

Polyphony: A Workflow Orchestration Framework for Cloud
Computing

Khawaja S Shams

1
, Dr. Mark W. Powell.

1
, Tom M. Crockett

1
, Dr. Jeffrey S. Norris

1
, Ryan Rossi

1
, Tom Soderstrom

1

1
NASA Jet Propulsion Laboratory – California Institute of Technology, Pasadena, CA 91109, USA

KSSHAMS@JPL.NASA.GOV

Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars

Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not
thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a
resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel
computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the
supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node
failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built
on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and
Titan.

Index Terms—Cloud Computing, Space Exploration, Distributed Computing, Cycle Stealing

1. INTRODUCTION

LOUD COMPUTING is a boon for various applications in

industry and academia. It has unleashed a virtually limitless

level of compute capacity that various research projects can

leverage due to the affordable pricing. The NASA Jet

Propulsion Laboratory (JPL) is NASA’s premier facility for

robotics exploration of our solar system. JPL spacecraft have

roamed throughout the solar system, visiting all of the planets

in the process. JPL is the first NASA center to partner with

commercial cloud computing vendors to investigate cloud

computing in its role to revolutionize spacecraft operations.

 The motivation for Polyphony is to provide a

framework that helps to streamline the operations of Mars

rovers by processing and delivering Mars images with

remarkably low turn around times. Prior to the advent of cloud

computing, our image processing pipeline for missions like

MER was designed to rely on a single machine with lots of

compute power. Although we have exploited the multiple

cores available to us on our machine, we have been bound by

the limitations of the machine, which has resulted in extended

bottlenecks in the image-processing pipeline. Although the

machine has been remarkably reliable, we have run the risk of

a single point of failure in the face of hardware or even OS

level issues with our processing machine. Prior to cloud

computing, adding another machine was untenable strictly

from a cost perspective: it did not make sense to add one or

five more machines when the current single machine sat idle

for roughly 20 hours a day. On the other hand, cloud

computing has enabled us to employ hundreds of machines for

durations as small as an hour.

While JPL is working with several cloud vendors on our IAAS

needs, the bulk of this research was performed on

Amazon.com’s Elastic Compute Cloud (EC2). EC2 allows us

to programmatically request appropriate computing capacity

based on the current demands. With cloud computing, it is

important to note “using 1000 EC2 machines for 1 hour costs

the same as using 1 machine for 1000 hours” [1]. This is a

crucial benefit to any application; expediency of

computational result comes for free simply due to the

elasticity available in the cloud.

2. POLYPHONY

Polyphony is composed of several components that work in

harmony. First of all, there is a distributed queue that is used

to publish tasks and distribute them to nodes that can perform

them. Secondly, we must have at least one subscriber that

polls the queue for tasks and performs them: we will refer to

this subscriber as a worker node. Polyphony makes no

assumption about the number of nodes working on the tasks.

Furthermore, it does not have a central component that

attempts to track any or all nodes. Moreover, there are no

assumptions about physical characteristics of the worker

nodes: they can be Linux servers, personal laptops, machines

in the cloud, or even supercomputing resources. Lastly, each

worker node has a software application that interacts with the

queue. This application extensively utilizes Eclipse Equinox

[4], a popular implementation of the OSGi [2] specification,

for modularity. The OSGi specification enables software

developers to componentize their applications. These

components, also referred to as plugins, allow clear separation

of concern, drastically reduce the complexity of the software,

and foster easy reuse of code. In order to integrate an

application into the Polyphony framework, a develop has to

simply write one module and include it in the Polyphony

distributions without having to know anything else about the

underlying details of task allocation, scheduling, or distributed

computational resources. This is discussed in more detail in

C

2C.

2A. TASK ALLOCATION AND DISTRIBUTION

 The distributed queue is a core component of

Polyphony. In the initial implementation, we employ Simple

Queuing Service (SQS) available as part of Amazon Web

Services (AWS). However, since a dedicated module is tasked

with handling all transactions with SQS, we can replace SQS

with another queuing service very easily without impacting

any other part of the software.

 SQS is a distributed queue with some elegant concepts that

facilitate resilient behavior. It provides a Restful interface to

interact with the queue: tasks can be added via an HTTP PUT

method, obtained via GET method, and deleted upon

completion via the HTTP DELETE method. SQS provides

guaranteed-once delivery semantics: each task added to the

queue is delivered to at least one node. Upon retrieving a task,

the worker node sets the visibility of the message, with a

timeout, so that it is invisible to other nodes while it is being

performed. Upon completion of the task, the worker node

deletes the task from the queue. If a worker node faces a

failure that prevents it from completing a task, the task

eventually becomes visible to and obtained by another worker

node.

