
 

Polyphony: A Workflow Orchestration Framework for Cloud 
Computing 

 
Khawaja S Shams

1
, Dr. Mark W. Powell.

1
, Tom M. Crockett

1
, Dr. Jeffrey S. Norris

1
, Ryan Rossi

1
, Tom Soderstrom

1 
 

1
NASA Jet Propulsion Laboratory – California Institute of Technology, Pasadena, CA 91109, USA 

KSSHAMS@JPL.NASA.GOV 

 
Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars 

Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not 
thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a 
resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel 
computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the 
supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node 
failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built 
on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and 
Titan.  
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1. INTRODUCTION 

LOUD COMPUTING is a boon for various applications in 

industry and academia. It has unleashed a virtually limitless 

level of compute capacity that various research projects can 

leverage due to the affordable pricing. The NASA Jet 

Propulsion Laboratory (JPL) is NASA’s premier facility for 

robotics exploration of our solar system. JPL spacecraft have 

roamed throughout the solar system, visiting all of the planets 

in the process. JPL is the first NASA center to partner with 

commercial cloud computing vendors to investigate cloud 

computing in its role to revolutionize spacecraft operations.  

 

 The motivation for Polyphony is to provide a 

framework that helps to streamline the operations of Mars 

rovers by processing and delivering Mars images with 

remarkably low turn around times. Prior to the advent of cloud 

computing, our image processing pipeline for missions like 

MER was designed to rely on a single machine with lots of 

compute power. Although we have exploited the multiple 

cores available to us on our machine, we have been bound by 

the limitations of the machine, which has resulted in extended 

bottlenecks in the image-processing pipeline.  Although the 

machine has been remarkably reliable, we have run the risk of 

a single point of failure in the face of hardware or even OS 

level issues with our processing machine. Prior to cloud 

computing, adding another machine was untenable strictly 

from a cost perspective: it did not make sense to add one or 

five more machines when the current single machine sat idle 

for roughly 20 hours a day. On the other hand, cloud 

computing has enabled us to employ hundreds of machines for 

durations as small as an hour.  

 

While JPL is working with several cloud vendors on our IAAS 

needs, the bulk of this research was performed on 

Amazon.com’s Elastic Compute Cloud (EC2). EC2 allows us 

to programmatically request appropriate computing capacity 

based on the current demands.  With cloud computing, it is 

important to note “using 1000 EC2 machines for 1 hour costs 

the same as using 1 machine for 1000 hours” [1].  This is a 

crucial benefit to any application; expediency of 

computational result comes for free simply due to the 

elasticity available in the cloud. 

2. POLYPHONY 

Polyphony is composed of several components that work in 

harmony. First of all, there is a distributed queue that is used 

to publish tasks and distribute them to nodes that can perform 

them. Secondly, we must have at least one subscriber that 

polls the queue for tasks and performs them: we will refer to 

this subscriber as a worker node. Polyphony makes no 

assumption about the number of nodes working on the tasks. 

Furthermore, it does not have a central component that 

attempts to track any or all nodes. Moreover, there are no 

assumptions about physical characteristics of the worker 

nodes: they can be Linux servers, personal laptops, machines 

in the cloud, or even supercomputing resources. Lastly, each 

worker node has a software application that interacts with the 

queue. This application extensively utilizes Eclipse Equinox 

[4], a popular implementation of the OSGi [2] specification, 

for modularity. The OSGi specification enables software 

developers to componentize their applications. These 

components, also referred to as plugins, allow clear separation 

of concern, drastically reduce the complexity of the software, 

and foster easy reuse of code. In order to integrate an 

application into the Polyphony framework, a develop has to 

simply write one module and include it in the Polyphony 

distributions without having to know anything else about the 

underlying details of task allocation, scheduling, or distributed 

computational resources. This is discussed in more detail in 
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2C.  

2A. TASK ALLOCATION AND DISTRIBUTION 

 The distributed queue is a core component of 

Polyphony. In the initial implementation, we employ Simple 

Queuing Service (SQS) available as part of Amazon Web 

Services (AWS). However, since a dedicated module is tasked 

with handling all transactions with SQS, we can replace SQS 

with another queuing service very easily without impacting 

any other part of the software.  

