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Why bother? e

Administration

« Massive stars (OB stars) are the principal source of
heavy elements.

« OB stars are principal source of UV radiation.

OB stars introduce turbulence into the ISM.

— Stellar winds, HIl champagne flows, photoevaporation flows, SN
explosions

— Turbulence + differential rotation necessary ingredients for
galactic dynamos

— Turbulence + magnetic fields lead to acceleration of cosmic rays

« OB stars profoundly influence star formation and the
evolution of galaxies.

* Your extra-galactic and early universe friends always
mean “formation of massive stars” when they talk about
“star formation”
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High mass versus low mass star o,

and Space

f orm 01- i on Administration

* High mass star formation is not simply a scaled-
up version of low mass star formation

— Massive stars are much more seldom than low mass
stars

— Relevant time scales are extremely short
— Radiative acceleration of dusty gas very important

— Massive stars typically form in clusters; with a high
degree of multiplicity

— Disk dissipation must be very quick

— Associated with UCHIIs, massive collimated outflows,
H>O masers, ...
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Questions to be addressed s

Administration

* Assuming a gravitationally unstable
massive clump, how does enough
material become concentrated into a
sufficiently small volume within a
sufficiently short time?

 How does the forming massive star

influence its immediate surroundings to
limit its mass”?
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The Global Picture and Spacs

Administration

* Ying: Mechanisms that drive compression
— Gravity
— External pressure
— Converging gas motions

* Yang: Mechanisms that oppose compression
— Internal pressure
— Turbulence
— Magnetic fields
— Rotation
— Radiative acceleration
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Aeronautics

Stability of gaseous clumps

Administration

« Consider a gaseous clump of mass M, temperature
T, radius R, density p = 3M/4nR3, magnetic pressure
B2/8x, rotational velocity Q. , , equation of state P = K
oY, immersed in an external hot medium

Eg = - aGM?/R = - AgR" (gravitational energy) P
E... = A,R3 (internal energy)

Eag= Amag R (Magnetic energy)

E .. = A R? (rotational energy)

E... = A R® (external pressure)

ext
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Stable, Expansion or Collapse? -

Administration
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The Initial Mass Function o Spece

Administration
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Massive Star Formation:

Aeronautics
and Space

Observations Confront Theory (1/2)*™

« Universality of IMF and upper mass limit

— No clear-cut evidence of variation of slope between high mass through
intermediate mass to solar-type stars

« Multiplicity, Hierarchies, Clusters, Associations

— High mass stars generally form in clusters & associations
* Inloose OB associations (Ori OB1a,b; Sco OB2; NGC 604)

* In dense clusters (Ori TC; NGC 3603; 30 Dor); most O-stars located in
center

« Starburst galaxies, ULIRGs

— Higher degree of multiplicity of high mass stars than for low mass stars

» Average number of companions ~1.5 for massive primary, whereas ~0.5 for
solar-type primaries

« O-stars have preponderance of close tight binaries with P ~ 3-5 days
« Higher fraction of runaway O-stars than runaway B-stars
« Reduced binarity among runaway O-stars compared to cluster O-stars
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Figure 2

Hubble Space Telescope
optical/IR image of the
dense massive young cluster
R136/30Dor (courtesy of
M.J. McCaughrean; FOV
~30 arcsec x 30 arcsec or
7.5 pc x 7.5 pc). Dozens of
massive O stars are found
crowded within the
half-light radius of 2 pc
(Brandl et al. 1996). (a) A
VLT image of NGC 3603
(Brandl et al. 1999) and (b) a
VLT image of the
Trapezium Cluster in Orion
(McCaughrean 2001) are
shown as these two galactic
clusters would be seen if
they were located at the
distance of R136 in the
Large Magellanic Cloud

(50 kpc) and imaged with
similar angular resolution

(see Zinnecker 2002).

from Zinnecker &
Yorke (2007) ARAA




HST image
Bally et al. (1998)

Multiplicity of the
Orion Trapezium stars
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Massive Star Formation: Jtenal

and Space

Observations Confront Theory (2/2) *™*

» Characteristics of OB-star forming regions

Hot molecular cores in GMCs

Hypercompact and Ultracompact HIl regions

Masers (OH, H,0, SiO, CH;0OH) - in disks or in outflows?