Due to the distributed and eventually consistent nature of the

queue, some of the tasks may be assigned to multiple nodes

and be performed multiple times. While this may seem

inefficient, it is a trade off that most applications are willing to

make to gain better reliability with node failures and higher

throughput. In practice, we have rarely observed a task

executing multiple times. Nonetheless, this important

characteristic forces the application designer to create

idempotent tasks that do not have side effects if they are

executed more than once.

2B. WORKER NODES

 This section describes the worker nodes and the

software architecture of the application that runs on them. As

stated earlier, Polyphony makes no assumption about the

worker nodes.

 In the experiments that we have conducted thus far, the

majority of the compute capacity comes from machines rented

on the cloud. On the AWS cloud, we profiled our application

with a variety of nodes from the small instances (1 core at 1

GHz with 1.7GB of memory) to the quadruple extra large

instances (8 cores with 2.5 GHz each and 68GB of memory).

While the individual performance of a particular machine size

depends on specific applications, we have observed that the

larger instances not only offer higher CPU and RAM capacity,

but they have provided significantly higher I/O throughput to

the disk as well as the network.

Any organization with desktop computers and servers has

significant compute capacity that is unutilized or wasted when

machines are idle. One of the goals of Polyphony is to

leverage the spare cycles and perform tasks to assist the

worker nodes in the cloud. We started with the assumption

that these nodes and the results they provide can be trusted.

On our Linux servers, we ran the Polyphony client with the

Unix Nice command, with a priority of 10. This simple

process allows Polyphony clients to steal spare cycles and

enable workstations to contribute work at their own pace.

Should a server become busy in the middle of the

computation, the overall infrastructure will not be impacted as

the computation will eventually time out and be assigned to a

node that can finish it faster. However, in scenarios where the

queue may have thousands or millions of tasks in it,

contribution at any pace can be extremely valuable.

We are integrating the supercomputer center nodes as

Polyphony clients. While this may not be the most effective

approach to scheduling jobs on a super computer, it will

enable us to leverage excess capacity on the super computer:

in production environment, we would control the number of

jobs spawned dynamically based on how busy the super

computing cluster is at a given time.

Polyphony makes no assumption about the worker nodes, and

our initial runs have served as a proof of concept that

dedicated cloud machines and spare capacity on JPL

computers. The JPL machines access the NFS server over the

Internet. However, we judiciously utilize the security settings

to allow network access only to other nodes in our security

group and specific CIDRs (Classless Inter-Domain Routing) in

the JPL space.

Figure 1. Architecture of Polyphony

2C. SOFTWARE ARCHITECTURE FOR POLYPHONY CLIENT

 The Polyphony client is written entirely in Java, and

it utilized the Eclipse Equinox, an implementation of the OSGi

specification. Equinox and OSGi offer an unparalleled level of

modularity by allowing developers to write modules, or plug-

ins that work in harmony in the context of an application. For

instance, the Eclipse IDE (Integrated Development

Environment) is built on top of this framework, which allows

third-party developers to contribute plug-ins to enhance or add

functionality to the IDE. Similarly, Ensemble Rest, a modular

framework for developing Restful applications open sourced

by OPS Lab, leverages Equinox to provide simple hooks that

enable developers to deploy a Restlet with a few lines of code

and XML configuration. Equinox allows plug-ins to be added

even after an application has started and can incorporate a

contribution without restarting the application. For example,

Ensemble Rest allows developers to add or update a specific

set of web applications without restarting the server and

exposes the new or updated services immediately.

At the heart of the Polyphony client is the Polyphony engine.

Upon the start of the application, the engine solicits all

available plug-ins for a distributed queue. In our original

prototype, the queuing plug-in interacts with SQS. However,

replacing SQS with a different distributed queue would be as

simple as replacing a single JAR (Java archive) in our

application. The Polyphony engine then acquires tasks in bulk

from the queue and attempts to accomplish them. To make this

application completely modular, the Polyphony engine makes

no assumption about the tasks that it would be able to perform.

Instead, it maintains a registry of task handlers that are

available to it as an application from the included plug-ins.