 

 SQS is a distributed queue with some elegant concepts that 

facilitate resilient behavior. It provides a Restful interface to 

interact with the queue: tasks can be added via an HTTP PUT 

method, obtained via GET method, and deleted upon 

completion via the HTTP DELETE method.  SQS provides 

guaranteed-once delivery semantics: each task added to the 

queue is delivered to at least one node. Upon retrieving a task, 

the worker node sets the visibility of the message, with a 

timeout, so that it is invisible to other nodes while it is being 

performed. Upon completion of the task, the worker node 

deletes the task from the queue. If a worker node faces a 

failure that prevents it from completing a task, the task 

eventually becomes visible to and obtained by another worker 

node.  

 

Due to the distributed and eventually consistent nature of the 

queue, some of the tasks may be assigned to multiple nodes 

and be performed multiple times. While this may seem 

inefficient, it is a trade off that most applications are willing to 

make to gain better reliability with node failures and higher 

throughput. In practice, we have rarely observed a task 

executing multiple times. Nonetheless, this important 

characteristic forces the application designer to create 

idempotent tasks that do not have side effects if they are 

executed more than once. 

2B.  WORKER NODES 

 This section describes the worker nodes and the 

software architecture of the application that runs on them. As 

stated earlier, Polyphony makes no assumption about the 

worker nodes. 

 

 In the experiments that we have conducted thus far, the 

majority of the compute capacity comes from machines rented 

on the cloud. On the AWS cloud, we profiled our application 

with a variety of nodes from the small instances (1 core at 1 

GHz with 1.7GB of memory) to the quadruple extra large 

instances (8 cores with 2.5 GHz each and 68GB of memory). 

While the individual performance of a particular machine size 

depends on specific applications, we have observed that the 

larger instances not only offer higher CPU and RAM capacity, 

but they have provided significantly higher I/O throughput to 

the disk as well as the network. 

 

Any organization with desktop computers and servers has 

significant compute capacity that is unutilized or wasted when 

machines are idle. One of the goals of Polyphony is to 

leverage the spare cycles and perform tasks to assist the 

worker nodes in the cloud. We started with the assumption 

that these nodes and the results they provide can be trusted. 

On our Linux servers, we ran the Polyphony client with the 

Unix Nice command, with a priority of 10. This simple 

process allows Polyphony clients to steal spare cycles and 

enable workstations to contribute work at their own pace. 

Should a server become busy in the middle of the 

computation, the overall infrastructure will not be impacted as 

the computation will eventually time out and be assigned to a 

node that can finish it faster. However, in scenarios where the 

queue may have thousands or millions of tasks in it, 

contribution at any pace can be extremely valuable.  

 

We are integrating the supercomputer center nodes as 

Polyphony clients. While this may not be the most effective 

approach to scheduling jobs on a super computer, it will 

enable us to leverage excess capacity on the super computer: 

in production environment, we would control the number of 

jobs spawned dynamically based on how busy the super 

computing cluster is at a given time.  

 

Polyphony makes no assumption about the worker nodes, and 

our initial runs have served as a proof of concept that 

dedicated cloud machines and spare capacity on JPL 

computers. The JPL machines access the NFS server over the 

Internet. However, we judiciously utilize the security settings 

to allow network access only to other nodes in our security 

group and specific CIDRs (Classless Inter-Domain Routing) in 

the JPL space. 

 
Figure 1. Architecture of Polyphony 



 

2C.  SOFTWARE ARCHITECTURE FOR POLYPHONY CLIENT 

 

 The Polyphony client is written entirely in Java, and 

it utilized the Eclipse Equinox, an implementation of the OSGi 

specification. Equinox and OSGi offer an unparalleled level of 

modularity by allowing developers to write modules, or plug-

ins that work in harmony in the context of an application. For 

instance, the Eclipse IDE (Integrated Development 

Environment) is built on top of this framework, which allows 

third-party developers to contribute plug-ins to enhance or add 

functionality to the IDE. Similarly, Ensemble Rest, a modular 

framework for developing Restful applications open sourced 

by OPS Lab, leverages Equinox to provide simple hooks that 

enable developers to deploy a Restlet with a few lines of code 

and XML configuration. Equinox allows plug-ins to be added 

even after an application has started and can incorporate a 

contribution without restarting the application. For example, 

Ensemble Rest allows developers to add or update a specific 

set of web applications without restarting the server and 

exposes the new or updated services immediately.  

 

At the heart of the Polyphony client is the Polyphony engine. 