Both wide-angle and collimated flows observed: jets and outflows
Cometary proplyds, pillars, mountains

Turbulence observed; enough to support clumps and cores?

» No disk around an optically visible main sequence O-star found

Disks around B-stars have been observed
There is indirect evidence of disks in early phases: collimated outflows

 There are massive molecular cores or clumps without outflows
— There are hot cores without outflows and without radio continuum
« Some magnetic field measurements; when measurable sub/super-

critical within factor 2
— 01 Ori C is a magnetic star!
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More on the Global Picture foie

Administration

« Assume: dN = A m?2 dm with a=2.35 (Salpeter) between
m=0.1 and m=100

— Average mass <m> = 0.35
* There is one >50 Mg_¢,, fOr every 7300 stars formed

* In MWG: 2 SN/100 yr (m > 8) => 8 stars/yr formed
— 3 Mg/yr converted into stars
— Every 50 yr produce >8 Mg_qar
— Every 200 yr produce >20 Mg_ar
— Every 400 yr produce >30 Mg .
— Every 1000 yr produce >50 Mg oy
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Molecular Cloud Lifetime, SF pational

and Space

Efficiency, Total Molecular Mass (1/3) s

Assume:
— 109 Mg ISM, of which 40% is molecular
— 107 yr lifetime of molecular clouds

=> 400 Mg/yr of molecular cloud material
must be dissipated and 400 Mg/yr must be
newly formed

Star formation efficiency = 3/400 = 0.75%
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Molecular Cloud Lifetime, SF pational

and Space

Efficiency, Total Molecular Mass (2/3) s

Assume:
— 400 Mg/yr of molecular cloud material must be dissipated

Use >30 Mg O-stars, of which you have ~8000 in
MWG

= Each O-star must dissipate 0.05 Mgy/yr

Champagne flows driven by O5-stars can dissipate
0.01 My/yr (Yorke 1986 ARAA)
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Molecular Cloud Lifetime, SF pational

and Space

Efficiency, Total Molecular Mass (3/3) s

Assume
— 109 Mg ISM, of which 40% is molecular
— Star Formation efficiency of 50%

3 Mg/yr of molecular cloud material will be dissipated
and 6 Mg/yr must be newly formed

Lifetime of molecular material: 4x10°/6= 7x108 yr

=> at least some molecular material is long-lived
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Is there a hidden Component .
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Steps to produce Massive Stars s

Administration

* Create Giant Molecular Cloud Complexes ~10-100 pc

» Create molecular cloud clumps ~1 pc and cores ~0.1 pc l
* I|nitiate collapse of cores/filaments ~0.1 pc
 Fragment into several sub-clumps ~0.01 pc
 Create first hydrostatic cores ~1 R5=2.3 x 108 pc

* Accrete onto hydrostatic cores through disks, allowing
them to grow in mass
— Accretion Disks ~10-3 pc
— Accretion columns << 108 pc

» Hydrostatic cores evolve quickly to H-burning,
even while accreting

 Remnant disks quickly dissipate as accretion halts

?yr

200,000 yr

<
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20 Jy per beam and Space
Administration

350 ym Cores m The Or'lon Region o

ORI1
51 cores 0.1 to 46 M, Deconvolved

Many appear to be
unstable against
gravitational collapse

4

3000 AU

Li, Velusamy, Goldsmith,
& Langer (2007)

-5:03:09.2
5:35:28.23 5:35:06.89
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Important relevant time scales iy

Administration

— optically obscured —
* Free-fall time scale ) RE
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Important relevant length scales

National
Aeronau tics

e Size of clump to
produce star of
mass M

* Photoevaporation
radius

e Dust destruction
radius

Stellar radius

RLEmﬂp ~ (.1 pC l

1/3 - ~1/3
30 ‘»TJ [105 cm“3]

M
avap ~ 130 AU
o [30 M,
) r 1/
wt = 25 AU r
Twt = S 15105
- M 1.6
wst = 25 AU | o
T dust 30M.,
M 1Y@
R, ~ 12R, {%MJ
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Time-dependent evolution
of a turbulent, self-
gravitating 1000-M,,,,, cloud
showing the formation of
sheets, filaments, and
cores, the latter of which
become gravitationally
unstable. Newly formed
stars are shown in dark
blue, the gas is shown in
blue-green. Stars tend to
cluster, and they continue
to accrete material in
competition with other
stars. Times shown are 1.0,
1.4, 1.8, and 2.4 initial free-
fall times (t;), from left to
right and top to bottom.
[Adapted from Bonnell,
Bate & Vine (2003)].
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Competitive Accretion? MNatonal

and Space

fation
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Accretion and mass loss as mass