Each task handler is a Java class that implements the

ITaskHandler interface with the following methods:

• boolean handles(String task);

• void handle(String task) throws Exceptions

In order to add one or more task handlers to Polyphony, a

developer can create a plug-in with implementations of

ITaskHandler and register them via an XML configuration

file. By simply adding this plug-in to the client, new

capabilities are introduced without any need for redeployment

or recompilation.

After receiving a task, the Polyphony engine asks each class in

the registry if it knows how to handle the task. Upon finding

the first handler that can handle the job, the engine assigns the

job to the handler. If the job is completed successfully, no

exceptions would be thrown and the engine deletes the task

from the queue. As part of the execution, a task may chose to

add more tasks to the queue, or it may simply terminate

successfully by not throwing an exception. If an exception is

thrown, the engine simply moves on to the next task so that

the failed task can be tried again. The exception could be due

to a temporary failure, so it is important to retry the task.

Nonetheless, we intend to add functionality that will remove a

task from the queue after a predetermined, configurable

number of failures.

The Polyphony client is easy to extend, and it enables

developers to write TaskHandlers without having any

knowledge or assumptions about the distributed queuing

system. With this framework, new TaskHandlers can be added

to existing Polyphony applications or the underlying queue

can be changed seamlessly without impacting any other part of

the system.

3. HARMONIC: PARALLELIZED IMAGE TILING FOR

PLANETARY IMAGES

 Embarrassingly parallel problems are the norm in

almost any satellite or panoramic image processing

application. When a particular operation needs to be applied to

every single image in a large collection, it is easy to perform

the tasks in parallel across a large number of machines.

Similarly, if there is an operation that needs to be applied to an

extremely large image, it is often natural to recursively divide

the image into smaller regions and perform the task on each

region on a different machine.

When dealing with large images, it is typical for an image to

have more resolution than what is available at the screen of

our end users. Since our operations software runs around the

world with laptops with wireless connectivity, it is wasteful to

transfer an entire image when the user is only viewing a small

part of it or has zoomed out to view the image at a much lower

resolution. To make this process more efficient, we tile our

images are different resolutions so that we can deliver only

what the end user has on the screen. This allows us to

effectively utilize the bandwidth and improve the user-

experience by delivering the images faster.

Harmonic is an application built on top of the Polyphony

framework to streamline the production of tiles by employing

a large number of machines. For our initial run of Harmonic,

our goal was to tile and scale 184,000 images from the Cassini

spacecraft as quickly as possible. When running the tiling

software on production machine in serial, it took more than

two weeks for the job to finish. For this application, we only

processed one image at a time to avoid overwhelming the

server. On the other hand, when employing cloud machines,

our goal is to utilize every cycle that is available to us. The

Polyphony client on the cloud employs thread pools to ensure

efficient utilization of all our resources, especially in the face

of I/O intensive tasks.

Harmonic was originally designed to run on a single machine,

and we modified it to work in a distributed environment.

However, due to the embarrassingly parallel nature of the

problem, it was very easy to integrate it with Polyphony. To

kick off the process, we add 184,000 tasks to the queue: one

task for each image that we need to process. The task

description has two parts: a prefix that contains a unique ID

recognized by the tiling task handler and a URI of the image.

For the purposes of our tests, all images were stored on a

central server that exposed the storage device via NFS to each

worker node. When a worker node receives the task, it reads in

the image, generates the tiles, and writes them back to the

central file system.

Harmonic demonstrates that Polyphony can be easily extended

to do parallel operations on images. We are currently working

on a very similar application that analyzes each image with

machine vision algorithms to recognize salient features in

images. While we have numerous features and algorithms that

we want to execute on our image collection, plugging in the

capability into Polyphony is straightforward and streamlines

the processing of each image.

3A. QUEUE AS A SERVICE

AWS SQS provides a very natural interface to interact with

the queue. We were able to integrate Polyphony with SQS as a

queue fairly easily, and we were fairly pleased with the

performance and robustness it provides. To streamline the

operation, SQS provides the ability for a client to request up to

ten tasks from a single request. This facilitates a Polyphony

client running with a thread pool to handle multiple requests

simultaneously.

A few key features are lacking in SQS that we may see in the

near future, if not in SQS, then in other competing queues.

The biggest missing feature is the lack of bulk PUTs. In our

application, we had to make 184,000 individual PUTs even

though we knew the tasks a priori. Meanwhile, we find the

artificial limit of ten tasks in the bulk GETs are an

inconvenience. Similarly, bulk DELETEs would be nice to

coalesce the delete requests on a client. The lack of these bulk

features is not a showstopper. Appropriate ways of dealing

with this is to create larger tasks. For instance, in our case,

instead of making a task to handle each image, we could make

a task to handle a set of arbitrary number of images.