Upon the start of the application, the engine solicits all 

available plug-ins for a distributed queue. In our original 

prototype, the queuing plug-in interacts with SQS. However, 

replacing SQS with a different distributed queue would be as 

simple as replacing a single JAR (Java archive) in our 

application. The Polyphony engine then acquires tasks in bulk 

from the queue and attempts to accomplish them. To make this 

application completely modular, the Polyphony engine makes 

no assumption about the tasks that it would be able to perform. 

Instead, it maintains a registry of task handlers that are 

available to it as an application from the included plug-ins. 

Each task handler is a Java class that implements the 

ITaskHandler interface with the following methods: 

• boolean handles(String task); 

• void handle(String task) throws Exceptions 

In order to add one or more task handlers to Polyphony, a 

developer can create a plug-in with implementations of 

ITaskHandler and register them via an XML configuration 

file. By simply adding this plug-in to the client, new 

capabilities are introduced without any need for redeployment 

or recompilation.    

 

After receiving a task, the Polyphony engine asks each class in 

the registry if it knows how to handle the task. Upon finding 

the first handler that can handle the job, the engine assigns the 

job to the handler. If the job is completed successfully, no 

exceptions would be thrown and the engine deletes the task 

from the queue. As part of the execution, a task may chose to 

add more tasks to the queue, or it may simply terminate 

successfully by not throwing an exception. If an exception is 

thrown, the engine simply moves on to the next task so that 

the failed task can be tried again. The exception could be due 

to a temporary failure, so it is important to retry the task. 

Nonetheless, we intend to add functionality that will remove a 

task from the queue after a predetermined, configurable 

number of failures. 

 

The Polyphony client is easy to extend, and it enables 

developers to write TaskHandlers without having any 

knowledge or assumptions about the distributed queuing 

system. With this framework, new TaskHandlers can be added 

to existing Polyphony applications or the underlying queue 

can be changed seamlessly without impacting any other part of 

the system.  

3. HARMONIC: PARALLELIZED IMAGE TILING FOR 

PLANETARY IMAGES 

 
 Embarrassingly parallel problems are the norm in 

almost any satellite or panoramic image processing 

application. When a particular operation needs to be applied to 

every single image in a large collection, it is easy to perform 

the tasks in parallel across a large number of machines. 

Similarly, if there is an operation that needs to be applied to an 

extremely large image, it is often natural to recursively divide 

the image into smaller regions and perform the task on each 

region on a different machine.  

 

When dealing with large images, it is typical for an image to 

have more resolution than what is available at the screen of 

our end users. Since our operations software runs around the 

world with laptops with wireless connectivity, it is wasteful to 

transfer an entire image when the user is only viewing a small 

part of it or has zoomed out to view the image at a much lower 

resolution. To make this process more efficient, we tile our 

images are different resolutions so that we can deliver only 

what the end user has on the screen. This allows us to 

effectively utilize the bandwidth and improve the user-

experience by delivering the images faster.  

 

Harmonic is an application built on top of the Polyphony 

framework to streamline the production of tiles by employing 

a large number of machines. For our initial run of Harmonic, 

our goal was to tile and scale 184,000 images from the Cassini 

spacecraft as quickly as possible. When running the tiling 

software on production machine in serial, it took more than 

two weeks for the job to finish. For this application, we only 

processed one image at a time to avoid overwhelming the 

server.  On the other hand, when employing cloud machines, 

our goal is to utilize every cycle that is available to us. The 

Polyphony client on the cloud employs thread pools to ensure 

efficient utilization of all our resources, especially in the face 

of I/O intensive tasks.  

 

Harmonic was originally designed to run on a single machine, 

and we modified it to work in a distributed environment. 

However, due to the embarrassingly parallel nature of the 

problem, it was very easy to integrate it with Polyphony. To 

kick off the process, we add 184,000 tasks to the queue: one 

task for each image that we need to process. The task 

description has two parts: a prefix that contains a unique ID 

recognized by the tiling task handler and a URI of the image. 

For the purposes of our tests, all images were stored on a 

central server that exposed the storage device via NFS to each 

worker node. When a worker node receives the task, it reads in 



 

the image, generates the tiles, and writes them back to the 

central file system.  

 

Harmonic demonstrates that Polyphony can be easily extended 

to do parallel operations on images. We are currently working 

on a very similar application that analyzes each image with 

machine vision algorithms to recognize salient features in 

images. While we have numerous features and algorithms that 

we want to execute on our image collection, plugging in the 

capability into Polyphony is straightforward and streamlines 

the processing of each image.  