Aeronautics

exchange between components e

Jets and
outflows

Disk/acts as
reservoir
for material
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What determines these dM/dt's? s

Administration

* My related to angular momentum transport within disk
— Magnetic fields
— Tidal effects (bars, spiral arms)
— Turbulence (photon bubbles: Turner, Quataert, Yorke 2007)

.« M, determined by cloud core parameters, competitive

accretion
— tace =t ~ toross
* Mp.,ing has contributions from jets and
photoevaporation
- I\:/Ijet - f(Mdisk)
- Mphotoevap ~ f(F,)
* Mg g related to stellar parameters
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Necessary conditions for forming .=

Aeronautics
and Space

stars by accretion

 The mass gained M.
by accretion must
exceed losses

i . : :
Maisk (t) = /[ Macc(t,) - Mgisk(t) - Mp_wing (t) 1dt’

t . :
() =/ [ Mdisk(t,) - Mg_wind (t) ] dt

 Must accrete ] i i
material within M, ..~ MS_wind~ MD-wind ~ M« / t;,
“reasonable” time

GM oft L
. 5 > - HQ , where L = L, + Ly
e Gravity mustbe 7 drrs ¢ y -
dominant force 130 cm* g~ [
el < 20 CTE 70 Mg) (1000 Lg
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How you form massive stars s

and Space

in the Presen,', ePOCh? Administration

* Reduce k¢

— Modify optical properties of absorbing and scattering
material
~  Dust destruction
** « Dust coagulation
» Slippage of dust and gas (dust is left behind) T R2

:: — Accrete optically thick “blobs” of material feft = 37
S " Muiob

 Reduce radiative flux

~ — Accrete during quiescent phases
<~ — “Flashlight” effect of disks

* Increase gravity

= — Force material on star from its sheer weight (and
external pressure)

** — Form massive stars within a dense cluster of not so
brightly radiating objects Pobjoets 2 Pgas
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Luminosity & Radius of ZAMS star ‘s

Administration

106
Kelvin-Helmholtz timescale
(for thermal readjustment)
GM2/R 10
TKH = 7

Values relative to Sun
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Accretion onfo main sequence s
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sta r's Administration
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Opacity of dusty gas s

Wavelength [ um ]
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102} 0.1 um silicates, SiC,
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10¢ ;
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The Eddington accretion limit

109 .

Super-Eddington accretion

National
Aeronautics
and Space

Administration

Assume electron
scattering for

o2l e +, || minimum opacity...
-.—; ............ Ngad d : Ko LEad _ M
° cr dwrZe 12
= 104 [ [luminosity dominated ' o
| AM .
3 by accretion M s = 7+ E g
L ; R
3 |
(G 1
== 10'6 (I 71/[ . 4m He RL.
luminosity dominated|; ||| “'max = " T oy
by H-burning ' | °
10“8 . . Mmax — .ETL{F,dd """'“ iﬁffpr
0.1 1 10 100
M [M,]
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How likely is it to observe high ..

and Space

mass stars during accretion?  ~
Assume: => 108 M, in stars
» Galactic star formation
rate: 5 Mg/yr M- N+ N
¢ toe=2%x10°yr Mg] | @=2.35]|a=23
« Salpeter IMF >10 5400 6300

— N(M)dM =A M~ dM
— 0.1 Mg <M <100 M >20 2000 2400

Note that the local Galaxy >30 950 1200

(r < 500 pc) contains ~103 >50 390 480

of Galactic star forming
volume
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Numerical Simulations of Physical ..

and Space

Processes Administration

Collapsing Envelopes
« 2D Hydrodynamics (axial symmetry)
« 2D Radiation transport of non-ionizing radiation _
("grey" FLD approximation) => dust temperature
« Self gravity
* Angular momentum transport (Shakura-Sunyaev "alpha")
« Evolution of central protostar in HRD
« Time dependent heating/cooling of gas
* No evolution of the dust (coagulation/cratering/shattering) massive star
« No magnetic fields

stellar wind

¥

Photo-ionized Envelopes
 Central stellar wind + UV EUV radiation

« Time dependent ionization/recombination FUV radiation
« Transport of stellar EUV photons (hv > 13.6 eV)

Y
- Transport of stellar FUV photons (6 eV < hv < 13.6 eV) O

« Transport of H-recombination photons (hv ~ 14.2 eV)
« Transport of UV photons scattered by dust
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Emission from Star Forming Regions s

and Space

Freguency [GHz]

. 10? 103 102 Dusty galaxies F Sivaetal, 1998, ApJ 509, 103 ”mIArpzzo E
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the far-IR. NGC 60890
5
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Emission from a star forming
region (~70K) with spectral lines
imposed on the dust continuum.

