GPS radio occultation as part of the global observing system for atmosphere

Jet Propulsion Laboratory, California Institute of Technology
E. R. Kursinski
U. Arizona

12th Conference on IOAS-AOLS
88th AMS Annual Meeting
January 21, 2008
New Orleans, Louisiana
Overview of Today’s Talk

• The Measurement
 – Physical retrievals based on time standards
• GPS Retrieval Products
• Retrievals and Radiances: CLARREO Mission
• GPS RO and AIRS
• GPS RO and Microwave
• GPS RO and Radiosondes
• GPS/GNSS Science
• Conclusions
The Radio Occultation Measurement

Geometry of an acquisition

$N = a_1 \frac{P}{T} + a_2 \frac{P_W}{T^2}$
GPS RO Retrievals

Temperature

Smoothing of Sharp Tropopause

Water Vapor

2006-09-29-12:59cosmic1_gps45_61976-2006092911

GPS

ROAB

January 21, 2007

GPS And Global Observing System

12th Conf IOAS-AOLS
Retrieval Products

- Refractivity vs altitude
- Density vs altitude (> 7 km)
- Temperature vs altitude
 - Assumes hydrostasis
- Pressure vs altitude
 - Assumes hydrostasis
- Water vapor
 - Assumes T/P

- Climate benchmarks:
 - Refractivity above PBL
 - Temperature 8-25 km

\[N = a_1 \frac{P}{T} + a_2 \frac{P_W}{T^2} \]

COSMIC-to-COSMIC

COSMIC3 - COSMIC2

Window:
30 km
10 minutes
June 4-16, ‘06
224 pairs

Inter-quartile Range
Contains central 50% of differences

Median

Temperature difference [K]

Height [km]
Objective: *SI-traceable* measurements to compare with climate model output and improve climate predictions

Requirements Driver: “Societal benefit”

Infrared radiance – *Forcing*
- Annual mean brightness temperature
- 15-degree grid
- 0.1 K accuracy
- Spectrally resolved (1 cm⁻¹)

GPS refractivity profiles – *Response*
- Refractivity profiles
- 0.1 K equivalent temperature accuracy
 - 0.05% absolute accuracy
“How does a particular observing system mesh with others?”
Retrieval Comparisons
AIRS – ECMWF – GPS

- AIRS-ECMWF-GPS temperatures
- Common set of 3-way match-ups
- For all of 2003 (Champ, SAC-C)

First comparisons:
30°-60° North
(“Mid North”)

Match-up criteria: <200 km, <2 hrs apart
Pair wise RMS deviations

A Puzzle

Mid North Pairwise RMS Deviations, 2003

- AIRS-ECMWF
- GPS-ECMWF
- GPS-AIRS
- GPS Model Deviation

Match-ups: 766
AIRS Quality: 0, 1

Resolution: If AIRS-ECMWF profiles are correlated.
Discernable difference in anomaly trends:
CHAMP (RO)
RSS
UAH
2001-2006

Temperature Comparison To Sonde

- Multi-year statistical profile comparison
- IGRA database
- CHAMP RO

Continents:
USA
Russia
Australia
India
• Statistically significant difference in daytime versus nighttime means
GNSS Science Team

- PBL height climatology
- Small-scale variability (waves) UTLS
 - Combine GPS RO and A-Train
- Improved understanding of turbulence
 - Troposphere, stratosphere, ionosphere
- Wave dynamics in the tropical tropopause

- Improve weather predictions and analyses in the tropics
 \textit{COSMIC data in cloudy regions}
- Cyclones over the West Antarctica ice sheet
 \textit{COSMIC polar coverage}
- Ocean/Ice/Land remote sensing
 \textit{New techniques}

\url{http://nspires.nasaprs.com} \textit{GNSS Remote Sensing Science Team}
Summary and Conclusions

• **Accuracy**: physical retrievals based on time measurement
 – Refractivity near PBL up to ~30 km
 – Temperature 8-25 km
 – (Water vapor probably not SI-traceable accurate)

• **CLARREO**: complements radiances
 – Retrievals and radiances needed to test climate models

• **Integrated into broader observing system**
 – AIRS, Radiosonde, Microwave

• **GNSS science**

• **COSMIC/FORMOSAT-3** (6 satellites) and follow on constellations continuously deployed to the long-term benefit of the Earth science community

• **GPS continues to evolve ⇒ GNSS**