3A.  QUEUE AS A SERVICE 

AWS SQS provides a very natural interface to interact with 

the queue. We were able to integrate Polyphony with SQS as a 

queue fairly easily, and we were fairly pleased with the 

performance and robustness it provides. To streamline the 

operation, SQS provides the ability for a client to request up to 

ten tasks from a single request. This facilitates a Polyphony 

client running with a thread pool to handle multiple requests 

simultaneously.  

 

A few key features are lacking in SQS that we may see in the 

near future, if not in SQS, then in other competing queues. 

The biggest missing feature is the lack of bulk PUTs. In our 

application, we had to make 184,000 individual PUTs even 

though we knew the tasks a priori. Meanwhile, we find the 

artificial limit of ten tasks in the bulk GETs are an 

inconvenience. Similarly, bulk DELETEs would be nice to 

coalesce the delete requests on a client. The lack of these bulk 

features is not a showstopper. Appropriate ways of dealing 

with this is to create larger tasks. For instance, in our case, 

instead of making a task to handle each image, we could make 

a task to handle a set of arbitrary number of images.  

 

SQS is designed to have virtually infinite scalability. It 

supports a large number of clients and can handle any number 

of messages without a hiccup. However, for small queues like 

the ones Polyphony has handled so far, we must pose the 

following question: does the queue really need to be 

distributed? Aside from the fault tolerance and high 

availability, a distributed queue offers little more to most 

applications. A single server, with persistence storage, can 

easily handle thousands of Polyphony clients, without 

suffering other side effects of a distributed queue. For 

instance, SQS’ eventual consistency prevents clients from 

getting accurate estimates of how many messages are in the 

queue.  

 

When working with a queue, it is tough to assign a task to the 

client that may be optimally suited to handle the task. The lack 

of this capability makes it hard to enjoy the move-

computation-to-data paradigm offered by Hadoop.  A client 

may have all the data cached required to do the computation or 

it may be able to receive this data from a neighboring node on 

the same rack or even the same data center. However, the 

queuing paradigm effectively trades this functionality for the 

added simplicity offered by a queue.  

3B.  INFRASTRUCTURE AS A SERVICE – EC2 

Polyphony leverages EC2 resources extensively to improve 

throughput. We start with a central storage server that exposes 

EBS based storage to all other Polyphony worker nodes via 

NFS. After configuring this server and setting up the storage 

that needs to be exposed, we create a snapshot of this node as 

an AMI (Amazon Machine Image). The snapshot works as a 

backup in case something goes wrong with the instance. 

Nonetheless, we employ instances that are booted with EBS, 

which allows us to stop the instance when it is not in use to 

save money and restart the machine when we are ready for 

computation.  

 

The AMIs are a great tool for creating a snapshot and 

launching more instances of the snapshot as needed. This 

came in very handy for the Polyphony client nodes on EC2. 

We configured an EC2 machine to mount the proper NFS 

mounts from the NFS server and to start Polyphony java client 

at boot-time. After testing this instance with several reboots, 

we used the AWS Management Console to create an AMI of 

the image; it takes 15 minutes to create the snapshot. After we 

have the AMI, we can launch N instances of the AMI with two 

clicks. When we launch 30 clients, each of the clients wakes 

up, mounts the NFS storage, and starts asking SQS for tasks to 

complete.  

 

EC2 nodes are also available in the form of Spot instances. 

Spot instances are a new feature by AWS that enables 

customers to bid on the excess capacity in AWS’s data 

centers. Spot prices vary based on the demand on the capacity 

available. AWS customers set the maximum price they are 

willing to pay for the compute power. At any point, if the spot 

rate goes above the max price, the Spot instance is terminated 

without notice. Spot prices are often at less than half of the 

EC2 prices. In order to effectively utilize Spot instances as a 

Figure 2. The Yellow Regions Indicate Generated Tiles in an 

Image Pyramid at Different Resolutions [3]. 

 



 

worker node, one needs an architecture that is designed for 

failure and is tolerant of an arbitrary number of node failures.  

Fortunately, Polyphony works even if all the worker nodes fail 

for extended durations and come back online at a later time. 

Furthermore, it degrades gracefully in the face of partial 

failures. Polyphony is well suited for Spot instances and can 

deliver significant cost savings by leveraging computation at 

lower prices.  