Cll at 158 um, the strongest cooling
line in the ISM. BICE Galactic maps
of CllI at very low spectral resolution
(top) and dust emission (bottom).
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Modeling Protostar + Disk
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F 0 and Space
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Distance from Eguator

Modeling Protostar + Disk

Aeronautics

. and Space
Format’ ;-
10 T T T T T T T T T 10
| 'n\ J
— —
P 101 L \/f core + accretion luminosity ] g
g || |  core luminosity 1 5
e .0 | oo-mm T T T - ©
= 10 ol 16 =
/ E \ -1l core mass A
Time [yr] 464503 Mg= 0.94 M L= 522 L - A 1 =
200 . - - g - —,)7./ | 3
—_ 10 r : I|I || 14 T
o) \ 4
E | II| J'l'\\ ."'Iﬂ| I | é
,,,,,, w2l L T 12
% I|I \V “lrl
o [
100 = r\ ! ;
........... 1 0_3 L'.. ""\‘“"M,'v’ W
0 100 200 300 400 0
AGE [1000 yr]
2 T T T T T
0 core luminosity
vs temperature
1 2 MO
70
...... A 15 ¢
BT/ /e ot
0]
-l
...... iy
g
! . N . N \ S - o
'f’»%
200 -100 0 100 200 -2
Distance from Axis [AU]
40 38 3.6 3.4
log Tog [K1
TIARA Winter School 2009 Yorke: Massive Star Formation 38



Modeling Protostar + Disk e

. and Space
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log Teff [K]
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Yorke: Massive Star Formation
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Spectral Energy Distributions o

and Space
Administration
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Using Line Emission to Resolve -

Aeronautics
° and Space
nternal dis fructure Administration
A[:U
A RESOLVED MOLECULAR GAS DISK AROUND THE NEARBY A STAR 49 CETI
Ao A. M. Hucues !, D. J. WiNer !, 1. Kamp ?, M. R. HOGERHELIDE *
] Accepted for publication in ApJ: March 20, 2008
ﬁ AI!Z
= ABSTRACT
Ay The A star 49 Ceti, at a distance of 61 pe, is unusual in retaining a substantial quantity of molecular
gas while exhibiting dust properties similar to those of a debris disk. We present resolved observations
. of the disk around 49 Ceti from the Submillimeter Array in the J=2-1 rotational transition of CO
A( 1 y
A A ) with a resolution of 1.0x1.2 aresec. The observed emission reveals an extended rotating structure
50 100 150 200 viewed approximately edge-on and clear of detectable CO emission out to a distance of ~ 90 AU
r[AU] from the star. No 1.3 millimeter continuum emission is detected at a 3o sensitivity of 2.1 mJy/beam.
Models of disk structure and chemistry indicate that the inner disk is devoid of molecular gas, while
the outer gas disk between 40 and 200 AU from the star is dominated by photochemistry from stellar
To and interstellar radiation. We determine parameters for a model that reproduces the basic features
r of the spatially resolved CO J=2-1 emission, the spectral energy distribution, and the unresolved CO
R J=3-2 spectrum. We investigate variations in disk chemistry and observable properties for a range of
T. structural parameters. 49 Ceti appears to be a rare example of a system in a late stage of transition
=) between a gas-rich protoplanetary disk and a tenuous, virtually gas-free debris disk.
= - Subject headings: astrochemistry — circumstellar matter — planetary systems: protoplanetary disks
~ — stars:individual (49 Ceti)
H2form
rﬂ:dh.\
Tee
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TIARA Winter School 2009 Yorke: Massive Star Formation 42



@ Envelopes of accreting Stars
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Yorke & Bodenheimer 1999