SQS is designed to have virtually infinite scalability. It

supports a large number of clients and can handle any number

of messages without a hiccup. However, for small queues like

the ones Polyphony has handled so far, we must pose the

following question: does the queue really need to be

distributed? Aside from the fault tolerance and high

availability, a distributed queue offers little more to most

applications. A single server, with persistence storage, can

easily handle thousands of Polyphony clients, without

suffering other side effects of a distributed queue. For

instance, SQS’ eventual consistency prevents clients from

getting accurate estimates of how many messages are in the

queue.

When working with a queue, it is tough to assign a task to the

client that may be optimally suited to handle the task. The lack

of this capability makes it hard to enjoy the move-

computation-to-data paradigm offered by Hadoop. A client

may have all the data cached required to do the computation or

it may be able to receive this data from a neighboring node on

the same rack or even the same data center. However, the

queuing paradigm effectively trades this functionality for the

added simplicity offered by a queue.

3B. INFRASTRUCTURE AS A SERVICE – EC2

Polyphony leverages EC2 resources extensively to improve

throughput. We start with a central storage server that exposes

EBS based storage to all other Polyphony worker nodes via

NFS. After configuring this server and setting up the storage

that needs to be exposed, we create a snapshot of this node as

an AMI (Amazon Machine Image). The snapshot works as a

backup in case something goes wrong with the instance.

Nonetheless, we employ instances that are booted with EBS,

which allows us to stop the instance when it is not in use to

save money and restart the machine when we are ready for

computation.

The AMIs are a great tool for creating a snapshot and

launching more instances of the snapshot as needed. This

came in very handy for the Polyphony client nodes on EC2.

We configured an EC2 machine to mount the proper NFS

mounts from the NFS server and to start Polyphony java client

at boot-time. After testing this instance with several reboots,

we used the AWS Management Console to create an AMI of

the image; it takes 15 minutes to create the snapshot. After we

have the AMI, we can launch N instances of the AMI with two

clicks. When we launch 30 clients, each of the clients wakes

up, mounts the NFS storage, and starts asking SQS for tasks to

complete.

EC2 nodes are also available in the form of Spot instances.

Spot instances are a new feature by AWS that enables

customers to bid on the excess capacity in AWS’s data

centers. Spot prices vary based on the demand on the capacity

available. AWS customers set the maximum price they are

willing to pay for the compute power. At any point, if the spot

rate goes above the max price, the Spot instance is terminated

without notice. Spot prices are often at less than half of the

EC2 prices. In order to effectively utilize Spot instances as a

Figure 2. The Yellow Regions Indicate Generated Tiles in an

Image Pyramid at Different Resolutions [3].

worker node, one needs an architecture that is designed for

failure and is tolerant of an arbitrary number of node failures.

Fortunately, Polyphony works even if all the worker nodes fail

for extended durations and come back online at a later time.

Furthermore, it degrades gracefully in the face of partial

failures. Polyphony is well suited for Spot instances and can

deliver significant cost savings by leveraging computation at

lower prices.

3C. STORAGE AS A SERVICE – EBS, S3, AND NFS

Harmony currently utilizes a single central server, which can

potentially become an I/O bottleneck and prevents scalability

beyond a certain number of nodes. In this section, we discuss

the issues encountered with the bottleneck, how we

approached the issue.

Our central server initially exposed an EBS (Elastic Block

Storage) volume via NFS on a large EC2 instance. This

approach enabled us to tile our benchmark Cassini ISS image

set in 11 hours using 20 machines. While performing

something that originally took half a month in half a day was

nice, we wanted to explore simple optimizations that could

streamline our process. We quickly found out that with tens of

clients, the IOWait grew as we added more clients. We availed

three I/O based optimizations: moving to a larger instance,

employing RAID, and configuring NFS parameters on both

the server and client.