3C.  STORAGE AS A SERVICE – EBS, S3, AND NFS 

Harmony currently utilizes a single central server, which can 

potentially become an I/O bottleneck and prevents scalability 

beyond a certain number of nodes. In this section, we discuss 

the issues encountered with the bottleneck, how we 

approached the issue.  

 

Our central server initially exposed an EBS (Elastic Block 

Storage) volume via NFS on a large EC2 instance. This 

approach enabled us to tile our benchmark Cassini ISS image 

set in 11 hours using 20 machines. While performing 

something that originally took half a month in half a day was 

nice, we wanted to explore simple optimizations that could 

streamline our process. We quickly found out that with tens of 

clients, the IOWait grew as we added more clients. We availed 

three I/O based optimizations: moving to a larger instance, 

employing RAID, and configuring NFS parameters on both 

the server and client.

 

Moving from a large EC2 instance to a double extra-large 

instance gave us a much higher throughput to the EBS 

volume. In order to further improve the throughput on the 

local disk, we employed 6 EBS volumes and configured them 

as RAID 0 by using Linux mdadm utility. Lastly, we 

optimized NFS to support the large number of Polyphony 

clients that we intend to support. We changed the rsize and 

wsize (the chunk size of data as exchanged by the client and 

server) on the clients that mounted the file system. Since we 

are using NFSv3 and we read the entire image at a time, we 

experienced the highest performance with rsize and wsize to 

be 32K.  The default rsize is 4K, which requires lots of 

individual exchanges that fail to fully leverage the available 

bandwidth over TCP.  On the server side, we increased the 

number of NFS daemons to from 8 to 256. This enabled our 

server to serve more simultaneous requests. We also increased 

the memory limit available to the NFS queues on the server 

side.  

 

With these minor optimizations, we were able to finish 

processing the same set of images in 5.5 hours instead of 11 

hours. We expect this time to reduce as we add more 

instances, but after a certain number, we will run into a 

bottleneck with the I/O. We would like to accomplish the 

same task within tens of minutes instead of hours. In order to 

accomplish this goal, we would need to employ more 

machines and a distributed file system.  

 

In our tests, we tried using s3fs, a FUSE based file system that 

exposes an S3 bucket as a mount on the local machine, but we 

ran into several limitations. First of all, s3fs does not yet 

support S3 buckets located in N. California region. Second, 

s3fs is designed to read entire files at a time instead of only the 

parts requested by a read operation. While s3fs would work 

for tiling small images, it would not work for large images 

where the responsibilities may be distributed by regions of the 

image. A block-based FUSE system built on top of S3 would 

be more suitable for these applications. From S3’s perspective, 

this can be supported through partial GETs.  In the near future, 

we hope to employ a distributed file system like S3 or HDFS 

to enable us to add an infinite number of Polyphony clients.  

4. RESULTS   

 
To test the scalability of Polyphony, we tested it on various 

AWS EC2 nodes. We first started testing the bandwidth 

throughput of each type of instance in our environment. As 

expected, the throughput for a single transfer correlated with 

the instance price: larger instances had better network 

performance for single transfers. However, this difference, for 

single transfers, was not as drastic as we expected. Small 

instances were able to get roughly 30MB/sec of throughput to 

our NFS server, while the 2XL instances, which cost an order 

of magnitude more only experienced 50 MB/sec of throughput 

for single transfers. That said, these results should be taken 

with a grain of salt as they were acquired in a virtualized 

environment with varying loads. Locally, we were able to 

reliably obtain write speeds of nearly 500MB/seconds.  

 

Figure 3. Write Speed over NFS 
 

For the rest of the testing, we used the large instances for 

consistency. We observed that, for the number of instances we 

tested, there was not a significant degradation. Although the 

improvement was not linear, we noticed that adding machines 

helped us improve our throughput. It is important to note that 

while the small instances may have better network throughput 

for the price, they lack CPU capacity that the large instances 

can provide.  
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Figure 4. Cassini VIMS Throughput / Instances 
 

5. CONCLUSION  

In this paper, we outline the underlying details of Polyphony: 

a framework designed to handle a variety of parallel tasks for 

NASA mission operations via distributed computations. 

Polyphony is more than just an application built around SQS 

because it provides a modular framework that makes it easy to 

application developers to add task handlers. Furthermore, we 

demonstrate that Polyphony can be used to effectively utilize 

idle machines in our organization. This paper also provides an 

analysis of the various components of Polyphony and outlines 

various ideas to optimize the process by improve individual 

components.   
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