* 2 Mg cloud, diameter 0.13 pc 1000
*<n,,>=310cm3, T=10K
* ny, = A r? (density peaked)

e Q=510"s"1 v ,=10m/s

Distance from Eguator
]

-1000

-1500 500 0 500 1000

Distance from Axis [AU]

Formation of a 1M, Star with accretion disk
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Accretion during quiescent phases i

and Space

(SLI'l"I'ner‘ et al . 1999’ APJ' 524’ 857) Administration
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Time dependent accretion

Aeronautics

through disk it

(Yorke & Sonnhalter, 2002, ApJ, 569, 846)
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The "“flashlight” Effect e
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The Growth of Stellar Mass Netonal

and Space

by ACC r.etion Administration

« (Calculations of molecular core collapse show that
infall motions are halted in the central region when it
becomes optically thick (~ several Jupiter masses)

« This quasi-hydrostatic core contracts on Kelvin-
Helmholtz time scale towards H-burning (and main
sequence) while still accreting material from
surrounding infalling optically thin envelope
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Accretion and mass loss as mass

Aeronautics

exchange between components e

Jets and
outflows

Disk/acts as
reservoir
for material
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Sources of Luminosity of e

and Space

accC r'e'l'i ng S'l'ar's Administration

Accretion luminosity: L. = GMx/R+ dM/dt
L_.. = 6000 Ly [M%/30 Mg]°2 [dM/dt / 104 Mg/yr]

Deuterium burning
L, =400 Lo [dM/dt / 104 Mg/yr]

PMS Contraction
Ly = GM#2/R+? dR/dt

Hydrogen burning
Lx = 10° Lo [M#/30 M]3
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Evolution of accreting stars in ...

Aeronautics

the HRD ( dM./dt > 0 ) ke

(Yorke 2002; Behrend & Maeder 2001)

Behrend & Maeder 2001
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Evolution of accreting stars in ...
the HRD ( dM./dt > 0 ) ket

(Yorke 2002; Behrend & Maeder 2001)

194/ lben 1963 - D'Antona-Magzzitelli 1994 / Iben 1963

& Yorke 2002
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Evolution of accreting stars in ..

Aeronautics

the HRD ( dM./dt > 0 ) il
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Evolution of accreting stars in ..
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Evolution of accreting stars in ..

Aeronautics

the HRD ( dM./dt > 0 ) il
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A few Remarks

Administration

* Accretion physics will be key to
understanding formation of massive stars

o Stellar evolution is not dead
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The Destruction of Disks around ==

and Space

newly formed massive Stars

* Disks have not been observed around
main sequence O-stars, so either...

— There were no disks during formation
or...

— Disks around O-stars are destroyed on a
short time scale
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« Illumination of interstellar material (ISM) by UV photons

affects its composition and thermal properties.
* This in turn affects the dynamics of the ISM.

* Many important lines for analyzing ISM and the UV
sources are accessible to Herschel’s HIFI.

log fractlonal abundance

6
Visual Extinctlon [Mmag]

UV Source

Photodissociation Regions (PDRs)

Aeronautics
and Space
Administration
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Time [y JR2045

'« Destruction of nearby disk: 1, 2, 3, 4

Destruction of circumstellar disks oo

and Space
Administration
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Destruction of circumstellar disks oo

and Space
Administration

e Destruction of circumstellar disk: 1, 2

log T [K] logp [gom®] .y ier
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Destruction of circumstellar disks oo
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 Destruction of circumstellar disk:
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Destruction of circumstellar disks oo
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 Destruction of circumstellar disk:
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e Destruction of circumstellar disk:
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e Destruction of circumstellar disk:

log T [K] logp [gem™]
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e Destruction of circumstellar disk:

log T [K] logp [gem™]
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e Destruction of circumstellar disk:
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 Destruction of circumstellar disk:
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. 40 34 28 22 16 12 -4 -6 B 20 Initial Conditions
[ [ "

Time [yr] Bozyy
I

e Luminosity of star: 3550 L,
| Mass of central star: 8.3 M,
- | Stellarwind:  30kms? 108 Mg yr-
| Mass of disk: 0.7 Mg
5 ® L] H-ionizing flux: 7 x 1044 -1
g Net UV flux: 2 x 1048 51
5 o
¢ Results
S o s
| Disk wind via “external” UV heating
n .| Stellar wind focused through polar cavity
G Photoevaporation of disk within 10° years
i

