the channels are full..

4. DISCUSSION

Usually, Protocol validation is an afterthought and requires
abstracting implemented systems; however, in this case the
author worked with the creator of the DAP and wrote the
protocol specification while validating it along the way.
However, certain details can still be abstracted away to
narrow the state space. For instance, while the DAP
message format has several fields useful for
implementation, the model is not concerned with routing
and multiple-access; this model assumes messages will only
arrive at the appropriate destination, if at all (the model does
allow for loss of messages).

Validating communication protocols during the design
phase limits the amount of ambiguities in specifications. For
this project, the author started by specifying the Demand
Access Protocol (DAP) in PROMELA. However, this
method caused difficulty later since no tools existed to
generate diagrams useful for collaboration or for visual
inspection directly from PROMELA (with the exception of
SPIN simulation output and PROMELA-specific transition
diagrams).

On the other hand, starting with a protocol specified in the
Specification and Description Language (SDL) one can
semi-automatically generate a PROMELA specification [4]
As the Demand Access Protocol PROMELA specification
gains environment models, the author will check more
extensive properties.

5. ACKNOWLEDGMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

The author would like to thank Dr. Gerard Holzmann, Dr.
Jay Gao and Dee Leang for their time and exceedingly
helpful discussions.

Figure 4 – SPIN simulation sample output

7

REFERENCES

[1] Jay Gao, Dee Leang, “A Demand Access Protocol for
Space Application” Proceedings of the 2007 IEEE
Aerospace Conference, Big Sky, MT, March 2007

[2] Holzmann, G. J. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004. ISBN 0-321-
22862

[3] Gouda, M. G., Elements of Network Protocol Design,
John Wiley & Sons, New York, NY. 1998. ISBN 0-471-
19744-0

[4] Vlaovi�, B., Vree, A., Brezo�nik, Z., and Kapus, T. 2007.
“Automated generation of Promela model from SDL
specification.” Comput. Stand. Interfaces 29, 4 (May.
2007), 449-461.
DOI=http://dx.doi.org/10.1016/j.csi.2006.10.001

[5] Mitschele-Thiel, A., “Systems Engineering with SDL:
Developing Performance-Critical Communication
Systems,” John Wiley & Sons, New York, NY. 2001.
ISBN 0-471-49875-0

[6] Vardi, Moshe Y., Wolper, Pierre, “An automata-theoretic
approach to automatic program verification,” Proc. First
IEEE Symposium on Logic in Computer Science, 1986,
pp 322-331

BIOGRAPHY

John S. Seguí works as a systems engineer in the
Communications Networks Group of the Jet Propulsion
Laboratory, managed for NASA
by the California Institute of
Technology, Pasadena, California.
He currently works on network
simulation and protocol analysis
for the JPL's Interplanetary
Network Directorate (IND) and
supports NASA's SCAN
Integration Project (SCIP).

APPENDIX A - PROMELA SPECIFICATIONS

#define bufferSize 1
#define CHANNEL_THIEF

mtype = { daRequest, daAck, daReply, daCommand,
daTimeout };

chan providerToChan = [1] of {mtype};
chan chanToProvider = [bufferSize] of {mtype};
chan userToChan = [1] of {mtype};

chan chanToUser = [bufferSize] of {mtype};
chan managerToProvider = [bufferSize] of {bit};chan
providerToManager = [bufferSize] of {bit};

active proctype channelUserToProv()
{
 mtype m;
end: do
 :: atomic { nfull(chanToProvider)
 && nempty(userToChan) ->
 userToChan?m; chanToProvider!m }
 od
}
active proctype channelProvToUser()
{
 mtype m;
end: do
 :: atomic { nfull(chanToUser)
 && nempty(providerToChan) ->
 providerToChan?m; chanToUser!m }
 od
}
#ifdef CHANNEL_THIEF
active proctype userToProvThief()
{
end: do
 :: atomic { nempty(userToChan) -> userToChan?_ }
 od
}
active proctype provToUserThief()
{
end: do
 :: atomic { nempty(providerToChan) ->
 providerToChan?_ }
 od
}
#endif

active proctype user()
{
end: do
 ::atomic { nfull(userToChan) ->
userToChan!daRequest }
 ::(1) -> if
 ::atomic { chanToUser?[daAck] ->
 chanToUser?daAck }
 ::else -> if
 ::atomic { chanToUser?[daReply]
 && nfull(userToChan) ->
chanToUser?daReply;
userToChan!daAck}
 ::else -> if
 :: atomic { chanToUser?[daCommand]
&& nfull(userToChan) ->chanToUser?daCommand;
userToChan!daAck}
 ::else
 fi
 fi

8

 fi
 od
}
active proctype provider()
{
end: do
 :: atomic {nfull(providerToChan) ->
 providerToChan!daCommand }
 :: (1) -> if
 ::atomic { chanToProvider?[daAck] ->
 chanToProvider?daAck }
 ::else -> if
 ::atomic { chanToProvider?[daRequest]
 && nfull(providerToChan)
 && nfull(providerToManager) ->
 chanToProvider?daRequest;
 providerToChan!
 daAck;providerToManager!1 }
 ::else ->if
 ::atomic { managerToProvider?[1]
 && nfull(providerToChan) ->
 managerToProvider?1;
 providerToChan!daReply}
 ::else fi
 fi
 fi
 od
}

active proctype manager()
{
end: do
 :: atomic {providerToManager?[1]
 && nfull(managerToProvider) ->
providerToManager?1;
managerToProvider!1 }
 od
}