Moving from a large EC2 instance to a double extra-large

instance gave us a much higher throughput to the EBS

volume. In order to further improve the throughput on the

local disk, we employed 6 EBS volumes and configured them

as RAID 0 by using Linux mdadm utility. Lastly, we

optimized NFS to support the large number of Polyphony

clients that we intend to support. We changed the rsize and

wsize (the chunk size of data as exchanged by the client and

server) on the clients that mounted the file system. Since we

are using NFSv3 and we read the entire image at a time, we

experienced the highest performance with rsize and wsize to

be 32K. The default rsize is 4K, which requires lots of

individual exchanges that fail to fully leverage the available

bandwidth over TCP. On the server side, we increased the

number of NFS daemons to from 8 to 256. This enabled our

server to serve more simultaneous requests. We also increased

the memory limit available to the NFS queues on the server

side.

With these minor optimizations, we were able to finish

processing the same set of images in 5.5 hours instead of 11

hours. We expect this time to reduce as we add more

instances, but after a certain number, we will run into a

bottleneck with the I/O. We would like to accomplish the

same task within tens of minutes instead of hours. In order to

accomplish this goal, we would need to employ more

machines and a distributed file system.

In our tests, we tried using s3fs, a FUSE based file system that

exposes an S3 bucket as a mount on the local machine, but we

ran into several limitations. First of all, s3fs does not yet

support S3 buckets located in N. California region. Second,

s3fs is designed to read entire files at a time instead of only the

parts requested by a read operation. While s3fs would work

for tiling small images, it would not work for large images

where the responsibilities may be distributed by regions of the

image. A block-based FUSE system built on top of S3 would

be more suitable for these applications. From S3’s perspective,

this can be supported through partial GETs. In the near future,

we hope to employ a distributed file system like S3 or HDFS

to enable us to add an infinite number of Polyphony clients.

4. RESULTS

To test the scalability of Polyphony, we tested it on various

AWS EC2 nodes. We first started testing the bandwidth

throughput of each type of instance in our environment. As

expected, the throughput for a single transfer correlated with

the instance price: larger instances had better network

performance for single transfers. However, this difference, for

single transfers, was not as drastic as we expected. Small

instances were able to get roughly 30MB/sec of throughput to

our NFS server, while the 2XL instances, which cost an order

of magnitude more only experienced 50 MB/sec of throughput

for single transfers. That said, these results should be taken

with a grain of salt as they were acquired in a virtualized

environment with varying loads. Locally, we were able to

reliably obtain write speeds of nearly 500MB/seconds.

Figure 3. Write Speed over NFS

For the rest of the testing, we used the large instances for

consistency. We observed that, for the number of instances we

tested, there was not a significant degradation. Although the

improvement was not linear, we noticed that adding machines

helped us improve our throughput. It is important to note that

while the small instances may have better network throughput

for the price, they lack CPU capacity that the large instances

can provide.

0

15

30

45

60

Small Large XL 2XL

Write Speed to NFS Drive on 2XL Machine

Figure 4. Cassini VIMS Throughput / Instances

5. CONCLUSION

In this paper, we outline the underlying details of Polyphony:

a framework designed to handle a variety of parallel tasks for

NASA mission operations via distributed computations.

Polyphony is more than just an application built around SQS

because it provides a modular framework that makes it easy to

application developers to add task handlers. Furthermore, we

demonstrate that Polyphony can be used to effectively utilize

idle machines in our organization. This paper also provides an

analysis of the various components of Polyphony and outlines

various ideas to optimize the process by improve individual

components.

6. REFERENCES

[1] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud

computing. Technical Report No. UCB/EECS-2009-28, University of

California at Berkley, USA, Feb. 10, 2009

[2] OSGi Alliance. (2010 February). The OSGi Architecture Available:

http://www.osgi.org/About/WhatIsOSGi

[3] Mark Powell, Thomas M. Crockett, Jason M. Fox, Joseph Joswig,

Jeffrey S. Norris, Khawaja Shams, Recaredo Jay Torres, “Delivering

Images for Mars Rover Science Planning,” IEEE Aerospace 2008.

[4] Eclipse Equinox (2010 February). Equinox. Available:

http://www.eclipse.org/equinox/

[5] AWS (2010 February). Amazon Web Services. Available:

http://aws.amazon.com

[6] AWS S3 (2010 February). Amazon Simple Storage Service. Available:

http://aws.amazon.com/s3

[7] AWS SQS (2010 February). Amazon Simple Queuing Service.

Available: http://aws.amazon.com/sqs/

7. ACKNOWLEDGEMENTS

 The research described in this (publication or paper) was carried out at

the Jet Propulsion Laboratory, California Institute of Technology, under

a contract with the National Aeronautics and Space Administration.

��

���

����

����

����

����

����

����

����

�� �� �� 	� �
� ���
��

���������	