-1200

400 0 200 800
Digtance from Axis [AU]

TIARA Winter School 2009 Yorke: Massive Star Formation 68



National

"Known” Massive Accretion Disks i

and Space
Administration

10 M -star
10 M,,-disk

Sun

| T _
il . @ 9
] 05 K o ( l\“\\ =
- e QT =
7 o0 (C/ARNE
. , - B 3200 o A
5 s @ . V| F =N =
&S B0 Al = o L | R \:\‘\L_/g_
: L—8 L. \ &= A
< ) ;B 55" | (e
° - ° k = . 4 il o > 2 N \
5 0 . — N L (QJ‘ ’ \ J
.. . ; 5 § G192 3 - e | G O
(artist impression) kT e 8% a-q 183180 4. T
L o R 3 s = e \ o
& nelno '7T4-~"v i~ ETE
B W 30 R, Fo e Yk
- 7 .
i v A
-~ / A\
12° ’ ¥
¥ A\
/ \
/ \
/ \
ok AT EE ATy . o b
VoOE 56 4 L I 539.4
|8 | - 5
L | q 59,2
s 7 o _ 590 | =
4 a9 W
- [® 5878 .

L® i %«* - 584 |
%

-

L
10 =K &| = 1K = 20 ¥
=5 0 5 140 15 20 05

Velocity (km/z) o

TIARA Winter School 2009 Yorke: Massive Star Formation 69



Star Formation: The first Natora
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Ge ne r‘ation Administration

« Stars in the distant past (Pop lll) are probably formed
non-homologously through accretion => disks?

« Without magnetic fields angular momentum transport in
disks occurs via...

— Tidal forces (bars & spirals)
— Turbulence (?)

« Massive stars photoionize nearby disks (including their
own), eventually destroying the disks.

— The accretion and disk destruction processes close to
massive stars operate on similar timescales.

— Photoionization can limit the final mass of the star
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Rotation will play an important role ...

(Abel, Bryan, Norman 2000)
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Star Formation in the Distant Past - .=

and Space

Standard Wisdom

« Star formation in the earliest epochs (metal-free)
IS an “easy” theoretical problem
— No magnetic fields
— Equation of state relatively simple

— Merely collect mass in gravitational troughs and allow
it to evolve to central hydrogen burning

— Once they form, the first stars have negligible winds

— Once they form, the first stars inhibit further star
formation in the immediate vicinity (radiation, SN
explosions)

* The greatest difficulty: no direct observations of
these Pop lll stars
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« Massive star formation today is by contrast a
difficult theoretical problem
— Magnetic, radiative forces on dust important
— Complex microphysics (dust, degree of ionization, ...)

— Generally form in groups and clusters and their winds,
lonizing radiation, and supernova explosions strongly
affect ongoing star formation

* There are direct observations

« What we don’t know about massive star
formation today may indicate what we don't
really know about star formation in the distant
past.
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Speculation about the first Stars ..

and Space
Administration

* Pop lll stars probably formed in clusters.
— Pop I/ll analogy: “triggered star formation”

— Photoionization, winds, and SN shocks can help
compress nearby clumps, initiating secondary star
formation

* Pop lll stars were probably multiple systems.

— Because of lack of magnetic fields in their early
phases, fission in rapidly rotating Pop Ill stars can
produce close binaries
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More Speculation about the first ..

and Space

S*ar.s Administration

* Unable to support themselves through pp-burning,
Pop lll stars immediately produced C (via 3-a process)

which then allowed central CNO H-burning

« Meridianal circulation (Goldreich-Schubert-Fricke) in
rapidly rotating Pop lll stars mixed interiors on a
timescale of 10° years, bringing metals to the surface.

« Radiation driven mass loss probably created Wolt-
Rayet Pop Il stars.
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« Massive star formation is a difficult theoretical problem

— Magnetic, radiative forces on dust important
— Complex microphysics (dust, degree of ionization, ...)

— Massive stars form in groups/clusters and their winds, ionizing
radiation, and supernova explosions strongly affect ongoing star
formation.

« Massive stars photoionize nearby disks (including their

own), eventually destroying the disks.

— The accretion and disk destruction processes close to massive
stars operate on similar timescales.

— Photoionization can limit the final mass of the star.
 (Observations continue to confound theorists
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Thank you
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